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Abstract. The iterated Even–Mansour (EM) ciphers form the basis of many block-
cipher designs. Several results have established their security in the CPA/CCA
models, under related-key attacks, and in the indifferentiability framework. In this
work, we study the Even–Mansour ciphers under key-dependent message (KDM)
attacks. KDM security is particularly relevant for blockciphers since non-expanding
mechanisms are convenient in setting such as full disk encryption (where various
forms of key-dependency might exist). We formalize the folklore result that the ideal
cipher is KDM secure. We then show that EM ciphers meet varying levels of KDM
security depending on the number of rounds and permutations used. One-round EM
achieves some form of KDM security, but this excludes security against offsets of
keys. With two rounds we obtain KDM security against offsets, and using different
round permutations we achieve KDM security against all permutation-independent
claw-free functions. As a contribution of independent interest, we present a modular
framework that can facilitate the security treatment of symmetric constructions in
models that allow for correlated inputs.
Keywords: Even–Mansour · KDM security · Ideal Cipher · Provable Security.

1 Introduction
1.1 Background
Early on, the seminal paper of Goldwasser and Micali [GM84] pointed out that semantic
security may not hold if the adversary gets to see an encryption of the secret key. This
practice was generally perceived as a dangerous use of an encryption scheme but several
studies have revealed that this security notion is both theoretically and practically important
(such as encrypted storage systems such as BitLocker [BHHO08] where the encryption key
may be stored in the page file and thus encrypted along with the disk content).

An encryption scheme is said to be Key-Dependent Message (KDM) secure if it is
secure even against an attacker who can encrypt messages that depend on the secret
key. Formally, security is defined with respect to a set Φ of functions φ mapping keys to
messages for which the adversary can obtain key-dependent encryptions. This security
notion was first formalized by Black, Rogaway and Shrimpton [BRS03] for symmetric
encryption and was subsequently extensively studied for both symmetric and asymmetric
cryptosystems (see, e.g., [BRS03,HK07,HU08,MTY11,DS14,App14,LLJ15]).

A fundamental problem in cryptography is to construct secure blockciphers from simpler
primitives. The Even–Mansour (EM) construction introduced in [EM93] is the simplest
blockcipher known based on a single public permutation P on n-bit strings. It uses two
independent n-bit keys (K1,K2) and on input an n-bit plaintext m, it outputs

EMP((K1,K2),m) = K2 ⊕ P(K1 ⊕m) .
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Figure 1: The r-round iterated Even–Mansour cipher.

Its generalization, the iterated Even–Mansour construction (also known as the key-
alternating cipher) was proposed by Daemen and Rijmen [DR01] as an abstraction
of the design paradigm of substitution-permutation networks. Given r permutations
P1,P2, . . . ,Pr on n-bit strings and (r + 1) keys of length n, the r-round iterated EM
construction, given as input an n-bit plaintext m, outputs

EMP1,...,Pr ((K1, . . . ,Kr+1),m)=Kr+1⊕Pr(Kr⊕Pr−1(· · · (K3⊕P2(K2⊕P1(K1⊕m))) · · · )) .

This construction has become the object of abundant analysis and many recent blockciphers
follow this design (e.g., Present [BKL+07] and PRINCE [BCG+12]).

If one models the underlying permutations as public random permutations, it is
sometimes possible to prove the nonexistence of generic attacks against the iterated
Even–Mansour construction (i.e., attacks that are possibly independent of a particular
instantiation of the permutations P1,P2, . . . ,Pr). If the adversary is only given black-box
oracle access to these random permutations, the iterated Even–Mansour cipher was proved
to achieve several security notions such as traditional indistinguishability (see [CLL+14]
and references therein), security against related-key attacks [FP15,CS15], security in the
multi-user setting [ML15,HT16] or indifferentiability from ideal ciphers1 (see [DSST17]
and references therein).

In this paper, we continue this line of work and study the iterated Even–Mansour
ciphers under key-dependent message attacks.

1.2 Contributions
Our main technical contribution is the proposal of a new modular framework to analyze
the KDM security (and possibly also other forms of security under correlated inputs) for
blockciphers. Our approach is to start with a blockcipher and gradually modify its oracles
with independent ones until we arrive at a construction whose outputs are uniformly
and independently distributed. In the particular case of Even–Mansour ciphers, we will
replace at most two of the underlying permutations (namely P1 and Pr) with oracles that
completely randomize the outputs of the cipher (in both directions for decryption and
encryption queries respectively); see Figure 2.

We consider a general security game where an adversary A has access to an oracle
through two different interfaces. The approach consists in studying the conditions under
which the security game can be modified (in an indistinguishable way for A) so that
the second interface provides access to an independent instance of this oracle. We also
analyze the conditions under which this oracle can further be replaced by a forgetful oracle
that completely removes dependency of outputs on inputs. For KDM security, we then
have to prove that this replacement by forgetful oracles (after splitting) can be performed
indistinguishably if the set of key-dependent messages functions that the adversary has at
its disposal satisfy certain well-defined conditions. These conditions reduce to checking
that the adversary A does not query these oracles on the same inputs (in the backward
and forward direction in the case of random permutations). This general technique allows

1This security notion roughly ensures that the construction “behaves” in some well-defined sense as an
ideal cipher.



Pooya Farshim, Louiza Khati and Damien Vergnaud 3

m

K1

P1

K2

P2

K3

c P±1 P±2

m

K1

P−1

K2

P−2

K3

c

A

m

K1

P1

K2

$

K3

c P±1 P±2

m

K1

$

K2

P−2

K3

c

Figure 2: KDM-CCA analysis for 2-round Even–Mansour.

us to analyze the r-round iterated EM construction in a unified way. It is potentially
applicable for any number of rounds r but here we only apply to three EM cases with
r = 1, 2 (the latter with(out) permutation reuse) and also the KDM security of the ideal
cipher.

We first show that our “splitting and forgetting” technique is applicable to analyze
the KDM security of the ideal cipher. Halevi and Krawczyk [HK07] prove that the ideal
cipher achieves KDM security if one restricts the function class Φ to be a singleton and
containing a function that is independent of the ideal cipher itself. Using our strategy, we
can prove the KDM security of the ideal cipher against adversaries with significantly larger
classes of KDM functions, including functions that may depend on the ideal cipher. In the
particular case where the functions are independent of the ideal cipher itself, it is sufficient
to assume that the set of functions is claw-free, i.e., when distinct functions disagree on
random inputs.

We then analyze the KDM security of the 1-round EM construction in the random-
permutation model. We consider only sets of functions that are independent of underlying
permutation (but our method can be extended to handle functions that depend on the
underlying random permutation). We first present a simple attack that excludes the
practically relevant case of KDM security with respect to the identity function (and more
generally any offset of the key). On the positive side, we prove using our framework that
the 1-round EM construction actually achieves KDM security under chosen-ciphertext
attacks if the set of functions available to the attacker is claw-free and offset-free, i.e.,
when functions do not offset the key by a constant.

We apply the above method to study the KDM security of the 2-rounds EM construction
in two configurations. We present a simple slide attack [BW99] on a variant with both
permutation and key reuse where K1 = K2 = K3 and P1 = P2 are used within the
construction. The set of KDM functions considered contains the identity function (or
more generally any key offsets). We also present a simple attack with complexity 2n/2
on the most general version. We then apply the framework to prove that 2-round EM
achieves KDM security under chosen-ciphertext attacks if the set of functions available to
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the attacker is only claw-free as long as different permutations are used. When one reuses
the same permutation P1 = P2 (because of efficiency reasons or because only one “good”
public permutation is available), we prove that EM achieves KDM-CCA security if the set
of functions available to the attacker is claw-free and also offset-xor-free, meaning that
functions do not output offsets of xor of two of the keys.

Our framework is general enough to be applied to other symmetric constructions and/or
other security models. Indeed, we believe this approach can be used to re-derive the RKA
security of EM ciphers [FP15] or that for Feistel networks [BF15] in a more modular way.

2 Preliminaries

Notation. We let N := {0, 1, . . . } denote the set of non-negative integers, and {0, 1}∗
denote the set of all finite-length bit strings. For two bit strings X and Y , X|Y denotes
their concatenation and (X,Y ) denotes a uniquely decodable encoding of X and Y . The
length of a string X is denoted by |X|. By x←←S we mean sampling x uniformly from set S.
All lists are initialized to empty and all bad flags to false. Throughout $ denotes a forgetful
oracle over some domain and range that on each input in the domain (even repeated ones)
returns a uniformly chosen random element from the range. For a deterministic oracle
machine MO we denote by Q(MO(x)) the list of query/answer pairs made to and received
from O when M is run on input x. For a list L of pairs (x, y), which may have repeats,
we denote by Dom(L) the list of first entries x and by Rng(L) the list of second entries.
We denote appending element X (resp., a list L′) to a list L by L : X (resp., L : L′). We
adopt the code-based game-playing language of Bellare and Rogaway [BR06].

Blockciphers. Given two non-empty subsets K andM of {0, 1}∗, called the key space
and the message space respectively, we let Block(K,M) denote the set of all functions
E : K ×M −→M such that for each K ∈ K the map E(K , ·) is (1) a permutation onM
and (2) length preserving in the sense that for all M ∈M we have that |E(K ,M )| = |M |.
Such an E uniquely defines its inverse D : K ×M −→M. A blockcipher for key space
K and message space M is a triple of efficient algorithms BC := (K,E,D) such that
E ∈ Block(K,M) and its inverse is D. In more detail, K is the randomized key-generation
algorithm which returns a key K ∈ K. Typically K = {0, 1}k for some k ∈ N called the key
length, and K endows it with the uniform distribution. Algorithm E is the deterministic
enciphering algorithm with signature E : K ×M −→ M. Typically M = {0, 1}n for
some n ∈ N called the block length. (3) D is the deterministic deciphering algorithm with
signature D : K×M −→M. Thus a blockcipher is correct in the sense that for all K ∈ K
and all M ∈ M we have that D(K ,E(K ,M )) = M . It is also length preserving. (Note
that length preservation follows from correctness ifM = {0, 1}n). A permutation onM is
simply a blockcipher with key space K = {ε}. We denote a permutation with P and its
inverse with P−. A permutation can be trivially obtained from blockcipher (by fixing the
key). For a blockcipher BC := (E,D), notation ABC denotes oracle access to both E and
D for A. We abbreviate Block({0, 1}k, {0, 1}n) by Block(k, n) and Block({ε}, {0, 1}n) by
Perm(n).

Ideal ciphers. The ideal cipher for key space K and message spaceM is the uniform
distribution over Block(K,M). The ideal-cipher model (ICM) with key space K and
message spaceM is a model of computation where all parties, honest or otherwise, have
oracle access to a uniformly chosen random element in Block(K,M) together with its
inverse. The ideal-cipher model when restricted to K = {ε} gives rise to the random-
permutation model (RPM).

Even–Mansour ciphers. The (iterated) Even–Mansour ciphers consider the problem
of constructing a blockcipher with a large key space from a single, or a small number of,
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permutations. Formally, the r-round Even–Mansour cipher in a model of computation
with r permutations P±1 , . . . ,P±r with domainM = {0, 1}n is a blockcipher with key space
K = {0, 1}(r+1)n and enciphering and deciphering algorithms

EP1,...,Pr ((K1, . . . ,Kr+1),M ) := Pr(· · ·P2(P1(M ⊕K1)⊕K2) · · · )⊕Kr+1 ,

DP−1 ,...,P
−
r ((K1, . . . ,Kr+1),M ) := P−1 (· · ·P−r−1(P−r (M ⊕Kr+1)⊕Kr) · · · )⊕K1 .

The EM ciphers can be also considered in configurations where (some of the) keys and/or
(some of the) permutations are reused in different rounds. We denote the EM cipher where
Pi and Ki+1 are used in round i by EMP1,...,Pr [K1,K2, . . . ,Kr+1].

KDM functions. A key-dependent-message (KDM) function/circuit for key space K
and message space M is a deterministic and stateless circuit φ : K −→ M. A KDM
set Φ is simply a set of KDM functions φ on the same key and message spaces. We
assume membership in KDM sets can be efficiently decided. An oracle KDM function
φO : K −→M is a KDM function with oracle gates.

KDM security. We now formalize security of blockciphers under key-dependent message
and chosen-ciphertext attacks (KDM-CCA). We do this in the O-hybrid model of com-
putation where oracle access to O sampled from some oracle space OSp is granted to all
parties. For example, in the context of Even–Mansour ciphers, O(i, x, σ ∈ {±}) := Pσi (x)
for some random permutations P±i . We therefore grant access to O to the KDM functions
and the adversary. Security is now defined in the standard way via indistinguishability
from the ideal cipher under a random key as shown in Figure 3.

Game KDM-CCAA,ΦBCO

O←←OSp
L← [ ]
b←←{0, 1}
K←←K
(iE, iD)←←Block(K,M)
b′←←AO,KDMEnc,Dec

Return (b′ = b)

Proc. KDMEnc(φO)
If φO 6∈ Φ Return ⊥
M ← φO(K ); C ← EO(K ,M )
If b = 1 Then C ← iE(K ,M )
L← L : C ; Return C

Proc. Dec(C ):
If C ∈ L Return ⊥
If b = 1 Return iD(K ,C )
Return DO(K ,C )

Figure 3: Game defining Φ-KDM-CCA security for a blockcipher.

The adversary can ask for key-dependent encryption for functions φO ∈ Φ and decryp-
tion of ciphertexts of its choice.2 To allow for expressive KDM sets and rule out trivial
attacks, we do not allow decryption of ciphertexts that were obtained from the encryption
oracle (as otherwise the key can be recovered by decrypting key-dependent ciphertexts).
Given blockcipher BCO and an oracle KDM set Φ, we define the advantage of an adversary
A against BCO with respect to Φ as

Advkdm-cca
BCO (A,Φ) := 2 · Pr

[
KDM-CCAA,ΦBCO

]
− 1 .

Feasibility of Φ-KDM-CCA security very much depends on the KDM functions available
in Φ. For instance, if Φ contains the constant functions only, we recover the standard
(strong) PRP notion of security, which is feasible under standard assumptions, in the RPM.
On the other hand, the set Φ cannot be arbitrary. Consider for instance functions φi that

2Note that we do not allow for key-dependent ciphertexts (KDC) in this work as the practical motivations
are somewhat limited.
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zero all bits of K except the i-th one. Then using encryptions of φi(K) as well as those
for Mb,i := 1i−1|b|0n−i for i = 1, . . . , n and b ∈ {0, 1} once can recover the key one bit at
a time. For other sets, however, feasibility may or may not be possible. In the coming
sections, we study this question for the EM ciphers.

3 Analysis via Forgetful Oracle Replacement
Our strategy to prove KDM security for blockciphers is to gradually modify their internals
until we arrive at constructions whose outputs are uniformly and independently distributed.
For instance, in the case of EM ciphers we will replace one or more of their underlying
permutations with forgetful random oracles. These will completely randomize the outputs
of the cipher. To argue that this replacement can be performed indistinguishably, we
will impose certain restrictions on how the adversary can interact with the cipher, and in
particular the set of KDM functions at its disposal will be restricted.

In this section we present a more general result that comes with a number of advantages:
(1) it allows reusing parts of the analyses across different constructions, (2) it highlights
the overall proof strategy and how various assumptions are used with it, and (3) it is
potentially applicable to setting beyond KDM security, and/or to other constructions.

3.1 A framework for security analyses
The blockciphers that we analyze are constructed in a model of computation where all
parties have access to some oracle O.3 These oracles will be sampled from some oracle
space OSp. We start with two assumptions on oracles that are of interest to us.

Splittability. Let sp(L1, L2) be a binary relation on lists L1 and L2. We say oracle O
splits under sp if access to O through two interfaces can be modified in an indistinguishable
way so that the second interface provides access to an independent instance O′. Formally,
we define the advantage of D in the split game as

Advsplit
OSp(D) := 2 · Pr

[
SplitDOSp

]
− 1 ,

where game SplitDOSp is shown in Figure 4.

Game SplitDOSp

O,O′←←OSp
b←←{0, 1}
b′←←DO,Chal

If sp(L1, L2) Then b′ ← 0
Return (b = b′)

Proc. O(x)
y ← O(x)
L1 ← L1 : (x, y)
Return y

Proc. Chal(x)
If b = 0 Then y←←O(x)
Else y ← O′(x)
L2 ← L2 : (x, y)
Return y

Figure 4: Game defining oracle splittability with respect to relation sp.

An alternative definition would quantify over all D that do not trigger sp. Although
sp is publicly checkable, this does not necessarily mean that every D can be modified to
one with comparable advantage that never triggers sp: the relation also depends on oracle
outputs, which are outside the control of the distinguisher. Although, relations that we
study here have the extra property that D can be modified to avoid triggering sp, not
all D will be able to perform this check. In particular certain two-stage distinguishers
D cannot check for sp as the information needed for this check is spread among its two
stages. For such D we need to keep sp in the game description.

3Access to multiple oracles can be modeled via domain separation.
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Forgetful switching. We define the advantage of an algorithm D in the switch game
as

Advforget
OSp (D) := 2 · Pr

[
ForgetDOSp

]
− 1 ,

where game ForgetDOSp is formalized in Figure 5. Relation fg in this game will typically
check for some form of repetitions in oracle queries. Replacing an oracle with a forgetful
one removes any dependency of outputs on inputs.

Game ForgetDOSp

O←←OSp; b←←{0, 1}
b′←←DChal

If fg(L) Then b′ ← 0
Return (b = b′)

Proc. Chal(x)
If b = 0 Then y←←O(x)
Else y ← $(x)
L← L : (x, y)
Return y

Figure 5: Game defining forgetful switching property.

Consider now a modified split game (m-Split) that (1) totally drops the sp check and
(2) when b = 1 uses a forgetful oracle $ in place of O′ under the Chal procedure. We have
the following result.

Theorem 1. Let OSp be a lazily samplable oracle. Let fg (resp. sp) be, by slight abuse of
notation, the event that D triggers the check fg (resp. sp) in the m-Split game. Then for
any D in the modified split game we have a D′ such that

Advm-split
OSp (D) ≤ Advsplit

OSp(D)+2·Advforget
OSp (D′)+Pr[D sets fg|b = 1]+Pr[D sets sp|b = 1] .

Proof. The proof follows 6 games hops and applies the the fundamental lemma of game
playing as follows. Below, we let Gi be the event that D outputs b′ = 0 in game i.

Game0: This is the m-SplitDOSp game with b = 0 (i.e., with respect to oracles (O,O)):
Pr[GD0 ] = Pr[m-SplitDOSp|b = 0].

Game1: In this game we introduce the sp check. This only increases the probability that
b′ = 0: Pr[GD0 ]− Pr[GD1 ] ≤ 0.

Game2: In this game we use an independent oracle O′ for the challenge oracle. A direct
reduction shows that: Pr[GD1 ]− Pr[GD2 ] ≤ Advsplit

OSp(D).

Game3: In this game we drop the sp check. This game and the previous one are identical un-
til a flag sp3 corresponding to check sp is set: Pr[GD2 ]−Pr[GD3 ] ≤ Pr[D sets sp3|b =
1].

Game4: In this game we introduce the fg check. This only increases the probability that
b′ = 0: Pr[GD3 ]− Pr[GD4 ] ≤ 0.

Game5: In this game we use a forgetful oracle $ for the challenge oracle. Since O is assumed
to be lazily samplable (and O and $ are independent of O′) via a direct reduction
and simulation of O we get that for some D′: Pr[GD4 ]− Pr[GD5 ] ≤ Advforget

OSp (D′).

Game6: Finally, we drop the fg check. Not that this game is identical to m-SplitDOSp game
with b = 1. This game and the previous one are identical until a flag fg6 is set:
Pr[GD5 ]− Pr[GD6 ] ≤ Pr[D sets fg6|b = 1].



8 Security of Even–Mansour Ciphers under Key-Dependent Messages

We now bound the probability that D sets sp3 when b = 1. Let spi be the flag analogous
to sp3 in Game i. Note that the probability of sp3 and that of sp4 are the same as
checking condition fg has no effect on setting these flags. Using the fact that sp is publicly
checkable (and hence can be used to define a distinguisher) we get that for some D′′

Pr[D sets sp4|b = 1]− Pr[D sets sp5|b = 1] ≤ Advforget
OSp (D′′).

Finally, the probability of setting sp6 is identical to that of sp5 as, once again, fg has no
effect on these flags. The theorem now follows by adding the above inequities.

We now consider a class of two-stage adversaries D = (A,B). Adversary A can access
the first oracle interface directly: this models the public availability of the oracle. Its
access to the second interface, however, is restricted and is through algorithm B only. This
algorithm holds information K unavailable to A. It receives messages z from A and returns
an output after interacting with the oracles through two interfaces. Formally, we say D is
two stage if it can be written in the form shown in Figure 6 (left) for some algorithms A
and B. The operation of D = (A,B) in the split game is shown on the right. Although
algorithm A can be typically arbitrary, we will put restrictions on the operation of B. For
example, in the KDM setting A will correspond to the KDM adversary and B will model
the operation of a blockcipher on key-dependent messages. More concretely, for 1-round
EM:

BO,Chal(K = (K1,K2), z = φ) := EMO,Chal[K1,K2](φO(K1,K2)) .
We also assume that algorithm B is stateless; that is, it does not store any local state

and each time is run afresh on K and the incoming input z.4 This means each instance of
B(K , zi) can be run independently. We also assume B is deterministic, and hence also that
A queries B with distinct inputs z. Finally, we assume that B has simulatable outputs: its
outputs on a random K and any z are indistinguishable from $ when it is run with respect
to oracles (O, $).

Algo. DO,Chal

K←←K
b′←←AO,B

Return b′

Proc. B(z)
Return BO,Chal(K , z)

O

A A

O0

OO B(K) B(K)

Figure 6: Two-stage adversaries and their operation in the split game.

We now consider the probability of setting sp or fg in m-Split for D that take the
above form. We consider a setting where sp and fg can be expressed as disjunctions of
simpler checks on pairs of distinct entries from the lists. More precisely, we assume for
some algorithm val:

sp(L1, L2) :=
∨
i,j

val(L1[i], L2[j]) and fg(L2) :=
∨
i 6=j

val(L2[i], L2[j]) (?)

where L[i] denotes the i-th element of the list L (which may contain repeats). Each clause
depends on at most 2 elements. Hence a clause can be set by two entries corresponding to
one of the following cases.

4Any (A,B) with a stateful B can be modified to (A′,B′) with stateless B′ and an A′ that sends the
entire history of previous messages to B′. This allows B′ to recompute the state of B. This modification
however increases the query complexity of B, and might not preserve other properties required from B.
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Sp1 : A direct O query of A and a challenge query of B(K , z1) for some z1.

Sp2 : An O query of B(K , z1) and a challenge query of B(K , z2) (possibly with z1 = z2).

Fg : Two challenge queries made by B(K , z1) and B(K , z2) with z1 6= z2.

Therefore, triggering events Sp1 and Sp2 is equivalent to triggering sp and Fg is equivalent
to fg. Note, for a B that does not place any O calls, event Sp2 never happens.

3.2 Some concrete cases
To applying the above theorem to KDM attacks, we start by observing that random
oracles H, permutations P± and ideal cipher E± can be expressed as a single oracle O via
encodings

O(x) := H(x) , O(σ, x) := Pσ(x) , O(σ, k, x) := Eσ(k, x) .

Using the standard PRP/PRF switching lemma [BR06] these oracles enjoy forgetful
switching with respect to checks fgro, fgrp, and fgic defined via Equations (?) and

valro((x1, y1), (x2, y2)) := (x1 = x2) ,
valrp((σ1, x1, y1), (σ2, x2, y2)) := (σ1 =σ2 ∧ x1 =x2) ∨ (σ1 6=σ2 ∧ (x1 =y2 ∨ x2 =y1)) ,

valic((σ1, k1, x1, y1), (σ2, k2, x2, y2)) := (k1 = k2) ∧ valrp((σ1, x1, y1), (σ2, x2, y2)) .

Note that these conditions are publicly checkable. The advantage terms for q-query
adversaries D and domain size 2n are

Advforget
Perm(n)(D) ≤ q2/2n and Advforget

Block(k,n)(D) ≤ q2/2n .

These oracles also split with respect to spro, sprp, and spic associated to their respective
val above. This is immediate for random oracles (with advantage zero) as the systems
(H,H) and (H,H′) are identical as long as the two interfaces are not queried on the same
input. Splitting for ideal ciphers, and random permutations where K = ε, is proved easily.

Theorem 2 (Splitting for the ideal cipher). For any adversary A making at most q1
queries to its first oracle and q2 queries to its second oracle we have that

Advsplit
Block(k,n)(D) ≤ q1q2

2n .

Proof. Consider an adversary D with oracle access to O1 and O2. Algorithm D cannot
ask the same query to its two oracles and it cannot ask to decrypt or encrypt a query
to O1 that has been queried or obtained to O2 and inversely. D has to distinguish
between two systems (E, E) and (E, Ẽ) where E and Ẽ are two independent ideal ciphers.
After the attack D ends up with two lists L1 and L2 containing, respectively, the q1
queries made to O1 and the q2 queries made to O2. The only event that can enable D
to trigger sp is an entry (σ1, k1, x1, y1) ∈ L1 and another (σ2, k2, x2, y2) ∈ L2 such that
(σ1 6= σ2 ∧ (x1 = y2 ∨ x2 = y1)). The probability of this event is bounded by q1q2/2n.

Relation between splitting and switching. Any oracle with forgetful replacement
also allows for splitting: start with (O,O), replace both oracles to get ($, $) and now
switch the first oracle back to get (O, $). This reduction, however, restricts the class
of attacks that can be considered. Indeed in this reduction we would need to rely on
fg(L1 : L2)∨ fg(L1) which imposes no repeat queries to the first oracle. This oracle is also
used by B, and hence we would have to assume that it does not place repeated queries to
it. It might appear that this is not a problem as “without loss of generality” such repeat
queries can be dealt with using lists. This, however, is not the case as different instances
of B often cannot freely communicate with each other their local lists.
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4 KDM Security of the Ideal Cipher
The KDM security for an ideal cipher is formulated as in Figure 3 with respect to an oracle
O that implements an ideal cipher and a trivial construction BCO that simply uses O to
encipher and decipher inputs. We formulate a set of sufficient conditions on a KDM set Φ
that allows us to establish KDM security for the ideal cipher.

Claw-freeness. We define the (single-try) claw-freeness advantage of A against a KDM
set Φ as

Advcf
OSp,Φ(A) := Pr[φO1 6= φO2 ∧ φO1 (K ) = φO2 (K ) :

O←←OSp; K←←{0, 1}k; (φO1 , φO2 )←←AO] .

We define the (multi-try) claw-freeness advantage Advmcf
OSp,Φ(A) by considering A that

return two lists of sizes q1 and q2 and claws are checked for two distinct φ’s coming from
the two lists. A simple guessing arguments shows that for any multi-try A there is a
single-try A′ such that:

Advmcf
OSp,Φ(A) ≤ q1q2 ·Advcf

OSp,Φ(A′) .

Informally, Φ is claw-free if the above advantage is “small” for every “reasonable” A.
When the KDM function are independent of O we may omit sampling of OSp from the
game and notation.

The KDM set corresponding to xoring constants into the key:

Φ⊕ := {φi[∆] : (K1, . . . ,Kr+1) 7→ Ki ⊕∆ : ∆ ∈ K} ∪ {(K1, . . . ,Kr+1) 7→ ∆ : ∆ ∈ K} .

is claw-free since the probability that Ki ⊕∆1 = Kj ⊕∆2 is 0 if i = j and ∆1 6= ∆2, and
is negligible if i 6= j.

Query-independence. We define the query-independence advantage of A against a
KDM set Φ with respect to oracle space OSp := Block(k, n) as

Advqi
Block(k,n),Φ(A) := Pr

[
φO1 (K ) ∈ Q+

K (φO2 (K )) or C ∈ Q−K (φO2 (K )) :

O←←Block(k, n); K←←{0, 1}k; (C, φO1 , φO2 )←←AO
]
.

Here we have used the convention O(σ,K ,M) := Eσ(K ,M). Note that any oracle-free
KDM set is query-independent (i.e. has zero query-independence advantage).

We now prove that the ideal cipher is KDM secure for claw-free and query-independent
KDM sets.

Theorem 3 (Ideal cipher KDM security). Let Φ be a KDM set for keys of length k and
messages of length n. Suppose Φ is claw-free and query-independent as defined above. Then
the ideal cipher is Φ-KDM-CCA secure. More precisely, for any adversary A against the
Φ-KDM-CCA security of the ideal cipher for Block(k, n), there is an adversary C1 against
the claw-freeness of Φ and an adversary C2 against the query-independence of Φ such that

Advkdm-cca
Block(k,n),Φ(A) ≤ q1q/2n + 2q2/2n + q1q/2k + q2(Advcf

Block(k,n),Φ(C1) + 2/2n)+

+ 2q2(Advqi
Block(k,n),Φ(C2) + qφ/2n) .

Here q1 is an upper bound on the number of direct queries of A to the ideal cipher (in
either direction), q an upper bound on the number of challenge queries (globally), and qφ
an upper bound on the number of oracle queries of KDM functions. Adversaries C1 and C2
place at most q1 queries to their ideal cipher oracles.
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Proof. Let A′ be a KDM-CCA adversary. We consider a two-stage adversary (A,B) against
the modified split game as follows. Algorithm A runs A′ and answers its ideal cipher
queries using its own ideal-cipher oracle. It answers a KDM query φ of A′ by forwarding
(+, φ) to its B algorithm that is shown in Figure 7. It answers a decryption query C of
A′ by forwarding (−,C ) to B. KDM functions are deterministic and stateless and we
assume A′ does not place repeat queries. Hence neither does A. Recall that according to
the rules of the KDM game no ciphertext obtained from encryption can be subsequently
decrypted. We also assume, without loss of generality, that if a message M is obtained as
a result of a ciphertext, then the constant function mapping keys to M cannot be queried
to the encryption oracle (since the result is already known). We note that algorithm B
is stateless, deterministic and places a single Chal query. It is also simulatable as when
Chal implements $ then so does B.

Algo. BO,Chal(K , (+, φ))
M ← φO(K )
C ← Chal(+,K ,M )
Return C

Algo. BO,Chal(K , (−,C ))

M ← Chal(−,K ,C )
Return M

Figure 7: Algorithm B used for KDM analysis of the ideal cipher.

It is easy to see that when Chal implements the original (non-replaced) oracle (i.e.,
when b = 0 in the m-Split game), algorithms (A,B) runs A′ in the KDM game with b = 0.
When Chal implements a replaced ideal-cipher oracle, algorithms (A,B) run A′ in the
KDM game with b = 1. We emphasize that we are relying on the modified split game here
as the split game performs the sp that does not exist in the KDM game. Hence

Advkdm-cca
Block(k,n)(A′,Φ) ≤ Advm-split

Block[k,n](A,B) .

Applying Theorem 1, it remains to bound the probability that B meets the three validity
events Sp1, Sp2 and Fg with respect to spic(L1, L2) and fgic(L2) based on valic defined
above.

Let us start with Fg. This event is triggered with z1 6= z2. Suppose σ1 = σ2 = +.
In this case adaptivity can be ignored since the event does not depends on the value R.
Hence C must output φ?

1 6= φ?
2 such that

(+,K , φO1 (K )) = (+,K , φO2 (K ))

This is equivalent to winning claw-freeness for Φ. When σ1 = σ2 = − the event cannot be
triggered as the ciphertexts must be distinct.

Let us consider now σ1 = + and σ2 = −. Then C outputs (+, φ1), receives a random
value R, and then outputs (−,C2). Let R′ be the output for the latter. Now it is either that
(1) B(+, φ1) queries forward challenge on R′, or (2) B(−,C2) queries backward challenge
on R. The former takes place with probability 1/2n as R′ is chosen after φ1. The latter
can be triggered when C2 = R. But this is a disallowed queried by the rules of the KDM
game: no encryption output can be decrypted.

Let σ1 = − and σ2 = +. Then C outputs (−,C1), receives a random value R, and then
outputs (+, φ2). Let R′ be the output for the latter. Now it is either that (1) B(−,C1)
queries backward challenge on R′. This happens with probability 1/2n. Or that (2)
B(+, φ2) queries forward challenge on R. This can be triggered in two ways: (2.1) φ2 is
different from the constant function mapping all inputs to R. In this case a claw is found.
(2.2) φ2 is the constant function mapping to R. But we have disallowed such queries.

Let us now look at Sp1. Since queries always include keys, the value x output by C
must also include the key. The probability of guessing the key (given possibly a random
value R) is at most 1/2k.
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If the KDM functions are oracle-independent, event Sp2 cannot be triggered and the
analysis is done. For oracle-dependent KDM Sp2 can be triggered with z1 and z2 which
correspond to either two forward or one forward and one backward query. (Since backward
queries are oracle-independent, Sp2 cannot be triggered using two backward B queries.)

Suppose i = 1. If z1 = (−, ∗) then L′1 = [ ]. So we assume z1 = (+, φ1). In what follows
L′1 is formed first and then L′2.

(1) Suppose z2 := (+, φ2). Then L′2 consists of a single forward entry. (1.1) A forward
entry in L′1 with a forward entry in L′2 trigger Sp2. This violates query-independence
with a reduction that simply simulates R for C. (1.2) A backward entry in L′1 with a
forward entry in L′2 trigger Sp2. (1.2.1) An input in L′1 matches an output in L′2.
Since the output in L′2 is chosen randomly and independently of inputs in L′1, this
happens with probability at most qφ/2n, assuming the KDM functions make at most
qφ oracle queries. (1.2.1) An output in L′1 matches an input in L′2. The outputs
in L′1 are random subject to permutativity. Value R seen by C is simply a random
value independent of outputs in L′1. Hence the probability of the single entry in L′2
matching one of the outputs in L′1 is at most qφ/2n.

(2) Suppose z2 := (−, C). Then L′2 consists of a single backward entry. (2.1) A forward
entry in L′1 with a backward entry in L′2 trigger Sp2. (2.1.1) An input in L′1 matches
an output in L′2. Since the output in L′2 is random and independent of L′1, this
happens with probability qφ/2n. (2.1.2) An output in L′1 matches an input in L′2.
Since the outputs in L′1 are random subject to permutativity and R is random
and independent of these values, this happens with probability qφ/2n. (2.2) A
backward entry in L′1 with a backward entry in L′2 trigger Sp2. This violates
query-independence.

Suppose now i = 2. If z2 = (−, ∗) then L′1 = [ ]. So we assume z2 = (+, φ2). In what
follows L′2 is formed first and then L′1.

(3) Suppose z1 := (+, φ1). Then L′2 consists a single forward entry. (3.1) A forward
entry in L′1 with a forward entry in L′2 trigger Sp2. This violates query-independence
with a reduction that simply simulates R for C. (3.2) A backward entry in L′1 with a
forward entry in L′2 trigger Sp2. (3.2.1) An input in L′1 matches an output in L′2.
Note that the KDM function can be chosen based on R, the output in L′2. This
violated query-independence. (3.2.1) An output in L′1 matches an input in L′2. Since
the outputs in L′1 are random subject to permutativity, and L′2 is chosen before L′1,
this happens with probability qφ/2n.

(4) Suppose z1 := (−, C). Then L′2 consists of a single backward entry. (4.1) A forward
entry in L′1 with a backward entry in L′2 trigger Sp2. (4.1.1) An input in L′1 matches
an output in L′2. Note that the KDM function can be chosen based on R, the output
in L′2. This violated query-independence. (4.1.2) An output in L′1 matches an input
in L′2. Since the outputs in L′1 are random subject to permutativity, and L′2 is chosen
before L′1, this happens with probability qφ/2n. (4.2) A backward entry in L′1 with
a backward entry in L′2 trigger Sp2. This violates query-independence.

Only one of the above cases need to be considered, which justifies the final term in the
advantage upper bound.

Remark. The converse of the above theorem does not hold. The set Φ := {φ1(K) :=
K , φ2(K ) := K ⊕MSB(K )} is not claw-free as φ1(K ) = φ2(K ) with probability 1/2. KDM
security with respect to this set, however, can be proven along the following lines. Instead
of simulatability of BO,$, demand simulation with the help of a claw-detection oracle. This
is an oracle that given φ1 and φ2 returns (φ1(K) = φ2(K)). This means that we can
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modify the validity game to one which allows C access to a claw-detection oracle. For
oracle-free KDM functions this condition boils down to unpredictability of the key in the
presence of a claw detection oracle. This results in a characterization that is tight, as
predicting the key under claws can be easily used to win the KDM game for ideal cipher
(since claws can be read off from the outputs of the cipher).

5 KDM Attacks on Even–Mansour
In this section we present KDM attacks on the iterated Even–Mansour ciphers. First,
1-round Even–Mansour is not KDM secure under chosen-plaintext attacks for any set Φ
containing functions that offset the key, i.e., with respect to φ(K1,K2) := K1 ⊕∆. Indeed,
enciphering φ(K1,K2) gives P(∆)⊕K2 and hence key K2 can be recovered after computing
P(∆). Our result in the next section excludes such Φ.

We next consider 2-round EM in different configurations: the two permutations can be
set to be identical or independent, and there are five possible key schedules. The simplest
possible (and also the most efficient) construction uses a single random permutation and
the same n-bit key in the two rounds. In the resulting scheme EMP,P[K ,K ,K ], only one
key needs to be securely stored and a unique random permutation has to be implemented.
Unfortunately, this cipher is vulnerable to a sliding attack5 [BW99] if the set Φ contains
the key offset functions.

Indeed, if the function φ(K) := K ⊕ P−1(0n) belongs to Φ, the attacker can simply
query its encryption on it to get C1 = EMP,P[K ,K ,K ](φ(K )) = P(K )⊕K . It also obtains
the encryption of 0n as C2 = EMP,P[K ,K ,K ](0n) = P(P(K )⊕K )⊕K . The attacker can
now recover the key as P(C1)⊕ C2. The adversary AP,EMP,P[K,K,K ], formally described in
Figure 8 (left), can recover the key and this attack can easily be adapted to any number
of rounds if all internal permutations are identical and all keys are equal. We note that
AP,EMP,P[K,K,K ] can trigger the following event and does not respect fgrp for BP,Chal:
(σ1, x1, y1) = (σ1, x1, y1) with σ1 = +; x1 = P(∆⊕K )⊕K ; y1 = P(P(∆⊕K )⊕K )⊕K .

This attack can be adapted to the key schedule [K1,K2,K2] as described by the
adversary AP,EMP,P[K1,K2,K2] shown in Figure 8 (right). The function φ2 is now different
and aims to cancel the key K1 and replace it by K2 to bring the setting back to one where
a single key is used.

We also show that the iterated Even–Mansour construction cannot achieve KDM-CPA
security beyond the birthday bound (for any number of rounds r ≥ 2) if the set Φ contains
the key offset functions (even if the random permutations and the keys are different).
The adversary can simply query the KDMEnc oracle on q1 ≥ 1 different messages
(independent of the key) m1, . . . ,mq1 and store the corresponding plaintext/ciphertext
pairs (mi, ci) for i ∈ {1, . . . , q1} in some hash table (indexed by the ciphertext values).
The adversary can then query the KDMEnc oracle on q2 ≥ 1 key offset functions
φi(K) = K1 ⊕∆j with different offsets ∆j for j ∈ {1, . . . , q2}. For each corresponding
ciphertext zj = KDMEnc(φj), the adversary then looks for it in the hash table. If there
exist ci such that zj = ci for i ∈ {1, . . . , q1}, then, since EM is a permutation, the adversary
knows that mi = ∆j ⊕K1 and can retrieve K1 as mi ⊕∆j . If q1 · q2 ' 2n then, with high
probability, the adversary will find such a collision and therefore the first round key. The
complexity to find the first round key is thus O(2n/2) queries to KDMEnc to find the
first key and the attack can be repeated to find the other keys. The overall complexity
to recover the full secret key is thus O((r − 1) · 2n/2) queries to KDMEnc (since the two
keys of the last round can be obtained easily as described above).

5This attack can be generalized readily for iterated r-rounds EM construction if it uses a single random
permutation and the same n-bit key for all rounds (irrelevant of the value r ≥ 2).
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Adversary AP,EMP,P[K,K,K ]

Chooses a value ∆
y1 ← P(−,∆)
φ1(k) := y1 ⊕K
y2 ← KDMEnc(φ1)
φ2(k) := ∆
y′2 ← KDMEnc(φ2)
y′1 ← P(+, y2)
k ← y′1 ⊕ y′2
y ← ∆⊕ k
y′′1 ← P(+, y)
If y2 = y′′1 ⊕ k Return 1
b←←{0, 1}
Return b

Adversary AP,EMP,P[K1,K2,K2]

Chooses a value ∆
y1 ← P(−,∆)
φ1(k) := y1 ⊕K1
y2 ← KDMEnc(φ1)
φ2(k) := K1 ⊕K2 ⊕∆
y′2 ← KDMEnc(φ2)
y′1 ← P(+, y2)
k2 ← y′1 ⊕ y′2
y ← ∆⊕ k2
y′′1 ← P(+, y)
If y2 = y′′1 ⊕ k2 Return 1
b←←{0, 1}
Return b

Figure 8: Adversaries AP,EMP,P[K,K,K ] and AP,EMP,P[K1,K2,K2].

6 KDM Security of Even–Mansour Ciphers
6.1 One-round Even–Mansour
We study the KDM security of the basic Even–Mansour cipher with only a single round.
We show that this construction achieves nontrivial forms of KDM security.

Offset-freeness. We define the offset-freeness advantage of A against a KDM set Φ
consisting of functions φ : {0, 1}2n −→ {0, 1}n as

Advoffset
Φ (A) := Pr[φ(K1,K2) = K1 ⊕X : (K1,K2)←←{0, 1}2n; (φ,X)←←A] .

Our next result shows that one-round EM is KDM-secure against oracle-free claw-free
and offset-free KDM sets. Note that xor-ing with constants is not offset-free.

Theorem 4. Let Φ be an oracle-free KDM mapping 2n-bit keys to n-bit messages. Sup-
pose Φ is offset-free and claw-free. Then EMP[K1,K2] is Φ-KDM-CCA secure. More
precisely, for any adversary A against the Φ-KDM-CCA security of EMP[K1,K2], there
are adversaries C1 and C2 against the offset-free and claw-free properties of Φ such that

Advkdm-cca
EMP[K1,K2],Φ(A) ≤ q1q/2n+2q2/2n+q1q(2·Advoffset

Φ (C1)+4/2n)+q2(2·Advcf
Φ (C2)+2/2n) ,

where q1 is the number of queries of A to P± and q is the number of challenge queries of
A in either direction.

Proof. The proof structure is analogous to that for the KDM security of the ideal cipher.
For A′ a KDM-CCA adversary, we consider a two-stage adversary (A,B) against the
modified split game as follows. Algorithm A will run A′ as before forwarding its queries
to algorithm B shown in Figure 9. We assume A does not place repeat queries, respects
the rules of the KDM game, and if it obtains a message M as a result of decrypting a
ciphertext C , it does not query the constant function mapping to M to encryption. Note
that algorithm B is stateless, deterministic, simulatable, and places a single Chal query.
This leads to the first two terms in the advantage upper bound.

Since we are only considering oracle-independent KDM functions we do not need to
consider event Sp2. We consider Sp1 next. This event corresponds to finding a collision
between a direct query of A and a challenge query of B. The adversary can trigger this
event in a number of ways as follows.
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Algo. BO,Chal(K , (+, φ))
(K1,K2)← K
X ← φ(K1,K2)⊕K1
Y ← Chal(+, X)
C ← Y ⊕K2
Return C

Algo. BO,Chal(K , (−,C ))
(K1,K2)← K
Y ← C ⊕K2
X ← Chal(−, Y )
M ← X ⊕K1
Return M

Figure 9: Algorithm B used in the KDM analysis of one-round EM.

(1) Two forward queries (X,φ) are such that φ(K1,K2)⊕K1 = X. This violates offset-
freeness. Note that the order of the queries and their adaptivity do not matter as
the winning condition is independent of the oracle output.

(2) Two backward queries (X,C ) are such that C ⊕K2 = X. This amounts to guessing
K2, which happens with probability at most 1/2n.

(3) A forward X and a backward C are such that: (3.1) X = R ⊕ K1 for a possibly
known R (the output of B). This amounts to guessing K1, which happens with
probability at most 1/2n. (3.2) C ⊕K2 = P(X). This amounts to guessing K2, which
happens with probability at most 1/2n.

(4) A backward X and a forward φ are such that: (4.1) X = R ⊕ K2 for a possibly
known R. This amounts to guessing K2, which happens with probability at most
1/2n. (4.2) φ(K1,K2)⊕K1 = P−(X). This violates offset-freeness.

The third term in the advantage bound in the statement of the theorem follows from a
union bound.

We now consider the Fg event, which corresponding to finding two collisions between
two distinct challenge queries of B. The adversary can trigger this event in a number of
ways.

(1) Two forward queries are such that φ1 6= φ2 and φ1(K1,K2)⊕K1 = φ2(K1,K2)⊕K1.
This violates claw-freeness.

(2) Two backward queries are such that C1 ⊕K2 = C2 ⊕K2 and C1 6= C2. This is not
possible.

(3) A forward φ and a backward C such that C is chosen first and: (3.1) φ(K1,K2)⊕K1 =
R ⊕ K1 where φ can possibly depend on R. If φ(K1,K2) is the constant function
mapping to R, this query is not allowed by our restriction above. Otherwise a claw
with constant function mapping to R is found. (3.2) C ⊕K2 = R′ ⊕K2. Since R′ is
randomly and independently chosen, this happens with probability 1/2n.

(4) A forward φ and a backward C such that φ is chosen first and: (4.1) C⊕K2 = R⊕K2.
Here C can possibly depend on R. This violates the KDM rule that output ciphertexts
(R here) are not subsequently decrypted. (4.2) φ(K1,K2)⊕K1 = R′ ⊕K1. Since R′
is randomly and independently chosen, this happens with probability 1/2n.

The forth term in the advantage bound follows from a union bound.

6.2 Two-round Even–Mansour with independent permutations
As mentioned above, offset-freeness excludes the case of KDM security against key offsets.
We ask if by addition of extra rounds to the Even–Mansour ciphers can boost KDM-CCA
security against this class. In this section we show the addition of a single extra round
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with independent permutations is sufficient for this. (In the next subsection, we will
consider using a single permutation.) We consider an oracle O that allows access to two
permutations via O(i, σ, x) := Pσi (x). This is simply an ideal cipher oracle with two key
values i = 1, 2. Hence splitting and forgetting apply to this oracle. Our proof strategy
is as before, but to avoid offset-freeness we only replace the last permutation in forward
queries and the first permutation in backward queries. These will be sufficient to ensure
that the outputs in both directions are randomized.

Theorem 5. Let Φ be a KDM set that is claw-free. Then EMP1,P2 [K1,K2,K3] is Φ-
KDM-CCA secure. More precisely, for any adversary A against the Φ-KDM-CCA security
of EMP1,P2 [K1,K2,K3], there is an adversary C against the claw-free property of Φ such
that

Advkdm-cca
EMP1,P2 [K1,K2,K3],Φ(A) ≤ 15q1q/2n + 2q2 · (Advcf

Φ (C) + 1/2n) ,

where q1 is the number of queries of A to P±i (globally) and q is the number of challenge
queries of A in either direction.

Proof. The proof structure is analogous to that previous cases and we describe the
associated algorithm B in Figure 10. It is easy to verify that this algorithm responds
with KDM queries under EMP1,P2 [K1,K2,K3] and φ and satisfies the requirements of
statelessness, determinism, etc. as before. We emphasize that this algorithm does not
make use of queries of the form Chal(1,+, ·) or Chal(2,−, ·). This means that queries
to O(1,+, X1) (i.e., those to P1) and queries to O(2,−, X1) (i.e., those to P−2 ) can be
arbitrary and without any restrictions.

Algo. BO,Chal(K , (+, φ))
(K1,K2,K3)← K
X1 ← φ(K1,K2,K3)⊕K1
X2 ← O(1,+, X1)
X3 ← Chal(2,+, X2 ⊕K2)
C ← X3 ⊕K3
Return C

Algo. BO,Chal(K , (−,C ))
(K1,K2,K3)← K
X3 ← C ⊕K3
X2 ← O(2,−, X3)
X1 ← Chal(1,−, X2 ⊕K2)
M ← X1 ⊕K1
Return M

Figure 10: Algorithm B used in the KDM analysis of two-round EM with two permutations.

We start with Sp1. This event can be triggered in one of the following ways cor-
responding to choice of an input to an internally replaced oracle and a direct oracle
query.

(1) Forward inputs φ and X such that P1(φ(K )⊕K1)⊕K2 = X. We argue the probability
of this event is upper-bounded by 2q1q/2n. There are two cases to be considered:
(1.1) The value φ(K)⊕K1 has been queried to P1. But this means the adversary
can use P1(φ(K)⊕K1) and X to compute K2. For each φ and all q1 choices of X
the probability is q1/2n and thus q1q/2n over all φ. (1.2) The value φ(K )⊕K1 has
not been queried to P1 and P1(φ(K )⊕K1) is randomly chosen outside the view of
the adversary over a set of size at least (2n − q1). Hence this case happens with
probability at most 1/(2n − q1) which is ≤ 2/2n for q1 ≤ 2n/2. We thus get an
overall probability of 2q1q/2n. We will use this line of argument below and other
proofs later on.

(2) Backward inputs C and X such that P−2 (C2 ⊕ K3) ⊕ K2 = X. This amounts to
guessing K2 with probability 2q1q/2n.

(3) Forward φ and backward X such that for a known random R: (3.1) R ⊕K3 = X.
This amounts to guessing K3 with probability q1q/2n over all φ and X. (3.2)
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P1(φ(K) ⊕ K1) ⊕ K2 = P−2 (X). This amounts to guessing K2 with probability
2q1q/2n.

(4) Backward C and forward X such that for a known random R: (4.1) R ⊕K1 = X.
This amounts to guessing K1 with probability q1q/2n over all φ and X. (4.2)
P−2 (C2 ⊕K3)⊕K2 = P1(X). This amounts to guessing K2 with probability 2q1q/2n.

We now look at event Fg. This event can be triggered in the following ways.

(1) Forward inputs φ1 6= φ2 such that P1(φ1(K) ⊕ K1) ⊕ K2 = P1(φ2(K) ⊕ K1) ⊕ K2.
This violates claw-freeness.

(2) Backward inputs C1 6= C2 such that C1 ⊕K3 = C2 ⊕K3. This is impossible.

Note that only P2 in the forward direction and P−1 in the backward direction are replaced.
Hence these are all the collisions that need to be taken care of. The second term in the
advantage bound follows.

Since B uses O, we need to also consider Sp2. This event can be triggered in the
following ways.

(1) Inputs φ1 and C2 such that φ1 is chosen after seeing a random R and: (1.1) φ1(K )⊕
K1 = R ⊕K1. This is either a repeat query (when φ1 is constant) or breaks claw-
freeness. (1.2) P1(φ1(K )⊕K1) = P−2 (C2 ⊕K3)⊕K2. This amounts to guessing K2
with probability 2q1q/2n.

(2) Inputs φ1 and C2 such that C2 is chosen after seeing random R and: (2.1) P1(φ1(K )⊕
K1)⊕K2 = P−2 (C2 ⊕K3). This amounts to guessing K2 with probability 2q1q/2n.
(2.2) C2⊕K3 = R⊕K3. This event violates the KDM rule that an output ciphertext
is not decrypted.

This concludes the proof of theorem.

6.3 Two-round Even–Mansour with a single permutation
We now consider KDM security of two-round EM with permutation reuse.

Offset-xor-freeness. We define the offset-xor-freeness advantage of A against a KDM
set Φ consisting of functions φ : {0, 1}3n −→ {0, 1}n as

Advox
Φ (A) := Pr[φ(K1,K2,K3) = K1 ⊕K2 ⊕X : (K1,K2,K3)←←{0, 1}3n; (φ,X)←←A] .

Offset-xor-freeness and claw-freeness are sufficient for the KDM security of two-round
EM with a single permutation.

Theorem 6. Let Φ be a KDM set that is claw-free and offset-xor-free. Then EMP,P[K1,K2,K3]
(with a single permutation) is Φ-KDM-CCA secure. More precisely, for any adversary A
against the Φ-KDM-CCA security of EMP,P[K1,K2,K3], there is an adversary C1 against
the claw-free property of Φ and an adversary C2 against the offset-xor-free property of Φ
such that

Advkdm-cca
EMP,P[K1,K2,K3],Φ(A) ≤ 9q1q/2n + q2(2 ·Advcf

Φ (C1) + Advox
Φ (C2) + 9/2n) ,

where q1 is the number of queries of A to P± and q is the number of challenge queries of
A in either direction.

Proof. The proof structure is analogous to that previous case and we only present the
associated algorithm B in Figure 11 below.
The adversary can trigger Sp1 in a number of ways as described below.
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Algo. BO,Chal(K , (+, φ))
(K1,K2,K3)← K
X1 ← φ(K1,K2)⊕K1
X2 ← O(+, X1)
X3 ← Chal(+, X2 ⊕K2)
C ← X3 ⊕K3
Return C

Algo. BO,Chal(K , (−, zC ))
(K1,K2,K3)← K
X3 ← C ⊕K3
X2 ← O(−, X3)
X1 ← Chal(−, X2 ⊕K2)
M ← X1 ⊕K1
Return M

Figure 11: Algorithm B used in the KDM analysis of two-round EM with a single
permutation.

(1) Two forward queries (φ,X) are such that P(φ1(K )⊕K1)⊕K2 = X. This amounts
to guessing K2 with probability 2q1q/2n (Recall that in the one-round construction
we used offset-freeness at this stage.)

(2) Two backward queries (C , X) are such that P−(C ⊕ K3) ⊕ K2 = X. Again, this
amounts to guessing K2 with probability 2q1q/2n.

(3) A backward query C and a forward direct query X are such that: (3.1) P−(C ⊕
K3)⊕K2 = P(X). This amounts to guessing K2 with probability 2q1q/2n. (3.2) For
some random and known R we have R⊕K1 = X. This amounts to guessing K3.

(4) A forward query φ and a backward direct query X are such that: (4.1) P(φ(K)⊕
K1)⊕K2 = P−(X). This amounts to guessing K2 with probability 2q1q/2n. (4.2)
R⊕K3 = X. This reduces to guessing K3.

The adversary can trigger Fg in one of the ways described below.

(1) Two forward queries φ1 6= φ2 are such that P(φ1(K )⊕K1)⊕K2 = P(φ2(K )⊕K1)⊕K2.
This violates claw-freeness.

(2) Two backward queries C1 6= C2 are such that P−(C1⊕K3)⊕K2 = P−(C2⊕K3)⊕K2.
This is not possible.

(3) A forward φ and a backward C are such that C is chosen second and: (3.1) P(φ(K )⊕
K1)⊕K2 = R⊕K1. Here R is a random value chosen after φ corresponding to the
output of B on C . This happens with probability 1/2n. (3.2) P−(C ⊕K3)⊕K2 =
R⊕K1. Here R is a random value corresponding to the output of B on φ. Here C
can depend on R. This happens with probability 1/2n: Even if K3 is known, this
event amounts to guessing K1 ⊕K2. This event happens with probability 2q2/2n.
(Note that here we rely on round keys being different.)

(4) A forward φ and a backward C are such that φ is chosen second and: (4.1) P(φ(K )⊕
K1)⊕K2 = R⊕K1. Here φ can depend on R. This happens with probability 1/2n:
Even if we allow the value P(φ(K) ⊕ K1) to be chosen, this amounts to guessing
K1 ⊕K2. (4.2) P−(C ⊕K3)⊕K2 = R⊕K1. Here R is chosen after C . This happens
with probability 2q2/2n.

We also need to analyze event Sp2 here as B depends on the oracle. This event can be
triggered as a result of a collision between two queries to B one of which is to the oracle
and the other to the challenge. This can happen in one of the following ways.

(1) Inputs φ1 and φ2 such that: φ1(K )⊕K1 = P(φ2(K )⊕K1)⊕K2. If the input to the
permutation cannot be guessed, this happens with low probability. Else it violates
xor-offset-freeness.
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(2) Inputs C1 and C2 such that: C1 ⊕ K3 = P−(C2 ⊕ K3) ⊕ K2. Even given K3, this
amounts to guessing K2.

(3) Inputs φ1 and C2 such that: (3.1) φ1(K) ⊕ K1 = R ⊕ K1. If R is chosen after
φ1 this happens with probability 1/2n. Else, a constant φ1 is not allowed and a
non-constant φ1 violates claw-freeness with the constant function mapping to R. (3.2)
C2⊕K3 = R⊕K3. This violates the rules of the KDM game for a C2 chosen after R and
otherwise happens with probability 1/2n. (3.3) P(φ1(K )⊕K1) = P−(C2 ⊕K3)⊕K2.
Even given K3, this amounts to guessing K2. This happens with probability 2q2/2n.

Remark. The adversary AP,EMP,P[K,K,K ] described in Figure 8 triggers the following
event that does not respect fgrp for BP,Chal: (σ1, x1, y1) = (σ1, x1, y1) with σ1 = +,
x1 = P(∆ ⊕ K) ⊕ K , y1 = P(P(∆ ⊕ K) ⊕ K) ⊕ K . Similarly, the adversary against
the scheme EMP,P[K1,K2,K2] uses KDM functions without xor-offset-freeness. It is
however not clear if xor-offset-freeness is indeed necessary for the general key schedule
EMP,P[K1,K2,K3].
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