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Although there has been much work in recent years on data-driven natural language generation,

little attention has been paid to the fine-grained interactions that arise during microplanning

between aggregation, surface realization, and sentence segmentation. In this article, we propose

a hybrid symbolic/statistical approach to jointly model the constraints regulating these inter-

actions. Our approach integrates a small handwritten grammar, a statistical hypertagger, and

a surface realization algorithm. It is applied to the verbalization of knowledge base queries and

tested on 13 knowledge bases to demonstrate domain independence. We evaluate our approach

in several ways. A quantitative analysis shows that the hybrid approach outperforms a purely

symbolic approach in terms of both speed and coverage. Results from a human study indicate

that users find the output of this hybrid statistic/symbolic system more fluent than both a

template-based and a purely symbolic grammar-based approach. Finally, we illustrate by means

of examples that our approach can account for various factors impacting aggregation, sentence

segmentation, and surface realization.

1. Introduction

When generating a text, many choices must be made. The content to be expressed must
be selected (content selection) and structured (document planning). Content must be
distributed into sentences (sentence segmentation). Words (lexicalization) and syntac-
tic structures (surface realization) must be chosen. Appropriate referring expressions
must be identified to describe entities (referring expression generation). Coordinated
and elliptical constructs may be exploited to omit repeated information (Aggregation).
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These decisions interact and are subject to various constraints. Consider for instance
the content sketched in Example (1). There are many ways of verbalizing this con-
tent1 but the appropriate choice depends on the context. For instance, the elision form
(1l-m) is only appropriate in a context where another sell literal is present (e.g., car(x)
sell(x,y) sportsCar(y) sell(x,z) trucks(z)). In this case, the repeated sell predicate
can be elided (A car dealer selling sports cars and trucks).

(1) CarDealer ⊓ ∃sell.(Truck)

a. The car dealer should sell trucks. (Canonical Clause)
b. It should sell trucks. (Canonical Clause with Pronominal Subject)
c. and the car dealer should sell trucks (And S-Coordination)
d. and it0 should sell trucks (And S-Coordination with Pronominal Subject)
e. The car dealer who should sell trucks (Subject Relative)
f. The car dealer (...) and who should sell trucks (And Subject Relative)
g. The car dealer (...), who should sell trucks (Comma Subject Relative)
h. The car dealer selling trucks (Gerund)
i. The car dealer (...) and selling trucks (And Gerund)
j. The car dealer (...), selling trucks (Comma Gerund)
k. trucks which the car dealer sells (Object Relative Clause)
l. The car dealer (selling ... ) and trucks (And NP)
m. The car dealer (selling ... ), trucks (Comma NP)

There are both soft and hard constraints regulating the choice of a given verbal-
ization. A clause starting with a comma must be complemented by one starting with
a coordination (Examples (2)a–b) and an elided clause must follow its source clause
(Examples (2)c–d). These are hard, grammatical, constraints in that violating them
yields sub-standard text.

(2) a. The car dealer should sell trucks, provide sports cars, and be located in France.

b. ⋆ The car dealer should sell trucks, provide sports cars, be located in France.

c. A car dealer selling trucks and sports cars

d. ⋆ A car dealer and sports cars selling trucks

On the other hand, many syntactic and linear ordering choices are regulated by
soft constraints—that is, yield text of variable acceptability. Thus, although both sen-
tences in Example (3) are grammatical, Example (3a) is arguably better English than
Example (3b).

(3) a. I am looking for a teaching assistant who is employed by the University, who teaches English, and

who has a PhD

b. ? I am looking for a teaching assistant employed by the University, who teaches English and

having a PhD

In this article, we present a hybrid symbolic/statistical approach designed to handle
the interactions between surface realization, sentence segmentation, and aggregation.
In this approach, hard constraints are encoded by the grammar (e.g., the constraints
encoding the interactions beween comma and coordination conjunctions) while soft

1 As shall be discussed in Section 3, our approach was developed for generating user queries on
knowledge bases. In this context, we choose to include the should modality in the verbalization of a
binary relation thus capturing the intention of the user. Hence the unusual modal verbalizations. Nothing
hinges on this though and, in our approach, generating the simpler non-modal form (for example, The
car dealer sells trucks) is a simple matter of modifying the grammar trees to remove the modal particle.
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constraints (e.g., constraints on linear order) are modeled statistically using a linear
Conditional Random Field hypertagger.

To illustrate the workings of our approach, we consider a Natural Language Gener-
ation (NLG) setting where content selection and linearization are given, namely, the ver-
balization of Knowledge Base (KB) queries in the context of the Quelo Natural Language
(NL) user interface to knowledge bases (Franconi, Guagliardo, and Trevisan 2010b). For
instance, given the query in Example (4a), we seek to generate a verbalization of this
query such as in Example (4b).

(4) a. NewCar ⊓ ∃exteriorColor.Beige ⊓ ∃hasCarbody.UtilityVehicle

⊓ ∃runOn.NaturalGas ⊓ ∃locatedInCountry.Country

b. I am looking for a new car whose exterior color should be beige and whose body style should be a

utility vehicle. The new car should run on natural gas and should be located in a country.

We compare our approach both with a template-based approach and with a sym-
bolic, grammar-based approach and show that it improves performance in terms of both
speed and output quality.

One distinctive feature of our method is that it is grammar-based. As expected,
this allows for a detailed handling of syntactic and morpho-syntactic constraints (e.g,
subject/verb agreement, verb tense, relative pronoun case). More interestingly, this also
allows for the training of a “high level hypertagger” whose categories are not lexical or
syntactic categories but general, more abstract, syntactic classes describing the surface
realization of, for instance, a verb argument. This contrasts both with approaches to
data-to-text generation that map meaning representations to sentences without assum-
ing an intervening syntax (Konstas and Lapata 2012b, 2012a; Lu, Ng, and Lee 2009;
Dethlefs et al. 2013), and with traditional supertagging approaches that operate on
lexical categories, thereby requiring a large training corpus (Bangalore and Joshi 1999;
Espinosa, White, and Mehay 2008).

Another important feature of our approach is that it is domain-independent and
can be applied to any knowledge base independent of its domain. As we shall show in
Section 4.3, because it relies on a generic grammar, an automatically induced lexicon,
and a hypertagger trained on a small data-to-text corpus, our approach can be applied
to any knowledge base independent of the domain it covers.

In sum, the main features of our approach to query generation are that:

r it jointly models sentence segmentation, aggregation, and surface
realization (cf. Sections 5 and 6)

r the grammar-based approach provides abstract syntactic classes that
capture linguistic generalizations (e.g., subject relative clause), thereby
allowing for learning with little training data (cf. Sections 3 and 4)

r it is domain-independent and does not require additional parallel
data/text training corpus for porting to a new knowledge base (cf.
Section 5)

Conversely, its limitations are threefold. First, it assumes a linearized input, which
is not a standard usecase in terms of NLG applications.2 Second, because it uses a
handcrafted grammar, it does not straightforwardly extend to application domains such

2 This is not necessarily a strong limitation as, for example, trees can be linearized and a similar
hypertagging approach could be used to filter the initial search space using this linearized representation.
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as geography database queries, robocup coaching advice, and weather reporting where
the matching between text and data is much more complex than in the application we
consider. Third, it is limited to a restricted fragment of description logic (conjunctive tree
shape queries) and can therefore not directly account for applications and knowledge
base queries involving more complex semantic representations.

The article is structured as follows. Section 2 summarizes related work on joint
models for microplanning. Section 3 describes the query generation task and the NLG
architecture we developed. Sections 4 and 5 present the experimental set-up used for
the evaluation and the results obtained. Section 6 provides a qualitative analysis of
the generated output by showing examples of interactions between aggregation, sen-
tence segmentation, and surface realization that were correctly accounted for by our
approach. Section 7 concludes with pointers for further research.

2. Related Work

Earlier rule-based work on microplanning NLGs has explored various ways of com-
bining lexicalization, surface realization, and aggregation in architectures ranging from
integrated systems where all decisions are made simultaneously (Appelt 1982) to strictly
sequential pipelines (Reiter, Dale, and Feng 2000). Although the sequential approach
is easier to develop and to maintain, it cannot easily account for the interactions that
are known to exist between the various modules (Danlos 1987). A sequential approach
can in fact induce a “generation gap” (Meteer 1990) whereby generation fails because a
choice made earlier in the pipeline conflicts with the constraints of a module occurring
further down the pipeline. Moreover, taking individual decisions at different sub-tasks
in a sequential manner might lead to suboptimal solutions (Marciniak and Strube 2005).
On the other hand, symbolic joint approaches to microplanning lack in robustness and
efficiency. They also require much time and expertise to develop the various linguistic
resources (grammar, lexicon, text plans, etc.) they are based upon.

In previous work on sentence planning, Walker, Rambow, and Rogati (2001) there-
fore proposed a trainable sentence planner (called SPoT) that addresses the interactions
occurring between content ordering, lexicalization, and aggregation. SPoT is part of a
dialog system in the travel domain, which was later on extended to provide restaurant
information (SPaRKy; Walker et al. 2007). In this approach, each input dialog act is
assigned a syntactic structure (DSyntS, Deep Syntactic Structure; Mel‘ čuk 1988) and
then alternative ways of combining them into one or several sentences are explored. To
this end SPoT proceeds in two steps. First, a number of random alternative sentence
plans is generated using a set of clauses combining operations and handcrafted heuris-
tics. Second, a ranking function learned from a corpus of sentence plans annotated
with human ratings is applied to score the sentence plans generated in the first step.
SPaRKy is based on SPoT’s two-step sentence plan generation and ranking approach,
but additionally incorporates rhetorical structure in the generated sentence plans.

There are several differences with our approach. First, the SPaRKy sentence planner
generates different orderings of dialog acts, whereas in our case the order is enforced
by the query linearization. Second, SPaRKy handles more complex text along with
the choice of discourse connectives. Third, where SPaRKy uses a set of aggregation
operations to specify clause-combinations, we model aggregation in the grammar,
thereby accounting for the fact that, for example, coordinations and ellipses are subject
to grammatical constraints.
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Several joint, data-driven approaches have also been proposed to account for the
multi-way interactions between various NLG modules and thus minimize the amount
of expertise and manual work required.

The work of Konstas and Lapata (2012b, 2012a) departs from the sequential, sta-
tistical approach proposed by Angeli, Liang, and Klein (2010) for generation from
databases and describes a generation model that jointly performs content selection,
sentence planning, and surface realization. Given a corpus of database records and their
textual descriptions, they induce a probabilistic context free grammar that captures the
structure of the database and how it can be rendered into natural language. Generation
then boils down to finding the best parse tree using the Viterbi algorithm. They evaluate
their approach on three domains and obtain results competitive with the state of the
art. Konstas and Lapata (2012b, 2012a), Lu, Ng, and Lee (2009), and Dethlefs et al.
(2013) developed NLG systems trained on parallel corpora of text and databases such
as Geoquery (880 training instances, queries of a geographic database), Robocup (1,539
instances, coaching advice to robots), WeatherGov (29,528 instances, weather forecasts),
and ATIS (5,426 instances, air travel). Dethlefs et al. (2013) train their model on a corpus
of restaurant recommendations.

These approaches often handle formal languages (e.g., sets of database records)
and applications (e.g., coaching a robot or querying a geography database) that are
much more complex than the simple language of entity description we focus on in
this article; thus they differ from our work in two main ways. First, there is no sys-
tematic exploration of how aggregation and syntactic choices impact readability. Our
handwritten grammar systematically captures the possible syntactic realizations of a
given predicate, whereas the probabilistic grammar acquired by Konstas and Lapata
(2012b, 2012a), for instance, will only encode the possible syntactic realizations of an
input that can be learned from the training corpus. Second and more importantly,
in all these approaches, the learned models are corpus-specific and adaptation to a
new domain requires the construction of a new parallel corpus of meaning represen-
tations and natural language sentences. Konstas and Lapata’s approach (2012b, 2012a)
makes use of relatively large training corpora with respectively 1,539, 29,528, and 5,426
input/output pairs for each of the three domains considered. In contrast, we use 206
input/output pairs to train a hypertagging module that, together with a small hand-
written grammar and an automatically induced lexicon, permits generating from arbi-
trary knowledge bases.

Zarrieß and Kuhn (2013) consider referring expressions, syntax, and word order and
explore how different architectural set-ups account for their interactions. Using a corpus
annotated with deep syntax and discourse referents, they develop a statistical approach
that can map a deep syntax tree and a set of referents to a sentence. The approach
combines a syntax generator mapping a deep to a shallow dependency tree, a referring
expression generator, and a linearizer. They combine these three modules in different
ways and examine how these different combination modes impact the generated text.

As in Konstas and Lapata (2012b, 2012a), in Zarrieß and Kuhn’s approach (2013)
the syntactic variations allowed for a given input are restricted to those learned from
the parallel corpus of deep and shallow syntax. There is, for instance, no mapping from
repeated or shared content to elided constructions or to relative clauses. More generally,
whereas our grammar systematically encodes the various ways in which a proposition
can be verbalized (e.g., using a relative clause or an elided clause) and uses these to sup-
port aggregation, Zarrieß and Kuhn use a limited set of learned transformations to map
deep to shallow syntax. Empirically, another difference with our work is that whereas
Zarrieß and Kuhn focus on the interactions between referring expressions, syntax, and
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word order, we work on the interactions between surface realization, aggregation, and
sentence segmentation.

Lampouras and Androutsopoulos (2013) present a joint model for content selection,
surface realization, and aggregation. Using Integer Linear Programming, they specify
constraints designed to maximize the importance and the number of the selected facts
so as to enhance informativeness while minimizing the number of selected entities to
favor aggregation. They apply their approach to the task of verbalizing sets of OWL
axioms and show that, in comparison to a handcrafted NLG system, their approach
provides more compact text with no deterioration in text quality.

This approach is similar to ours in that it focuses on modeling the interactions
between aggregation and surface realization. There are two main differences, however.
A first main difference is that we model surface realization and aggregation using a
grammar. Language naturally allows for aggregation. Relative clauses, shared subject
construction, ellipsis, and coordination are all means of factoring out common con-
tent. By using a grammar that describes these phenomena, we directly account for
the interaction between surface realization and aggregation. In contrast, Lampouras
and Androutsopoulos (2013) make use of word-specific sentence plans for surface
realization and of ad hoc sentence plan combining rules for aggregation. A second
difference is that whereas, in our approach, syntax and aggregation choices are guided
by a hypertagger trained to predict the best sequence of syntactic constructs for a given
input, in Lampouras and Androutsopoulos the aim is to systematically minimize the
length of the output, that is, to maximize aggregation. That is, we allow for various
ways of aggregating a given content into different sentences and select one based on
linguistic and semantic criteria, whereas Lampouras and Androutsopoulos (2013) select
the aggregated sentences based solely on sentence length.

In sum, our approach differs from previous work in two main ways. First, it
focuses on providing a joint model for the interactions between surface realization,
aggregation, and sentence segmentation. In contrast, previous joint approaches have
focused on the interactions between content selection, sentence planning, and surface
realization (Konstas and Lapata 2012b, 2012a); referring expressions, syntax, and word
order (Zarrieß and Kuhn 2013); or content selection, lexicalization, and aggregation
(Zarrieß and Kuhn 2013). Second, this joint model is based on a generic grammar that
systematically captures the possible syntactic realizations of a proposition. In contrast,
previous approaches only account for some of the possible syntactic variations using ad
hoc templates (Lampouras and Androutsopoulos 2013) or transformation rules learned
from annotated corpora (Zarrieß and Kuhn 2013).

3. Grammar-Based Query Generation

We start by defining the generation task (Section 3.1) and the semantic input it starts
from (Section 3.2). We then describe the architecture of our generator (Section 3.3).

3.1 The Generation Task

In Natural Language Interfaces to knowledge bases, NLG has been shown to suc-
cessfully assist the user by allowing her to formulate a knowledge base query while
knowing neither the formal query language nor the content of the knowledge base being
queried (Franconi, Guagliardo, and Trevisan 2010a, 2010b; Franconi et al. 2011a, 2011b).
This is because, when using a natural language interface to knowledge bases, the user
never sees the formal query. Instead, at each step in the query process, the generator
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verbalizes all extensions of the current query that are computed by the reasoning system
to be plausible extensions of this query given the knowledge base under consideration.3

The user then chooses from among the set of generated natural language queries the
query she intends. She can also modify the current query by adding, deleting, or
substituting content.

In practice, the user query is specified in an interactive process as follows. The
system starts by proposing an empty query q0 and a set of possible query extensions
q1

1 . . . qn
1 . The user then chooses one of the proposed extensions (qi

1 with 1 ≤ i ≤ n), which
triggers another proposition by the system of a set of possible extensions q1

2 . . . q
n
2 given

qi
1. At each step in the query specification process, the system displays, not the formal

query, but its natural language verbalization as produced from the formal query by the
NLG engine. The following shows an example sequence of interactions that leads to the
specification of the query MarriedMan. The formal language used to represent queries is
that of conjunctive tree–shaped queries and is defined in the following section.

(5) a. I am looking for something (initial query)
⊤

b. I am looking for a man (substitute concept)
Man

c. I am looking for a young man (add compatible concept)
Man ⊓ Young

d. I am looking for a young man who is married to a person (add relation)
Man ⊓ Young ⊓ ∃isMarried.(Person)

e. I am looking for a young married man (substitute selection)
MarriedMan ⊓ Young

f. I am looking for a married man (delete concept)
MarriedMan

3.2 The Generation Input

Following Franconi, Guagliardo, and Trevisan (2010a, 2010b) and Franconi et al. (2011a,
2011b), we assume a formal language for queries that supports the querying of various
knowledge and databases independently of their specification language. This language,
called the language of tree-shaped conjunctive queries, is a minimal query language that
is shared by most knowledge representation languages and is supported by Description
Logic reasoners. Specifically, the Query Tool formal framework (Guagliardo 2009) de-
fines a tree-shaped conjunctive query as a labeled tree whose edges are labeled with
relations and whose nodes are labeled with a variable and a non-empty set of concept
names. Each node of the query tree can be expressed as a concept of a Description Logic
L using atomic concept instantiation, existential restriction, and conjunction. Given a
knowledge base K over a set of relations R and a set of concepts C, a concept in L is
defined as S ::= C | ∃R.(S) | S ⊓ S where R ∈ R, C ∈ C, ⊓ denotes conjunction, and ∃
is used for existential restrictions.

Figure 1 shows an example query tree together with the concept associated with its
root node.

Informally, the input query is a directed tree where each edge is labeled with exactly
one binary predicate and each node is labeled with one or more unary predicates. Such

3 See Franconi et al. (2011a, 2011b), and Perez-Beltrachini, Gardent, and Franconi (2014) for a more detailed
description of how these extensions are computed.
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x

y w

z

{Course}

{Module}

{Professor,
Researcher}

{ResearchProject}

belongsTo taughtBy

supervises

Course ⊓ ∃ belongsTo.Module ⊓ ∃ taughtBy. (Professor ⊓ Researcher ⊓ ∃ supervises.ResearchProject)

Figure 1
Example of query tree.

a tree encodes a first-order logic query in which the root node represents a free variable;
each other node represents a distinct, existentially quantified variable; and the label R
of an edge directed from node x to node y represents a formula R(x, y). Each label C of a
node x represents a formula C(x).

Although tree-shaped conjunctive queries allow for efficient reasoning, their limited
expressivity restricts the range of semantic and linguistic phenomena that can be cov-
ered. No negations, no disjunctions, and no universal quantifications may appear. More-
over, it is tree-shaped; hence no variables may appear twice as the second argument of a
binary predicate. In practice, the natural language fragment that can be generated from
such input is restricted to those cases where there is no coreference between the second
argument of two binary relations (e.g., John hates and Peter likes the new car), no universal
quantification (e.g., All yogi are vegetarian), and no negation or modality (e.g., Not all yogi are

vegetarian, Most yogi are vegetarian, Yogi might be vegetarian).
As mentioned in the Introduction, during natural language generation, document

planning structures and orders the input that will be passed on to the microplanning
stage. In the context of the Quelo NL interface to knowledge bases, document planning
consists in linearizing the tree-shaped conjunctive query that forms the input to surface
realization in such a way that this linearization matches the order in which the user
specified her query. This is enforced by first, using the order in which the user applies
the query update operations (add, substitute, delete) to induce an order on the tree-
shaped query (e.g., if a relation r2 is added by the user after a relation r1, the edge
labeled with r1 will appear to the left of the edge labeled with r2 in the query tree) and
second, traversing the resulting tree in a depth-first, left-to-right fashion.4

The motivation for this particular choice of linearization is that, for cognitive rea-
sons, the natural language query generated by the system should deviate as little as
possible from the order in which the query is being built by the user. By constraining
the linearization of this formal query to match the order in which the user formulates her
query, the system provides a linearization information that can then be used by the sur-
face realizer to adequately constrain the word order of the generated natural language
query. Note that these two steps (linearization of the input and surface realization) are
independent of each other. While the input to surface realization is ordered, it is still

4 See Franconi, Guagliardo, and Trevisan (2010a) for a formal definition of the strict total order jointly
imposed on the input query by the user operations and by the tree traversal.
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possible to generate a sentence whose word order does not match the order of the input.
For instance, given the input Course ⊓ ∃taughtBy.(Professor), our surface realizer can
generate both the active (The course should be taught by a professor) and the passive (A professor

should teach the course). To favor generated sentences whose surface order matches the
order of the linearized input, we use a customized scoring function that computes a
word order cost capturing the deviation between the input and the generated sentence
order.5

To generate from a tree-shaped conjunctive query, we first linearize the query as
described above. For instance, the tree shaped query shown in Figure 1 is linearized as
shown in Example (6a).

We then map this linearized formula to the format expected by our surface real-
izer by making explicit the arguments of concepts and relations using variables. For
instance, Example (6a) is mapped to Example (6b).

(6) a. Course ⊓ ∃belongsTo.Module ⊓ ∃taughtBy.(Professor ⊓ Researcher

⊓ ∃supervise.ResearchProject)

b. {Course(x), belongsTo(e1, x, y), Module(y), taughtBy(e2,x,w), Professor(w), Researcher(w),

supervise(e3, w, z), ResearchProject(z)}

3.3 The Generation Architecture

Our generation system consists of four modules:

r An automatically derived lexicon that associates relations and concepts
with lexicalized grammatical structures;

r A symbolic, handwritten grammar that specifies these grammatical
structures and encodes hard grammaticality constraints;

r A statistically trained hypertagger that filters the initial search space of the
generator by applying soft statistical constraints learned from a small
parallel data-to-text corpus; and

r A surface realization algorithm that generates the space of possible
outcomes licenced by the lexicon, the hypertagger, the grammar, and a
given input.

3.3.1 Lexicon. The lexicon and the grammar describe the possible lexicalizations and
surface realizations of KB concepts and relations. Figure 2 shows an example of a lexical
entry and the corresponding grammar unit.

Lexical entries relate KB relations (here the equippedWith relation) and words (here
the (co)anchors, should, be, equipped, and with) to grammar units, that is, to trees and
semantic schemas (here, the right-hand side of Figure 2). During generation, the relation
is used to instantiate the predicate variable R in the semantic schema R(E, A, B) and the
Anchor value (equipped) to anchor the tree, that is, to label the terminal node marked with
the anchor sign (⋄). Similarly, each Coanchor equation will be used to label the terminal
node with the corresponding name. For example, the strings should, be, and with will be
used to label the terminal nodes named V1, V2, and P, respectively.

5 See Perez-Beltrachini, Gardent, and Franconi (2014) for more details on this scoring function.
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Semantics: equippedWith
Tree: nx0VVVpnx1
Syntax: Canonical
Anchor: equipped
Coanchor: V1 → should/V
Coanchor: V2 → be/V
Coanchor: P → with/P

S[idx:E1]

NP↓[idx:A] VP[idx:E1]
[idx:E]

V V[mde:base] V[mde:ppart] PP

⋄V1 ⋄V2 ⋄ P NP↓[idx:B]

⋄P
R(E,A,B)

Figure 2
FB-LTAG tree and Lexical Entry for the relation equippedWith. Lexical selection “anchors” the
anchor node (marked with ⋄) of the TAG tree with the anchor specified by the lexical entry (here,
equipped) and instantiates its predicate variable R to its semantics (here, equippedWith).
Coanchors label the terminals named with the corresponding names (e.g., should labels the V
node called V1 ).

As mentioned in the introduction, we automatically derive lexicons from knowl-
edge bases using the approach described in Trevisan (2010). In brief, this approach
consists of tokenizing and part-of-speech (PoS) tagging relation and concept names
with a customized tokenizer and PoS tagger. A set of hand-defined mappings is then
used to map PoS sequences to TAG trees. The resulting lexicon maps the concepts and
relations of each input KB to one or more grammar units (pair of semantic and tree
schema), each unit capturing a possible lexical and/or syntactic verbalization of the
corresponding concept/relation. For instance, for the relation equippedWith, the lexicon
extraction procedure will create 16 lexical entries, each corresponding to a mapping
of the equippedWith relation to a different syntactic verbalization. Examples of these
verbalizations and the corresponding tree names are shown in Table 1 later in the article
(first two columns).

When tested on a corpus of 200 ontologies, this approach was shown by Trevisan
(2010) to provide appropriate verbalization templates for about 85% of the relation iden-
tifiers present in these ontologies. A total of 12,000 relation identifiers were extracted
from the 200 ontologies, and 13 syntactic templates were found to be sufficient to ver-
balize these relation identifiers (see Trevisan [2010] for more details on this evaluation).

Thus, in general, the lexicon extraction method proposed by Trevisan (2010) pro-
vides a generic procedure for automatically lexicalizing ontological data. Although
more sophisticated methods could be used to improve both coverage and output qual-
ity, we focus here on the interactions between surface realization, sentence segmenta-
tion, and aggregation (rather than lexicalization) and leave the question of a better and
more complete lexicalization method for further research.

3.3.2 Grammar. Following Gardent and Kow (2007), we use a Feature-Based Lexicalized
Tree Adjoining Grammar (FB-LTAG) augmented with a unification based semantics for
generation. For a precise definition of FB-LTAG, we refer the reader to Vijay-Shanker
and Joshi (1988). In essence, a FB-LTAG is a set of elementary trees whose nodes are
decorated with feature structures and that can be combined using either substitution or
adjunction to produce phrase structure trees (also called derived trees). Substitution of
tree γ1 at node n of the derived tree γ2 rewrites n in γ2 with γ1. n must be a substitution
node (marked with a down arrow). Adjunction of the tree β at node n of the derived
tree γ2 inserts β into γ2 at n (n is spliced to “make room” for β). The adjoined tree must
be an auxiliary tree, that is, a tree with a foot node (marked with a star) and such that
the category of the foot and of the root node is the same. In TAG, each derived tree is
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described by a unique derivation tree that records the elementary trees involved in the
construction of this tree, together with the combining operations applied.

As illustrated in Figure 2, in a FB-LTAG with unification semantics, each tree is
associated with a semantics, and shared variables between syntax and semantics ensure
the correct mapping between syntactic and semantic arguments. When trees are com-
bined, the semantics of the resulting derived tree is the union of their semantics modulo
unification.

Figure 3 shows an example toy FB-LTAG with unification semantics. The dotted
arrows indicate possible tree combinations (substitution for car, adjunction for coupé). As
the trees are combined, the semantics is the union of their semantics modulo unification.
Thus, given the grammar and the derivation shown, the semantics of It sells a car, a coupé. is
as shown—namely, sell(a,d,c),car(c),coupe(c) or equivalently ∃ sell.(Car⊓ Coupe).

3.3.3 Chart-Based Surface Realization. For surface realization, we combine the chart-based
algorithm described in Gardent and Perez-Beltrachini (2010) and Perez-Beltrachini,
Gardent, and Franconi (2014) with a hypertagger filtering the initial search space. This
algorithm proceeds in five main steps as follows.

r Given the input linearized query, hypertagging predicts n best sequences
of grammar units. These grammar units are either FB-LTAG trees from the
grammar or more abstract syntactic classes such as subject relative
(SubjRel).

r Lexical Selection retrieves from the grammar all lexical entries whose
semantics subsumes the input semantics and that are consistent with the
hypertagger filter. The grammar trees selected by these lexical entries are
grounded with both the lexical and the semantic information contained in
these entries.

r Tree Combination: Substitution and adjunction are applied on the set of
selected trees and on the resulting derived trees until no further
combination is possible.

r Sentence Extraction: All syntactically complete trees that are rooted in S
and are associated with exactly the input semantics are retrieved. Their
yields provide the set of generated (lemmatized) sentences.

r Morphological Realization: Lexical look-up and unification of the features
associated with lemmas in the generated lemmatized sentences yields the
final set of output sentences.

Sb

PROd VPb
a

Va NP↓c

sells
sell(a, d, c)

NPc

D N

a car
car(c)

NPc

NP*c PU NP

, D N

a coupé
coupe(c)

sell(a, d, c), car(c), coupe(c)

Figure 3
Derivation and semantics for It sells a car, a coupé.
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For instance, given the linearized query in Example (7a), hypertagging might yield
the two best sequences of hypertags (TAG tree names) shown in Example (7b). Given
this, lexical selection will select the three trees shown in Figure 3, together with the
relative clause tree betanxBEnx for the relation symbol coupe. Tree combination will
then produce two complete phrase structure trees whose yield will be the lemmatized
sentences PRO sell a car, a coupé and PRO sell a car which be a coupé. Finally, morphological
realization will transform these lemmatized sentences into It sells a car, a coupé and It sells a

car which is a coupé.

(7) a. ∃sell.(Car ⊓ Coupe)
b. PRO0VVnx1 nx betanxPUnx

PRO0VVnx1 nx betanxBEnx
c. sell(a, d, c), car(c), coupe(c)

3.3.4 Hypertagging. Supertagging and hypertagging (Espinosa, White, and Mehay 2008)
are preprocessing steps to parsing and surface realization that assign likely categories
to the input based on contextual information. Supertagging was first introduced by
Bangalore and Joshi (1999) to assign likely categories to words before parsing begins,
thereby reducing the initial search space. They showed that supertagging speeds up
parsing times considerably. Likewise, Curran, Clark, and Vadas (2006) and Clark and
Curran (2004) showed that supertagging leads to extremely efficient Combinatory
Categorial Grammar parsing and Espinosa, White, and Mehay (2008) showed that
hypertagging can achieve substantial improvements in realization speed with superior
realization quality.

Similarly, we use hypertagging to improve efficiency. Importantly however, we also
use hypertagging to monitor several of the choices that need to be made during the
microplanning stage of generation.

Contrary to parsing, where supertagging aims to identify a single correct se-
quence of PoS tags for the input string, in surface realization there may be several
sequences of grammar units that all lead to correct output sentences. However, these
sentences may be more or less fluent. In our approach, hypertagging helps predict the
sequences of grammar trees that yield the most fluent sentences. It helps decide when
to use an ellipsis or a coordination (aggregation); how to distribute the input data into
clauses and sentences (sentence segmentation), and which syntactic form to use for a
given relation in a given context (surface realization).

How does this work? As illustrated in Table 1, the trees of a TAG provide a
detailed specification of both the lexicalization and the syntactic constructions licensed
by a given semantic literal. For instance, the nx0VVnx1 tree describes the syntactic
structure of a transitive verb occurring in a canonical clause (e.g., The car dealer should

sell trucks), the nx0VVpnx1 tree specifies a canonical clause containing a verb taking
a prepositional complement (e.g., The car should run on fuel), and the W0nx0VVnx1 tree
captures a transitive verb occurring in a subject relative clause (e.g., The car dealer

which should sell trucks). In effect, each TAG tree embodies one or more microplanning
decisions. For instance, selecting an sDOTnx0VVVpnx1 or sDOTPRO0VVVpnx1 tree
licences the beginning of a new sentence and selecting an SCONJnx0VVVpnx1
tree induces a sentence coordination. Ellipses result from using, for example, the
betavx0ANDVVVpnx1 or betavx0ANDVVVpnx1 tree, and selecting an
W0nx0VVVpnx1, COMMAW0nx0VVVpnx1, or ANDW0nx0VVVpnx1 tree yields a
relative clause.

To favor sequences of TAG trees that result in fluent, natural sounding verbaliza-
tions of KB queries, we train a Conditional Random Field (CRF) model on a small corpus
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Table 1
Verbalizations of the equippedWith relation captured by the lexicon and the grammar. The
second column lists the corresponding tree names and the third shows the corresponding
syntactic class.

Verbalization pattern Tree Synt.Cl

NP0 should be equipped with NP1 sDOTnx0VVVpnx1 Canonical
It0 should be equipped with NP1 sDOTPRO0VVVpnx1 Canonical
and NP0 should be equipped with NP1 sCONJnx0VVVpnx1 S-Coordination
and it0 should be equipped with NP1 sCONJPRO0VVVpnx1 S-Coordination
NP0 which should be equipped with NP1 W0nx0VVVpnx1 SubjRel
NP0 (...) and which should be equipped with NP1 ANDWHnx0VVVpnx1 SubjRelPU
NP0 (...), which should be equipped with NP1 COMMAWHnx0VVVpnx1 SubjRelPU
NP0 equipped with NP1 betanx0VPpnx1 PpartOrGerundOrPrerp
NP0 (...) and equipped with NP1 betanx0ANDVPpnx1 SharedSubj
NP0 (...), equipped with NP1 betanx0COMMAVPpnx1 SharedSubj
NP1 with which NP0 should be equipped W1pnx1nx0VV PObjRel
NP0 (equipped with X) and with NP1 betavx0ANDVVVpnx1 Ellipsis
NP0 (equipped with X), with NP1 betavx0COMMAVVVpnx1 Ellipsis

of aligned formal KB queries and sequences of TAG trees or of syntactic classes. Indeed,
we experiment with two models: one that predicts TAG trees (e.g., W0nx0VVVpnx1)
and another that predicts more abstract grammatical classes (e.g., relative clause). For
example, given the query shown in Example (8a), the first model will be trained on the
tree annotations shown in Example (8b) and the second will be trained on the syntactic
class annotations shown in Example (8c).

(8) a. CarDealer ⊓ ∃locatedIn.(City ⊓ ∃sell.(Car ⊓ ∃runOn.Diesel))

b. CarDealer/Tnx locatedIn/Tbetanx0VPpnx1 City/Tnx

sell/TANDWHnx0VVnx1 Car/Tnx runOn/Tnx0VVpnx1 Diesel/Tnx

c. CarDealer/NP locatedIn/ParticipialOrGerund City/NP sell/SubjRelPU Car/NP

runOn/Canonical Diesel/NP

d. I am looking for a car dealer located in a city and who should sell a car. The car should run on a

diesel.

The tags learned by the hypertagger are therefore either tree names or more general
syntactic classes that capture the syntactic realization of a semantic token independent
of its lexical class. We use a set of 10 syntactic classes. Most of them are illustrated in
Table 1, namely, new clause; conjoined sentential clause; subject relative clause with
and without coordination; participial, gerund, and prepositional phrase construction;
shared subject construction; and ellipsis. Three additional syntactic classes not illus-
trated in Table 1 are adjective modifiers, noun or adjective arguments, and apposition.
These syntactic classes are automatically associated with the grammar compiler used to
compile the FB-LTAG described in Section 4.2 with each of its trees.

During the lexical selection step, only those TAG trees that are compatible with the
hypertagger predictions will be retrieved and added to the chart. For instance, given
the KB symbol equippedWith, while lexical selection will return the set of trees shown
in Table 1, if the hypertagger predicts the SubjRelPU class for this literal, then the tree
combination step of the generation algorithm will only consider the trees labeled with
that syntactic class. In this way, the hypertagger makes high-level microplanning deci-
sions and the grammar and the lexicon further refine those decisions by enforcing hard
constraints such as the possible subcategorization pattern of a given literal (encoded in
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the lexicon)—for example, sDOTnx0VVVpnx1—or the choice (encoded in the grammar
trees) between a comma-conjoined relative clause (COMMAW0nx0VVVpnx1) and a
relative clause introduced by and (ANDW0nx0VVVpnx1). In other words, we use the
hypertagger to rank the syntactic construct sequences in terms of naturalness while the
grammar and the lexicon are used to enforce hard lexical and grammatical constraints
such as the fact that a comma-separated clause must be followed by a clause introduced
by a coordination word (e.g., and or or).

4. Experimental Set-up

We developed and tested the generation approach described in the preceding section
on 13 knowledge bases—namely, two ontologies on cars and on Master courses de-
veloped by the Quelo consortium and 11 ontologies available on the Web, including the
Aquatic Resource Observation ontology, the GoodRelations ontology, Wines, QALL-ME
(Ferrandez et al. 2011), Adolena Ontology (Keet et al. 2008), Movies, The Air System
Ontology (TONES repository), Camera OWL Ontology and Travel (Protégé repository),
The Photography Ontology, and The Bibliographic Ontology.

This involved automatically acquiring lexicons from these knowledge bases; manu-
ally specifying a FB-LTAG describing the morpho-syntax, the syntax, and the semantics
of KB queries; developing a parallel corpus of formal and natural language KB queries
to train the hypertagger model; training the hypertagger model on that corpus; and
integrating this hypertagger with the surface realization algorithm described in Perez-
Beltrachini, Gardent, and Franconi (2014).

4.1 Automatic Induction of Lexicons

Our lexicon is automatically derived from 13 knowledge bases. It includes 10,020 lexical
entries for 1,296 concepts and relations and has an average lexical ambiguity rate
(number of lexical entries per KB symbol) of 7.73.

4.2 Handwritten Grammar

We manually developed a FB-LTAG using the XMG grammar writing formalism
(Crabbé et al. 2013). The grammar consists of 135 trees describing canonical and non-
canonical surface forms for relations and concepts. Canonical surface realizations are
illustrated in Table 2. Non-canonical variants include finite clauses with pronominal
subject; coordinated sentences and coordinated VPs; subject, object, and pied piping
relative clauses; participials and gerund; and verbal ellipsis and prepositional phrases
(cf. Table 1).

In essence, because it captures the syntax of KB queries, the grammar describes
the language of entity descriptions. A KB query identifies a set of objects by specifying
properties (concepts) of these objects and of other objects these objects are related to.
Thus verbalizations of KB queries are in effect descriptions of objects or sets of objects
that involve chaining unary and binary relations to describe the set of objects the user
wants to identify. Examples of the NL queries our system generates are shown in
Section 6.
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Table 2
Example canonical sentences and associated subcategorization classes all mapping to the
“Canonical” syntactic class.

Verbalization pattern Tree Synt.Cl

NP0 should generate NP1 sDOTnx0VVnx1 Canonical
NP0 should run on NP1 sDOTnx0VVpnx1 Canonical
NP0 should be equipped with NP1 sDOTnx0VVVpnx1 Canonical
NP0 should be the equipment of NP1 sDOTnx0VVDNpnx1 Canonical
NP0 should have access to NP1 sDOTnx0VVNpnx1 Canonical
NP0 should be relevant to NP1 sDOTnx0VVApnx1 Canonical
NP0 should be an N1 product sDOTnx0VVDNnx1 Canonical
NP0 with NP1 betanx0Pnx1 Canonical

4.3 Hypertagger

We view hypertagging as a sequence labeling task in which a sequence of KB symbols
needs to be labeled with appropriate syntactic labels.6 In practice, we learn a linear-
chain CRF (Lafferty, McCallum, and Pereira 2001) model to predict the mapping be-
tween observed input features and hidden syntactic labels. This probabilistic model
defines the posterior probability of syntactic labels y={y1, . . . , yL} given the sequence of
input literals x={x1, . . . , xn} :

P(y | x) = 1
Z(x)

L∏

l=1

exp

K∑

k=1

θkΦk(yl, yl−1, x) (9)

Z(x) is a normalization factor and the parameters θk are weights for the feature functions
Φk. Feature functions are defined over the entire input semantics x, the previous label
(yl−1), and the current syntactic label (yl).

Given a set of candidate hypertags (syntactic labels) associated with each literal,
the hypertagging task consists of finding the optimal hypertag sequence y∗ for a given
input semantics x:

y∗ = argmaxyP(y | x) (10)

The most likely hypertag sequence is computed using the Viterbi algorithm. We
used the Mallet toolkit (McCallum 2002) for parameter learning and inference.

4.3.1 Training Corpus. To train the CRF, we constructed a corpus aligning formal queries
with sequences of syntactic labels, either TAG trees or syntactic classes, as shown in
Example (8). The list of TAG trees and syntactic classes used for annotation is shown in
Appendix A.

We created a data set of 206 training instances semi-automatically as follows.

6 Recall that the linear order of the semantic input is deterministically given by the linearization process of
the tree-based conjunctive input (cf. Section 3.2).
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First, we manually created input semantics (i.e., tree-shaped conjunctive queries)
for 11 ontologies for different domains,7 taking care to include query patterns il-
lustrating different lexicalization, segmentation, aggregation, and surface realization
possibilities. These patterns vary in terms of length8 (min: 2, max: 19, avg: 7.44) and
of query tree shape (maximum depth: 4, maximum fanout: 6). To capture the impact of
lexicalization on microplanning, we additionally make sure to include various types of
KB relation symbols using the classification of relations mentioned in Section 3.3.1. This
L(exicalization)-Classification is defined in Trevisan (2010) and consists of 13 classes
(henceforth, L-Classes). In essence, it provides an abstract characterization of the lexi-
calization pattern of a KB relation.9 For instance, the relation equippedWith is associated
with the class VBN-Be because it can be verbalized as NP0 should be equipped with NP1,
whereas the relation scientificName will be associated with the class Simple-NP because
it can be verbalized as The scientific name of NP0 should be NP1. More generally, relation
symbols belonging to different classes will induce different lexicalizations and thereby
have a different impact on surface realization. By including KB symbols from different
classes, we therefore create a training corpus that integrates variation not only in terms
of the length and the shape of the input but also in terms of the lexicalizations that are
possible for the KB symbols.

Using this set of input semantics, we then generated query verbalizations from
these queries using semi-automatically defined microplans and the symbolic surface
realizer described in Perez-Beltrachini, Gardent, and Franconi (2014). The microplans
indicate the segmentation of the query. In some cases they also include lexicalization
choices for some elements of the query. The surface realizer uses the same grammar,
lexicon, and surface realizer as the approach described here but does not integrate the
hypertagger. This symbolic approach to microplanning yielded a total of 6,841 outputs,
which we disambiguated manually, choosing for each input query the output that best
verbalizes this input. Each output realization associates an input KB query with an
NL verbalization and with its TAG derivation trees. From this, we extract for each KB
symbol in the input query the TAG tree and the syntactic class used to produce this
verbalization.

The resulting training corpus consists of 206 〈S, L〉 pairs, where S is a linearized KB
query and L is the sequence of syntactic labels (TAG tree or syntactic class) associated
with each of the KB symbols occurring in S. We learn the hypertagging model on this
training corpus10, using 10-fold cross validation.

4.3.2 Features. All features are derived from the input semantics, that is, a sequence of
relations and concepts. Because concepts have low syntactic ambiguity (they mostly
select NP trees), most of the features are associated with relations only, and in the
following we write Ri−1 (Ri+1) to denote the relation that precedes (follows) relation
Ri. Features fall into five major groups: (i) L-Class features, that is, features derived
from the shape of relation names that indicate how the relation will be lexicalized and
indirectly which TAG tree will be used to verbalize it; (ii) lexical features derived from
the words contained in the relation and concept names; (iii) discourse-level features
indicating how entities relate to each other, that is, whether an entity is common to

7 The domains covered by the 11 ontologies are all those enumerated at the beginning of Section 4 except
for The Air System and The Bibliographic Ontologies.

8 Length is defined as the number of KB concepts and relations.
9 The training set covers 12 of these 13 classes as the L-Class VBG is not present in the corpus.

10 http://talc1.loria.fr/webnlg/stories/quelo-corpus.tar.gz.
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several relations or whether a new entity is being introduced (topic change); (iv) global
structural features pertaining to the overall shape of the input; and (v) combinations
thereof.

L-Class Features. We use the lexicalization classes introduced by Trevisan (2010) as
features that provide an abstract characterization of the lexicalization pattern of a KB
relation. Each relation in the input is associated with its L-class and with the L-class
of the previous and the following two relations. We also use a more general feature
describing the semantic type of each relation, namely, whether it is a binary, a unary, or
a “compatible unary relation,” that is, a concept that labels a query tree node together
with other concepts (hence, a concept that is compatible with these other concepts).

Lexical Features. These features describe characteristics of the words in the concept and
relation names, namely, whether relations Ri−1 and Ri have the same names; whether
there is a word overlap between the Ri relation name and the following concept
name; whether the Ci concept name is an adjective or noun; and whether Ri contains
a preposition.

Entity Chaining Features. These features characterize the distribution of discourse entities
in the query linearization. We use three binary features to capture cases where Ri−1 and
Ri, Ri−2 and Ri, and Ri+1 and Ri share the same first argument, one for cases where the
second argument of Ri−1 is the first argument of Ri; and a feature that summarizes entity
sharing between Ri−1 and Ri by indicating whether or not they predicate over some
common entity. There is a feature that captures the changes in topic occurred between
the current mention of an entity in Ri (only entities in the first argument are considered)
and a previous mention of this entity in a relation Ri−k (where k = 1, · · · , i − 1). This
feature is categorical and encoded as zero, 1to2, 3to4, 5on, where the zero value means
that the entity in Ri has no previous mention and the others encode the number of
distinct entities mentioned between Ri−k and Ri. Finally, an additional binary feature is
used to signal whether the entity denoted by the first argument of Ri is being mentioned
for the first time.

Structural Features. This set of features aims at capturing the structure of the query tree
and overall query characteristics. Three binary features indicate whether the node in
the query tree corresponding to Ri’s first (second) argument has children and whether
the node corresponding to Ri’s first argument has compatible concepts. Two features
capture length in terms of number of relations. One captures the length of the sequence
of predications ranging over the same entity given by Ri’s first argument. The other
counts the number of relations to the left of Ri. Both features take the following values
short, middle, large.

Feature Conjunctions. We use three features combining constraints of different types,
namely, whether Ri−1 licences a relational noun and the first argument of Ri−1 and Ri

is the same entity; whether the query tree node corresponding to the second argument
of Ri has more than three sibling nodes to the left or its immediately preceding sibling
node has descendants; and whether Ri denotes a unary compatible relation and its first
argument is a first mention.
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Table 3
Hypertagger accuracy (percent). n is the number of best sequences considered.

Trees Synt.Cl

n Tokens Input Tokens Input

1 63.62 32.05 76.53 49.98
5 77.42 50.90 92.06 78.60
10 82.97 57.64 95.84 86.93

5. Evaluation and Results

In this section, we start by evaluating the impact of the hypertagging module in terms
of both speed and coverage. We then go on to evaluate the quality of the generator
output when compared with both a template- and a grammar-based approach, using
both quantitative metrics (BLEU) and a human-based evaluation. In Section 6, we will
also show that our approach can account for various factors impacting aggregation,
sentence segmentation, and the choice of contextually appropriate syntactic structures.

5.1 Impact of the Hypertagging Module on Speed and Coverage

We evaluate the hypertagging module both in isolation and in terms of speed and
coverage in interaction with the generator.

5.1.1 Hypertagging Accuracy. The results for hypertagging accuracy are shown in
Table 3.11Token accuracy indicates the ratio of input literals correctly labeled and Input
accuracy indicates the ratio of input sequences correctly labeled. The two hypertaggers
handle 70 tree names and 10 syntactic classes as labels, respectively. As is to be expected
given the difference in the number of classes to be learned, the results clearly show that
both in terms of tokens and in terms of whole inputs, hypertagging is more accurate
using syntactic classes than trees.

5.1.2 Generator Performance. Table 4 shows how the hypertagger impacts realization
performance in terms of coverage and in terms of speed.

Coverage is the ratio of input for which the generator outputs a sentence within a
time limit of 30 seconds. We set this time limit relatively high to allow more coverage
by the symbolic generator. We evaluate coverage using 10-fold cross validation on the
training set12 and experiment with 80 configurations depending on (i) the type of label
used by the hypertagger (Trees vs. Syntactic Classes), (ii) the number of sequences let
through by the hypertagger (n = 1 to 20), and (iii) whether Full Lexical Selection (FLS)
backoff is used. FLS backoff occurs whenever the labels assigned by the hypertagger to

11 We did regularization parameter selection for both Trees and Synt.Cl models using 10-fold cross
validation. The values in this evaluation were obtained using l1 with α = −0.20 for the first model and l2
with variance 1.5 for the second.

12 For each fold (containing n input semantics), we train a hypertagging model HT on the other nine folds,
call the generator with hypertagging model HT on the n input semantics, and retrieve the number of
input semantics for which the generator produced a sentence. The total coverage is the sum of the
coverage obtained for each fold.
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Table 4
Generation coverage (Percentage of input for which generation produced an output) and time
(in ms). Time (gen) is the average time for those inputs for which generation succeeds. Averaged
lexical ambiguity is an indicator of the number of trees passing through the hypertagging filter.
FLS backoff allows for full lexical selection in case hypertagging predicts an incorrect class for a
given input literal. n is the number of sequences let through by the hypertagger.

n = 1 n = 4 n = 12

Trees
Lex Ambiguity 1.01 1.21 1.45♠

Coverage 64.08 81.07 90.78
Time (gen) 269 533 725

Lex Ambiguity-FLS 1.52♣ 1.39 1.49♣

Coverage-FLS 91.75 94.17 95.63
Time-FLS (gen) 711 806 905

Synt.Cl.
Lex Ambiguity 1.45♠ 2.18 3.23
Coverage 91.26 97.57 93.20
Time (gen) 480 1425 3112

Lex Ambiguity-FLS 1.49♣ 2.17 3.23
Coverage-FLS 94.66 98.06 93.20
Time-FLS (gen) 520 1414 3113

Symb Coverage 51.46, avg time 5940, avg lex. ambiguity 5.66

a given input literal are not compatible with those specified by the lexicon. In this case,
the hypertagger prediction is ignored and all grammar trees assigned to that literal by
the lexicon are selected and considered for tree combination.

Because the syntactic classes used in the Synt.Cl configuration describe sets of trees
(cf. Section 3.3.4), the number of trees let through by each n-best sequence will be
higher for the Syntactic Classes-based than for the Tree-based hypertagger. We therefore
indicate coverage and time results not only for different values of n but also in relation
to the level of lexical ambiguity allowed by each configuration. Given an input p of
length k with literals l1, . . . , lk and ti the number of selected trees for the literal li, we
define LA(p), the lexical ambiguity of p, as:

LA(p) =

∑k
i=1 ti

k
(11)

The average lexical ambiguity of m inputs is then:

∑m
j=1 LA(pj)

m (12)

In Table 4, we report results for the 1-, 4-, and 12-best.13 Conceivably, the adaptive
approach could yield improved or even complete coverage in this limited setting with

13 An alternative to using n-best sequences would be to have an adaptive threshold based on marginal
probabilities, as proposed in Curran, Clark, and Vadas (2006) and Espinosa, White, and Mehay (2008).
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less sensitivity to the exact n-best/beta-best settings”—sequences that show coverage
and time results for the hypertaggers at a comparable degree of lexical ambiguity as
well as the maximum coverage achieved. Without the FLS backoff mechanism and at
comparable lexical ambiguity of 1.45 (n = 1 for the Synt.Cl and n = 12 for the Tree
hypertagger), the hypertagger with syntactic classes obtains slightly better coverage
and generation times than the Tree-based hypertagger. When using FLS, comparable
lexical ambiguity is at n = 1 for Synt.Cl with the Tree hypertagger at n = 1 and n = 12.
Within the 1-best sequence configurations, the increased lexical ambiguity comes from
the FLS backoff; however, in the 12-best sequence configuration more ambiguity comes
from the syntactic labels at each sequence and less from the FLS mechanism. Thus, at n =
1 coverage and time are better for syntactic classes, but when looking at n = 12 for trees
we can see slightly better results. The maximum coverage is achieved by the Synt.Cl
hypertagger at n = 4 both with and without the FLS backoff. There is a marked difference
in coverage (+46.6% with respect to the Synt.Cl n = 4) between the hypertaggers and the
symbolic generator, which often times out on the unrestricted search space.

For a complete picture of the results with all configurations, in Figure 4 we draw
coverage with respect to lexical ambiguity at each n-best configuration. We run the
Tree-based hypertagger up to the 70-best sequences configuration with no FLS to find
out what is the maximum coverage that could be attained. In all configurations from
n = 21, · · · , 70, the Tree tagger oscillates in coverage between 91.75 and 92.72, whereas
average lexical ambiguity and time increase at each (n + 1)-best configuration (coverage
92.72 avg. lex. ambiguity 2.32, avg. time 1820 at n = 70).

In sum, hypertagging using syntactic classes permits improving efficiency by
a very wide margin with respect to the symbolic generator (1,414 msec/input vs.
5,940 msec/input) while preserving coverage (98.06% vs. 51.46%).

5.2 Quality of the Generated Texts

The quality of the generated natural language queries is evaluated using a human rating
study that aims to determine whether the queries generated by our hybrid generation
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Figure 4
Coverage with respect to averaged lexical ambiguity. Data points are obtained from the different
configurations, with/without FLS and n-best sequences with n = 1...20; except for the Trees
without FLS, where the results include up to n = 70 configuration.
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Input
Query

Flight⊓ ∃hasCurrentDepartureDate.Date ⊓ ∃hasCurrentArrivalDate.Date
⊓ ∃hasDestination.Airport hasFlightTo.Airport
⊓ ∃hasCarrier.Airline ⊓ ∃hasTicket.AirTicket ⊓ ∃hasDateOfIssue.Date

Temp I am looking for a flight. Its current departure date should be a date. The current arrival
date of the flight should be a date. The destination of the flight should be an airport. The
airport should have flight to an airport. The carrier of the flight should be an airline. The
ticket of the flight should be an air ticket. The air ticket should have date of a date.

Hyb I am looking for a flight whose current departure date should be a date, whose current
arrival date should be a date and whose destination should be an airport. The airport
should have flight to an airport. The carrier of the flight should be an airline. The ticket
of the flight should be an air ticket whose date of issue should be a date.

Symb I am looking for a flight whose current departure date should be a date and whose current
arrival date should be a date and whose destination should be an airport which should
have flight to an airport. Its carrier should be an airline, the ticket of the flight should be
an air ticket and its date of issue should be a date.

Figure 5
Example input and outputs. Temp is a template based system, Symb the symbolic generator
described in Section 3.3.3, and Hyb is the same generator augmented with the Hypertagger.

system (Hyb14) are perceived as better by human judges than those generated for the
same inputs by a template-based system (Temp) and by a grammar-based generator
without the hypertagging module (Symb). Figure 5 shows an example input and the
output produced by each system.

The template-based system is a generation system previously developed for the
Quelo natural language interface, which uses templates to verbalize binary relations
and their arguments. This template-based version of Quelo generates one clause per re-
lation, post-processes referring expressions, and allows for some forms of aggregation.
For instance, two subject-sharing relations may be realized in the same clause. Example
(13) shows an example output produced by the template-based version of Quelo.

(13) I am looking for a car. Its make should be a Land Rover. The body style of the car should be an off-road

car. The exterior color of the car should be beige.

The grammar-based system is our system without the hypertagging module.
For each generation system, we consider a single output. The template system is

deterministic and always returns a single output. For the symbolic approach, we use a
symbolic quality score provided by the system, and for the hybrid system we use the
best scored sentence generated when using the class-based hybertagger with full lexical
selection backoff and 4-best only.

The evaluation was done using the Crowdflower platform.15 In this evaluation,
contributors were shown two verbalizations of the same input but produced by two
different systems and asked to score those two systems on a scale of 1 to 3 in terms of
fluency (How well does the sentence read? Is the text well structured?) and clarity (How
easy is it to understand?).

We collected ratings for sentences generated by each of the three systems from
49 input queries built from 13 knowledge bases describing different domains. Five of
the input queries were built from two knowledge bases (Air System and Bibliography
Ontologies) that were not present in the training corpus. Each generated sentence was
rated by at least 10 contributors.

14 The configuration we use in this evaluation is the Synt.Cl hypertagger with 4-best and FLS.
15 http://www.crowdflower.com.
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Table 5
Output quality: The differences between the systems Symb/Hyb and the systems Temp/Hyb for
both Fluency and Clarity categories are statistically significant. Fisher’s exact test gives a
two-tailed p-value < 0.0001 in all the cases.

Criteria
Symb/Hyb Temp/Hyb

Symb Hyb Temp Hyb
Ratio Nb Ratio Nb Ratio Nb Ratio Nb

Fluency

Fluent 8% 4 65% 32 2% 1 51% 25
Medium 43% 21 29% 14 31% 15 47% 23
Non Fluent 49% 24 6% 3 67% 33 2% 1

Clarity
Clear 8% 4 59% 29 47% 23 96% 47
Medium 90% 44 41% 20 53% 26 4% 2
Unclear 1% 1 0% 0 0% 0 0% 0

Crowdflower implements a quality-control system based on test sentences that have
a predetermined gold-standard answer and are indistinguishable from other sentences.
We used a set of 10 test questions. In order to participate, contributors had to pass a
“Quiz Mode”16 consisting of test sentences for which they needed to obtain a minimum
accuracy of 60%. They then had to maintain this accuracy throughout the job.

Table 5 shows the aggregated results of the CrowdFlower evaluation. The aggregate
rating of a sentence is chosen based on the following confidence score:

conf (a | q) =

∑
c∈Ca

acc (c)∑
c∈Cq

acc (c)
(14)

where Ca is the set of contributors who responded to question q with answer a, Cq is
the total set of contributors who responded to question q, and acc (c) is the accuracy of
contributor c. The average confidence of the data is 0.67% for the fluency evaluation and
0.68% for clarity.

Overall, the hybrid system yields output that is consistently perceived by the hu-
man raters as clearer and more fluent.

A total of 67% of the texts generated by the template-based system are rated as
non-fluent (against 2% for the hybrid approach) and only 47% of these texts are rated
as clear (against 96% for the hybrid approach). We conjecture that the low fluency is
related to the lack of structuring elements (often the template system yields one sentence
per binary relation, thereby producing text that is a juxtaposition of short sentences).
Concerning clarity, we believe that the repetitions resulting from the restricted aggre-
gations allowed by the template system make it difficult to detect the links between
multiple descriptions of the same entity and, indirectly, to understand the meaning of
the generated text.

Although the gap between the symbolic and the hybrid approach is less marked
than between the template and the hybrid system, the purely symbolic system also

16 Quiz Mode test sentences are sentences with given reference ratings. Contributor ratings are compared
against these reference ratings. Contributors whose ratings consistently diverge from the reference
ratings are phased out.
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Table 6
BLEU scores.

System BLEU/all BLEU/gen

Temp 0.59 0.59
Symb 0.37 0.72
Hyb Synt.Cl. FLS n=1 0.80 0.85
Hyb Synt.Cl. FLS n=4 0.73 0.75
Hyb Trees FLS n=1 0.78 0.84
Hyb Trees FLS n=10 0.76 0.79

scores less well than the hybrid approach, which may be due to the fact that the symbolic
generator often fails to adequately segment the input or to score the most fluent output
highest (only 8% of the text generated by the symbolic system are rated as clear by the
annotator against 59% for the hybrid approach).

We also evaluate system output automatically, using the BLEU-4 modified precision
score (Papineni et al. 2002) on the gold query verbalizations in the training corpus and
in a 10-fold cross-validation setting as explained in the previous section (Section 5.1). We
computed BLEU scores for all inputs (BLEU/all) and for those 206 inputs for which all
the generators yielded an output (BLEU/gen). The results given in Table 6 show that our
hybrid system produces query verbalizations that are closer to the manually selected
gold query verbalizations than either the template and the purely symbolic grammar-
based approach. Although the BLEU/gen score for the Symb system is relatively high, it
decreases drastically when normalized by coverage because of timeouts on long inputs.

6. Interactions Between Segmentation, Aggregation, and Surface Realization

In this section, we illustrate by means of examples how our approach accounts for
various factors impacting sentence segmentation, aggregation, and surface realization.

6.1 Sentence Segmentation

The shape and the size of the input data influences the segmentation of this data
into clauses and sentences. The input/output pairs in Example (15) illustrate how our
generation approach yields different segmentations for inputs that differ in terms of
structure and length.

Examples (15a–b) show two inputs including, respectively, three and four relations.
While the hypertagger predicts a single sentence for the shorter input (15a), it correctly
accounts for the additional length in (15b) by predicting a segmentation into two sen-
tences. Similarly, Example (15c) differs from (15a) in that it includes one more concept.
Again, this induces differences in segmentation that are consistent with intuition17

17 Note that the concept NaturalGas is incorrectly verbalized as a natural gas rather than as natural gas.
This could be fixed if mass/count information about the input concept was available.
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(15) a. UsedCar ⊓ ∃exteriorColor.White ⊓ ∃locatedInCountry.Country

⊓ ∃hasModel.Toyota4Runner (3 relations, 4 concepts, 1 sentence)

I am looking for a used car whose exterior color should be white and which should be located in a

country and whose model should be a toyota 4 runner.

b. NewCar ⊓ ∃ exteriorColor.Beige ⊓ ∃hasCarBody.UtilityVehicle

⊓ ∃runOn.NaturalGas ⊓ ∃locatedInCountry.Country (4 relations, 5 concepts, 2 sentences)

I am looking for a new car whose exterior color should be beige and whose body style should be a

utility vehicle. The new car should run on a natural gas and should be located in a country.

c. NewCar ⊓ ∃hasCarBody.(UtilityVehicle ⊓ OffRoad) ⊓ ∃runOn.NaturalGas

⊓ ∃locatedInCountry.Country (3 relations, 5 concepts, 2 sentences)

I am looking for a new car whose body style should be a utility vehicle, an off road. The new car

should run on a natural gas and should be located in a country.

6.2 Surface Realization

A given lexicalization may give rise to different syntactic realizations depending on the
context. The following examples show that our approach can choose different syntactic
constructions for one and the same relation. Depending on the shape and content of the
input formula, the teach relation is verbalized in four different ways (relative clause,
coordinated relative clause, coordinated VP, and canonical clause).

(16) a. TeachingAssistant ⊓ ∃teach.Course ⊓ ∃employedBy.University

I am looking for a teaching assistant who should teach a course and should be employed by a

university. (Relative Clause)

b. Professor ⊓ Researcher ⊓ ∃teach.Course

I am looking for a professor who is a researcher and who should teach a course. (Coordinated

Relative Clause)

c. Professor ⊓ ∃isCoordinatorOf.MastersProgram ⊓ ∃supervise.MastersThesis

⊓ ∃teach.Course

I am looking for a professor who should be the coordinator of a masters program, should supervise a

masters thesis and should teach a course. (Coordinated VP)

d. MastersProgram ⊓ hasCoordinator.(Coordinator ⊓ Researcher ⊓ ∃teach.Course

⊓ ∃employedBy.University)

I am looking for a masters program whose coordinator should be a coordinator, a researcher. The

coordinator should teach a course and should be employed by a university. (Canonical Clause)

Similarly, Example (17) shows four distinct surface realizations produced by our
generator for the locatedin relation.

(17) a. CarDealer ⊓ ∃locatedInCountry.Country ⊓ ∃sell.(Car ⊓ ∃hasMake.Toyota

⊓ ∃runOn.Fuel ⊓ ∃equippedWith.ManualGearTransmission)

I am looking for a car dealer located in a country and who should sell a car whose make should

be a toyota. The car should run on a fuel and should be equipped with a manual gear transmission

system. (Participial)

b. CarDealer ⊓ ∃sell.(NewCar ⊓ ∃hasModel.Toyota ⊓ ∃locatedInCountry.Country)

I am looking for a car dealer who should sell a new car whose model should be a toyota. It should

be located in a country. (Canonical Clause with pronominal subject)

c. NewCar ⊓ OffRoad ⊓ ∃hasCarBody.UtilityVehicle ⊓ ∃runOn.NaturalGas

⊓ ∃locatedInCountry.Country

I am looking for a new car, an off road whose body style should be a utility vehicle. The new car

should run on a natural gas and should be located in a country. (Coordinated VP)
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d. Car ⊓ ∃producedBy.(CarMake ⊓ ∃isMakeOf.Toyota ⊓ ∃locatedIn.City

⊓ ∃produceModel.LandRoverFreelander

I am looking for a car produced by a car make. The car make should be the make of a toyota. The car

make should be located in a city and should produce a land rover freelander. (Canonical Clause)

6.3 Aggregation

The syntactic variability encoded in our grammar and the choices made by the hyper-
tagging module account for various cases of aggregation.

Relative clauses permit linking multiple propositions within a single sentence.
When more than two propositions are present, the grammar permits distinguishing
between cases where multiple predications apply to the same concept (Example 18a)
and cases where predications are chained (Example 18b). Thus the pattern C1 (R1 C2)

(R2 C3) (Example 18a) will be verbalized as N1 WH V1 N2 and WH-V2 N3 while the pattern
C1 (R1 C2 R2 C3) (Example 18b) will be verbalized as N1 WH V1 N2 WH-V2 N3.

(18) a. Concert ⊓ ∃hasDestination.Destination ⊓ ∃hasSite.Site

I am looking for a concert whose destination should be a destination and whose site should be a

site (X which VP1 and which VP2)

b. CarDealer ⊓ ∃sell.(NewCar ⊓ ∃hasModel.Toyota)

I am looking for a car dealer who should sell a new car whose model should be a toyota. (X

which R1 Y whose R2 should be Z)

Cases involving more than two propositions can also be accounted for whereby
pied piping and participial constructions can interact with relative clauses to produce a
complex sentence out of several propositions.

(19) a. Toyota ⊓ ∃isMakeOf.(NewCar ⊓ ∃runOn.Gas) ⊓ ∃isMakeOfmodel.LandRoverDefender

I am looking for a toyota which should be the make of a new car which should run on a gas. The

Toyota should be the make of a land rover defender.

b. CarDealer ⊓ ∃locatedInCountry.Country ⊓ ∃sell.(Car ⊓ ∃hasMake.Toyota

⊓ ∃runOn.Fuel)

I am looking for a car dealer located in a country and who should sell a car whose make should

be a toyota. The car should run on a fuel.

c. Movie ⊓ ∃producedBy.Producer ⊓ ∃writtenBy.Writer ⊓ ∃hasGenre.Genre

I am looking for a movie produced by a producer, written by a writer and whose genre should be

a genre

The grammar also allows for verbal ellipsis using VP-, relative clause-, and NP-
coordination (Examples 20).

(20) a. NewCar ⊓ ∃exteriorColor.Beige ⊓ ∃hasCarBody.UtilityVehicle

⊓ ∃runOn.NaturalGas ⊓ ∃locatedInCountry.Country

I am looking for a new car whose exterior color should be beige and whose body style should be a

utility vehicle. The new car (should run on a natural gas and should be located in a country)VP.

b. CommunicationDevice ⊓ ∃assistsWith.Understanding

⊓ ∃assistsWith.HearingDisability

I am looking for a communication device (which should assist with a understanding and which

should assist with a hearing disability)RelCl.

c. CarDealer ⊓ ∃sell.CrashCar ⊓ ∃sell.NewCar

I am looking for a car dealer who should sell (a crash car and a new car)NP.
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d. Car ⊓ ∃equippedWith.ManualGearTransmission ⊓ ∃equippedWith.AlarmSystem

⊓ ∃equippedWith.NavigationSystem ⊓ ∃equippedWith.AirBagSystem

I am looking for a car equipped with (a manual gear transmission system, an alarm system, a

navigation system and an air bag system)NP.

When a new sentence is started, referring expressions may be realized either by full
NPs (Example 21a) or by pronouns (Example 21b).

(21) a. CarMake ⊓ ∃locatedInCountry.Country ⊓ ∃isMakeOfModel.LandRoverDiscovery

⊓ ∃isMakeOf.DemonstrationCar

I am looking for a car make located in a country. The car make should be the make of a land

rover discovery and should be the make of a demonstration car.

b. Car ⊓ ∃producedby.CarMake ⊓ ∃soldBy.(CarDealer

⊓ ∃locatedInCountry.Country ⊓ ∃equippedWith.NavigationSystem

⊓ ∃equippedWith.Abs ⊓ ∃equippedWith.GasolineEngine)

I am looking for a car produced by a car make and sold by a car dealer located in a country. It

should be equipped with a navigation system, an abs and a gasoline engine.

7. Conclusion

Recent statistical approaches to NLG (Wong and Mooney 2007; Angeli, Liang, and Klein
2010; Konstas and Lapata 2012b, 2012a) have typically relied on sizable training corpora
to train models that directly map meaning representations to strings. In contrast, we
developed a hybrid model that integrates a statistical hypertagger in a grammar-based
generation system. This has several advantages.

First, because the grammar used is generic and the hypertagger trained to learn
syntactic units (rather than, e.g., domain-dependent semantic ones), the approach is
domain-independent and can be applied to any knowledge base. Applying the ap-
proach to a new knowledge base requires neither developing a new parallel data-to-text
corpus for training nor developing a new grammar.

Second and more importantly, using a grammar permits modeling sub-sentence–
level phenomena such as sentence- and VP-coordination, relative clauses, and ellipsis.
This is in stark contrast with the template-based approaches often used in data-to-text
generation where aggregation and surface realization choices are either hard-coded in
sentential templates (Duma and Klein 2013; Kondadadi, Howald, and Schilder 2013) or
enforced by ad hoc aggregation rules introduced to combine two or more sentence tem-
plates into a complex sentence. In comparison, our grammar-based approach naturally
supports aggregation by allowing for the generation of relative clauses, and gerund,
elliptical, and coordinated constructions.

Third, the hybridation of a symbolic grammar-based surface realizer with a sta-
tistical hypertagger permits capturing both hard grammaticality constraints and the
softer acceptability constraints regulating the interplay between grammatical structures,
linearization, lexicalization, and topic structure.

There are many possible directions for further research.
One first issue is how to improve lexicalization. Because lexicalization was not our

focus here, we assumed a simple lexicalization procedure based on the shape of the
relation names. As the examples in the previous section clearly show, this is not always
appropriate. It would be interesting to explore ways of going beyond such a simple
procedure.
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Another interesting issue concerns generation from linked data18 and Resource
Description Framework (RDF) triples. Linked data and RDF triples provide a generic
graph-based data model for describing things and their relationships with other things.
They are in this sense very similar to the binary relations and assertions contained in
knowledge bases. We are currently exploring both whether and how the grammar we
use could be extended to cover text generated from such data, as well as whether the
sentence segmentation enforced by the hypertagger generalizes to the segmentation of
text generated from linked data.

Finally, we are interested in exploring how our approach could be applied to more
complex text and more complex data and, in particular, how it could be extended to
handle the interactions between discourse connectives and microplanning. Indeed, the
approach we have described here is currently restricted to simple data (conjunctive tree
shape queries) and relatively simple text (limited discourse structure). In the future,
we intend to investigate whether a similar hybrid approach could be used to generate
structured discourse from more complex data such as, for instance, Abstract Meaning
Representations (Banarescu et al. 2013), and representations produced by machine
reading tools such as FRED (Draicchio et al. 2013) or the Discourse Representations
Structures derived by Boxer (Bos 2008).

Appendix A. List of TAG Trees and Syntactic Classes Used by the Hypertagger

Table A1 shows the list of TAG trees and abstract syntactic classes used in the annotation
of the training corpus. The tree names follow the naming conventions of TAG. Up-
percase letters indicate anchors. Phrasal projections are postfixed with the “x” symbol
and integers indicate semantic role (e.g., 0 for the first argument of a relation, 1 for
the second). A beta prefix indicates an auxiliary tree. The W prefix indicates a wh-NP
extraction. Thus for instance, W0nx0VVVnx1 indicates a subject relative tree (W0nx0)
with three verbs as anchor (VVV) and an NP as complement (nx1).

18 http://linkeddata.org/home.
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Table A1
List of TAG trees and syntactic classes.

Trees Synt.Cl

betavx0ANDVVDNpnx1, betavx0ANDVVnx1, betavx0ANDVVVpnx1,
betavx0ANDVVpnx1, betavx0COMMAVVnx1, betavx0COMMAVVVpnx1,
betanx0ANDVPnx1, betanx0COMMAVPnx1, betanx0COMMAVApnx1,
betanx0ANDPnx1, betanx0COMMAPnx1, betanx0COMMAVPpnx1,
betanx0ANDVPpnx1

SharedSubj

betavx0COMMAnx1, betavx0CONJnx1 Ellipsis

sDOTDNPnx0VVax1, sDOTDNPnx0VVnx1, nx0BEnx1, sDOTnx0VVDNpnx1,
sDOTnx0VVnx1, sDOTnx0VVpnx1, sDOTnx0VVVnx1, sDOTnx0VVVpnx1,
sDOTnx0VVApnx1, sDOTPRO0VVnx1, sDOTPRO0VVVpnx1,
sDOTPRO1NVVnx1, sDOTPRO1NVVax1, sDOTPRO0VVDNpnx1,
sDOTPRO0VVVnx1

Canonical

betanx0VPpnx1, betanx0Pnx1 PpartOrGerundOrPrerp

betanxBEnx, Npx0VVax1, Npx0VVnx1, W0nx0VVApnx1, W0nx0VVDNpnx1,
W0nx0VVnx1, W0nx0VVpnx1, W0nx0VVVnx1, W0nx0VVVpnx1,
W0nx0VVNpnx1

SubjRel

ANDNpx0VVax1, ANDNpx0VVnx1, ANDWHnx0VVDNpnx1,
ANDWHnx0VVnx1, ANDWHnx0VVpnx1, ANDWHnx0VVVnx1,
ANDWHnx0VVVpnx1, ANDWHnxBEnx, COMMAWHnx0VVnx1,
COMMAWHnx0VVVpnx1, COMMAWHnx0VVDNpnx1,
COMMAWHnx0VVVpnx1, COMMANpx0VVnx1

SubjRelPU

sCONJnx0VVpnx1, sCONJnx0VVApnx1, sCONJnx0VVVpnx1,
sCONJDNPnx0VVnx1, sCONJPRO0VVVpnx1, sCONJPRO1NVVax1,
sCONJPRO1NVVnx1, sCONJPRO0VVnx1, sCONJPRO0VVpnx1,
sCONJPRO0VVDNpnx1, sCONJPRO0VVApnx1

S-Coordination

betanxPUnx Apposition

ax, nx
Unary-
argument

betaADJnx Word-adjunct
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