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Integer Linear Programming

Chapter Guide. Integer linear programs (ILPs) are linear programs with some or all the
variables restricted to integer (or discrete) values. When you study ILp, you need to con­
centrate on three areas: application, theory, and computation. The chapter starts with a
number of applications that demonstrate the rich use of ILP in practice.Then it presents
the two prominent algorithms of ILP: branch and bound (B&B) and cutting plane. Of
the two algorithms, B&B is decidedly more efficient computationally. Indeed, practical­
ly all commercial codes are rooted in B&B.The chapter closes with a presentation of the
traveling salesperson problem (TIP), a problem that has important practical applications.

A drawback of ILP algorithms is their lack of consistency in solving integer prob­
lems. Although these algorithms are proven theoretically to converge in a finite num­
ber of iterations, their implementation on the computer (with its inherent machine
roundoff error) is a different experience. You should keep this point in mind as you
study the ILP algorithms.

The chapter shows how AMPL and Solver are used with ILP You will find
TORA's user-guided option useful in detailing the B&B computations.

This chapter includes a summary of 1 real-life application, 12 solved examples,
5 AMPL models, 1 Excel spreadsheet, 65 end-ot-section problems, and 10 cases. The
cases are in Appendix E on the CD. The AMPL/Excel/SolverITORA programs are in
folder ch9Files.

Real-Life Application-optimizing Trailer Payloads at PFG Building Glass

PFG uses specially equipped (fifth-wheel) trailers to deliver packs of sheets of flat
glass to customers. The packs vary in both size and weight, and a single trailer load may
include different packs, depending on received orders. Government regulations set
maximum limits on axle weights, and the actual positioning of the packs on the trailer
is crucial in determining these weights. The problem deals with determining the opti­
mal loading of the packs on the trailer bed to satisfy axle-weight limits. The problem is
solved as an integer program. Case 7 in Chapter 24 on the CD provides the details of
the study.
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350 Chapter 9 Integer Linear Programming

9.1 ILLUSTRATIVE APPLICATIONS

This section presents a number of ILP applications. The applications generally fall into
two categories: direct and transformed. In the direct category, the variables are natural­
ly integer and may assume binary (0 or 1) or general discrete values. For example, the
problem may involve determining whether or not a project is selected for execution
(binary) or finding the optimal number of machines needed to perform a task (general
discrete value). In the transfonned category, the original problem, which may not in­
volve any integer variables, is analytically intractable. Auxiliary integer variables (usu­
ally binary) are used to make it tractable. For example, in sequencing two jobs, A and
B, on a single machine,job A may precede job B or job B may precede job A. The "or"
nature of the constraints is what makes the problem analytically intractable, because
all mathematical programming algorithms deal with "and" constraints only. The situa­
tion is remedied by using auxiliary binary variables to transform the "or" constraints
into equivalent "and" constraints.

For convenience, a pure integer problem is defined to have all integer variables.
Otherwise, a problem is a mixed integer program if it deals with both continuous and
integer variables.

9.1.1 Capital Budgeting

This section deals with decisions regarding whether or not investments should be made
in individual projects. The decision is made under limited-budget considerations as
well as priorities in the execution of the projects.

Example 9.1-1 (Project Selection)

Five projects are being evaluated over a 3-year planning horizon. The following table gives the
expected returns for each project and the associated yearly expenditures.

Expenditures (million $)/yr

Project 1 2 3 Returns (million $)

1 5 1 8 20
2 4 7 10 40
3 3 9 2 20
4 7 4 1 15
5 8 6 10 30

Available funds (million $) 25 25 25

Which projects should be selected over the 3-year horizon?
The problem reduces to a "yes-no" decision for each project. Define the binary variable Xj as

{
I, if project j is selected

Xj = 0, if project j is not selected

The ILP model is

Maximize z = 20Xl + 4OX2 + 20X3 + 15x4 + 30xs



)

[1

II
l­

l­

d
,"
:e
i­

ts

:s.
ld

je

as

:he

.... ~ ..' .. '

.;.~:. '~~:~'~'.:~~ ~ .
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subject to

5Xl + 4X2 + 3X3 + 7x4 + 8xs s 25

Xl + 7X2 + 9X3 + 4X4 + 6xs s 25

8xt + 10x2 + 2X3 + X4 + lOxs s 25

The optimum integer solution (obtained by AMPL, Solver, or TORA)! is Xl =X2 =

X3 = X4 = 1, Xs = 0, with z = 95 (million $). The solution shows that all but project 5 must be
selected.

Remarks. It is interesting to compare the continuous LP solution with the ILP solution. The
LP optimum, obtained by replacing Xj = (0,1) with 0 S Xj ::::; 1 for all j, yields Xl = .5789,
X2 = X3 = X4 = 1, Xs = .7368, and z = 108.68 (million $). The solution is meaningless because
two of the variables assume fractional values. We may round the solution to the closest integer
values, which yields Xl = Xs = 1. However, the resulting solution is infeasible because the con­
straints are violated. More important, the concept of rounding is meaningless here because xi rep­
resents a "yes-no" decision.

PROBLEM SET 9.1A2

1. Modify and solve the capital budgeting model of Example 9.1-1 to account for the fol­
lowing additional restrictions:

(a) Project 5 must be selected if either project 1 or project 3 is selected.

(b) Projects 2 and 3 are mutually exclusive.

2. Five items are to be loaded in a vessel. TIle weight Wi, volume Vi, and value I"i for item i
are tabulated below.

Item i Unit weight, Wi (tons) Unit volume, Vi (yd3) Unit worth, ri (100 $)

1 5 1 4
2 8 8 7
3 3 6 6
4 2 5 5
5 7 4 4

ITo use TORA, select :,~,~t~g~r,?~ogfaii1ini~g from Main Menu;. After entering the problem data, go to output

screen and select :A,iiJ6.til3.tea.B.&):t, to obtain the optimum solution. Solver use is the same as in LP except
that the targeted variables must be declared integer. The integer option (in! or bin) is available in the Solver
Parame.ers dialogue box when you add a new constraint AMPL implementation for integer programming is
the same as in linear programming, except that some or all the variables are declared integer by adding the
key word integer (or binary) in the definition statement of the targeted variables. For example, the state­
ment var x{J) >'=O,i~teger; declares Xj as nonnegative integer for all j E 1. If Xj is binary, the statement is
changed to var x{J} binary;. For execution, the statement option solver cplex; must precede solve;.
2Problems 3 to 6 are adapted from Malba Tahan, EI Hombre que Calculaba, Editorial Limusa, Mexico City,
pp. 39-182,1994.
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The maximum allowable cargo weight and volume are 112 tons and 109 ydJ , respec­
tively. Formulate the ILP model, and find the most valuable cargo.

*3. Suppose that you have 7 full wine bottles, 7 half-full, and 7 empty. You would like to di­
vide the 21 bottles among three individuals so that each will receive exactly 7. Addition­
ally, each individual must receive the same quantity of wine. Express the problem as ILP
constraints, and find a solution. (Hint: Use a dummy objective function in which all the
objective coefficients are zeros.)

4. An eccentric sheikh left a will to distribute a herd of camels among his three children:
Tarek receives at least one-half of the herd, Sharif gets at least one third, and Maisa gets
at least one-ninth. The remainder goes to charity. The will does not specify the size of the
herd except to say that it is an odd number of camels and that the named charity receives
exactly one camel. Use ILP to determine how many camels the sheikh left in the estate
and how many each child got.

5. A farm couple are sending their three children to the market to sell 90 apples with the
objective of educating them about money and numbers. Karen, the oldest, carries 50 ap­
ples; Bill, the middle one, carries 30; and John, the youngest, carries only 10. The parents
have stipulated five rules: (a) The selling price is either $1 for 7 apples or $3 for 1 apple,
or a combination of the two prices. (b) Each child may exercise one or both options of
the selling price. (c) Each of the three children must return with exactly the same amount
of money. (d) Each child's income must be in whole dollars (no cents allowed). (e) The
amount received by each child must be the largest possible under the stipulated condi­
tions. Given that the three kids are able to sell all they have, use ILP to show how they
can satisfy the parents' conditions.

*6. Once upon a time, there was a captain of a merchant ship who wanted to reward three
crew members for their valiant effort in saving the ship's cargo during an unexpected
storm in the high seas. The captain put aside a certain sum of money in the purser's office
and instructed the first officer to distribute it equally among the three mariners after the
ship had reached shore. One night, one of the sailors, unbeknown to the others, went to
the purser's office and decided to claim (an equitable) one-third of the money in ad­
vance. After he had divided the money into three equal shares, an extra coin remained,
which the mariner decided to keep (in addition to one-third of the money). The next
night, the second mariner got the same idea and, repeating the same three-way division
with what was left, ended up keeping an extra coin as well. The third night, the third
mariner also took a third of what was left, plus an extra coin that could not be divided.
When the ship reached shore, the first officer divided what was left of the money equally
among the three mariners, again to be left with an extra coin. To simplify things, the first
officer put the extra coin aside and gave the three mariners their allotted equal shares.
How much money was in the safe to start with? Formulate the problem as an ILP, and
find the solution. (Hint: The problem has a countably infinite number of integer solutions.
For convenience, assume that we are interested in determining the smallest sum of
money that satisfies the problem conditions. Then, boosting the resulting sum by 1, add it
as a lower bound and obtain the next smallest sum. Continuing in this manner, a general
solution pattern will evolve.)

7. (Weber, 1990) You have the following three-letter words: AFr, FAR,TVA, ADV, JOE,
FIN, OSF, and KEN. Suppose that we assign numeric values to the alphabet starting with
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9.1 Illustrative Applications 353

A = 1 and ending with Z :; 26. Each word is scored by adding numeric codes of its three
letters. For example, AFT has a score of 1 + 6 + 20 = 27. You are to select five of the
given eight words that yield the maximum total score. Simultaneously, the selected five
words must satisfy the following conditions:

(
sum of letter 1) < (sum of letter 2) < (sum of letter 3)

scores scores scores

Formulate the problem as an ILp, and find the optimum solution.

8. Solve Problem 7 given that, in addition to the total sum being the largest, the sum of col­
umn 1 and the sum of column 2 will be the largest as well. Find the optimum solution.

9. (Weber, 1990) Consider the following two groups of words:

Group 1 Group 2

AREA ERST
FORT FOOT
HOPE HEAT
SPAR PAST
THAT PROF
TREE STOP

All the words in groups 1 and 2 can be formed from the nine letters A, E, F, H, 0, P, R, S,
and T. Develop a model to assign a unique numeric value from 1 through 9 to these let­
ters such that the difference between the total scores of the two groups will be as small as
possible. [Note: The score for a word is the sum of the numeric values assigned to its indi­
vidual letters.]

*10. The Record-a-Song Company has contracted with a rising star to record eight songs. The
durations of the different songs are 8,3,5,5,9,6,7, and 12 minutes, respectively. Record­
a-Song uses a two-sided cassette tape for the recording. Each side has a capacity of 30
minutes. The company would like to distribute the songs between the two sides such that
the length of the songs on each side is about the same. Formulate the problem as an ILP,
and find the optimum solution.

11. In Problem 10, suppose that the nature of the melodies dictates that songs 3 and 4 cannot
be recorded on the same side. Formulate the problem as an ILP. Would it be possible to
use a 25-minute tape (each side) to record the eight songs? If not, use ILP to determine
the minimum tape capacity needed to make the recording.

*12. (Graves and Associates, 1993) Ulem University uses a mathematical model that opti­
mizes student preferences taking into account the limitation of classroom and faculty re­
sources. To demonstrate the application of the model, consider the simplified case of 10
students who are required to select two courses out of six offered electives. The table
below gives scores that represent each student's preference for individual courses, with a
score of 100 being the highest. For simplicity, it is assumed that the preference score for a
two-course selection is the sum of the individual score. Course capacity is the maximum
number of students allowed to take the class.
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Preference score for course

Student 1 2 3 4 5 6

1 20 40 50 30 90 100
2 90 100 80 70 10 40
3 25 40 30 80 95 90
4 80 50 60 80 30 40
5 75 60 90 100 50 40
6 60 40 90 10 80 80
7 45 40 70 60 55 60
8 30 100 40 70 90 55
9 80 60 100 70 65 80

10 40 60 80 100 90 10

Course capacity 6 8 5 5 6 5

Formulate the problem as an ILP and find the optimum solution.

9.1.2 Set-Covering Problem

In this class of problems, overlapping services are offered by a number of installations
to a number of facilities. The objective is to determine the minimum number of instal­
lations that will cover (i.e., satisfy the service needs) of each facility. For example, water
treatment plants can be constructed at various locations, with each plant serving differ­
ent sets of cities. The overlapping arises when a given city can receive service from more
than one plant.

Example 9.1-2 (Installing Security Telephones)

To promote on-campus safety, the U of A Security Department is in the process of installing emer­
gency telephones at selected locations. The department wants to install the minimum number of
telephones, provided that each of the campus main streets is served by at least one telephone.
Figure 9.1 maps the principal streets (A to K) on campus.

It is logical to place the telephones at street intersections so that each telephone will serve
at least two streets. Figure 9.1 shows that the layout of the streets requires a maximum of eight
telephone locations.

Define

x. = {1, a telephone is installed in location j
} 0, otherwise

The constraints of the problem require installing at least one telephone on each of the 11 streets
(A to K). Thus, the model becomes

subject to

~ 1

~1

~1

(Street A)

(Street B)

(Street C)
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FIGURE 9.1

Street Map of the U of A Campus

X7 + Xg ~ 1 (Street D)

X6 + X7 ~1 (Street E)

X2 + X6 ~1 (Street F)

Xl + X6 ~l (Street G)

X4 + X7 ~1 (Street H)

X2 + X4 ~ 1 (Street 1)

Xs + Xs ~ 1 (Street J)

X3 + Xs ~ 1 (Street K)

Xj = (0, l),j = 1,2, ... ,8

The optimum solution of the problem requires installing four telephones at intersections 1,2,5,
and 7.

Remarks. In the strict sense, set-covering problems are characterized by (1) the variables
Xj, j = 1,2, ... , n, are binary, (2) the left-hand-side coefficients of the constraints are 0 or 1, (3) the
right-hand side of each constraint is of the form (~ 1), and (4) the objective function minimizes
CIXl + C2X2 + ... + CnXm where Cj > 0 for all j = 1,2, ... , n. In the present example, Cj = 1 for
all j. IfCj represents the installation cost in location j, then these coefficients may assume values other
than 1. Variations of the set-covering problem include additional side conditions, as some of the situ­
ations in Problem Set 9.lb show.

AMPlMoment

Figure 9.2 presents a general AMPL model for any set-covering problem (file am­
pIEx9.1-2.txt). The formulation is straightforward, once the use of indexed set is under­
stood (see Section AA). The model defines street as a (regular) set whose elements
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#--------------Example 9.1-2--------------------
param n; #maximum number of corners
set street;
'set corner{street};
var x{l .. n}binary;
minimize z: sum {j in l .. n} x[j];
subject to limit {i in street}:

sum (j in corner[i]} x[j]~=1;

data;
param n:=8;
set street:=A BCD E F G H I J K;
set corner[A] :=1 2;
set corner[B] :=2 3;
set corner[C] :=4 5;
set corner[D] :=7 8;
set corner[E] :=6 7;
set corner[F] :=2 6;
set corner[G] :=1 6;
set corner[H] :=4 7;
set corner [I] :=2 4;
set corner[J] :=5 8;
set corner[K] :=3 5;

option solver cplex;
solve;
display z,x;

FIGURE 9.2

General AMPL model for the set-covering problem (file ampl Ex 9.1-2.txt)

are A through K. Next, the indexed set corner{street} defines the corners as a func­
tion of street. With these two sets, the constraints of the model can be formulated di­
rectly. The data of the model give the elements of the indexed sets that are specific to
the situation in Example 9.1-2. Any other situation is handled by changing the data of
the model.

PROBLEM SET 9.1 B

*1. ABC is an LTL (less-than-truckload) trucking company that delivers loads on a daily basis
to five customers. The following list provides the customers associated with each route:

Route

1
2
3
4
5
6

Customers served on the route

1,2,3,4
4,3,5
1,2,5
2,3,5
1,4,2
1,3,5

The segments of each route are dictated by the capacity of the truck delivering the
loads. For example, on route 1, the capacity of the truck is sufficient to deliver the loads
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to customers 1,2,3, and 4 only. The following table lists distances (in miles) among the
truck terminal (ABC) and the customers.

Miles from i to j

S ABC 1 2 3 4 5

ABC 0 10 12 16 9 8
1 10 0 32 8 17 10
2 12 32 0 14 21 20
3 16 8 14 0 15 18
4 9 17 21 15 0 11
5 8 10 20 18 11 0

The objective is to determine the least distance needed to make the daily deliveries
to all five customers. Though the solution may result in a customer being served by more
than one route, the implementation phase will use only one such route. Formulate the
problem as an ILP and find the optimum solution.

*2. The U of A is in the process of forming a committee to handle students' grievances. The
administration wants the committee to include at least one female, one male, one student,
one administrator, and one faculty member. Ten individuals (identified, for simplicity, by
the letters a to j) have been nominated. The mix of these individuals in the different cate­
gories is given as follows:

Category

Females
Males
Students
Administrators
Faculty

Individuals

Q, b, c, d, e

f, g, h, ~ j
a, b, e,j
e,f
d, g, h, j

The U of A wants to form the smallest committee with representation from each of
the five categories. Formulate the problem as an ILP and find the optimum solution.

3. Washington County includes six towns that need emergency ambulance service. Because
of the proximity of some of the towns, a single station may serve more than one commu­
nity. The stipulation is that the station must be within 15 minutes of driving time from the
towns it serves. The table below gives the driving times in minutes among the six towns.

Time in minutes from i to j

:s2 I 2 3 4 5 6

1 0 23 14 18 10 32
2 23 0 24 13 22 11
3 14 24 0 60 19 20
4 18 13 60 0 55 17
5 10 22 19 55 0 12
6 32 11 20 17 12 0

,j
; •.1".:1;
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FIGURE 9.3

Museum Layout for Problem 4, Set 9.1c

Formulate an ILP whose solution will produce the smallest number of stations and
their locations. Find the optimum solution.

4. The treasures of King Tut are on display in a museum in New Orleans. The layout of the
museum is shown in Figure 9.3, with the different rooms joined by open doors. A guard
standing at a door can watch two adjoining rooms. The museum wants to ensure guard
presence in every room, using the minimum number possible. Formulate the problem as
an ILP and find the optimum solution.

S. Bill has just completed his exams for the academic year and wants to celebrate by seeing
every movie showing in theaters in his town and in six other neighboring cities. If he trav­
els to another town, he will stay there until he has seen all the movies he wants. The fol­
lowing table provides the information about the movie offerings and the round-trip
distance to the neighboring town.

Theater location Movie offerings Round-trip miles Cost per show ($)

In-town 1,3 0 7.95
City A 1,6,8 25 5.50
CityB 2,5,7 30 5.00
CityC 1,8,9 28 7.00
CityD 2,4,7 40 4.95
CityE 1,3,5,10 35 5.25
City F 4,5,6,9 32 6.75

The cost of driving is 75 cents per mile. Bill wishes to determine the towns he needs to
visit to see all the movies while minimizing his total cost.

6. Walmark Stores is in the process of expansion in the western United States. During the
next year, Walmark is planning to construct new stores that will serve 10 geographically
dispersed communities. Past experience indicates that a community must be within 25
miles of a store to attract customers. In addition, the population of a community plays an
important role in where a store is located, in the sense that bigger communities generate
more participating customers. The following tables provide the populations as well as the
distances (in miles) between the communities:
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The idea is to construct the least number of stores, taking into account the distance
restriction and the concentration of populations.

Specify the communities where the stores should be located.

*7. (Gueret and Associates, 2002, Section 12.6) MobileCo is budgeting 15 million dollars to
construct as many as 7 transmitters to cover as much population as possible in 15 con­
tiguous geographical communities. The communities covered by each transmitter and the
budgeted construction costs are given below.

Transmitter

1
2
3
4
5
6
7

Covered communities

1,2
2,3,5
1,7,9,10
4,6,8,9
6,7,9,11
5,7,10,12,14
12,13,14,15

Cost (million $)

3.60
2.30
4.10
3.15
2.80
2.65
3.10

The following table provides the populations of the different communities:

Community 1

Population (in WOOS) 4

2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 10 14 6 7 9 10 13 11 6 12 7 5 16

y

an
Ite

the

Which of the proposed transmitters should be constructed?

8. (Gavernini and Associates, 2004) In modern electric networks, automated electric utility
meter reading replaces the costly labor-intensive system of manual meter reading. In the
automated system, meters from several customers are linked wirelessly to a single receiv­
er. The meter sends montWy signals to a designated receiver to report the customer's
consumption of electricity. The receiver then sends the data to a central computer to gen­
erate the electricity bills. The problem reduces to determining the least number of re­
ceivers needed to serve a number of customers. In real life, the problem encompasses
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thousands of meters and receivers. However, for the purpose of this problem, consider
the case of 10 meters and 8 receivers, using the following configurations:

Receiver

Meters

1

1,2,3

2

2,3,9

3

5,6,7

4

7,9,10

5

3.6,8

6

1,4,7,9

7

4,5,9

8

1,4,8

..~ ... -';"-

Determine the minimum number of receivers.

9. Solve Problem 8 if, additionally, each receiver can handle at most 3 meters.

9.1.3 Fixed-Charge Problem

The fixed-charge problem deals with situations in which the economic activity incurs
two types of costs: an initial "flat" fee that must be incurred to start the activity and a
variable cost that is directly proportional to the level of the activity. For example, the ini­
tial tooling of a machine prior to starting production incurs a fixed setup cost regardless
of how many units are manufactured. Once the setup is done, the cost of labor and ma­
terial is proportional to the amount produced. Given that F is the fixed charge, e is the
variable unit cost, and x is the level of production, the cost function is expressed as

C(x) = {F + ex, if x > 0
0, otherwise

The function C(x) is intractable analytically because it involves a discontinu­
ity at x = O. The next example shows how binary variables are used to remove this
intractability.

Example 9.1-3 (Choosing a Telephone Company)

I have been approached by three telephone companies to subscribe to their long distance service
in the United States. MaBell will charge a flat $16 per month plus $.25 a minute. PaBell will
charge $25 a month but will reduce the per-minute cost to $.21. As for BabyBell, the flat month­
ly charge is $18, and the cost per minute is $.22. I usually make an average of 200 minutes of
long-distance calls a month. Assuming that I do not pay the flat monthly fee unless I make calls
and that I can apportion my calls among all three companies as I please, how should I use the
three companies to minimize my monthly telephone bill?

This problem can be solved readily without ILP. Nevertheless, it is instructive to formulate it
as an integer program.

Define

Xl = MaBelllong-distance minutes per month

x2 = PaBelllong-distance minutes per month

X3 = BabyBelllong-distance minutes per month

Yl = 1 if Xl > 0 and 0 if Xl = 0

Y2 = 1 if X2 > 0 and 0 if X2 = 0

Y3 = 1 if X3 > 0 and 0 if X3 = 0

..:~ ~Lr:
;"~?:£::;..::,:.~- •.
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We can ensure that Yj will equal! if Xj is positive by using the constraint

Xj:5 MYj.j = 1.2,3

The value of M should be selected sufficiently large so as not restrict to the variable Xj artificial­
ly. Because I make about 200 minutes of calls a month, then Xj S 200 for all j. and it is safe to
select M = 200.

The complete model is

Minimize z = .25XI + .21x2 + .22x3 + 16YI + 25Y1 + 18Y3

subject to

Xl + X2 + X3 = 200

xl :5 200YI

X2 :5 200Y1

X3 5; 200Y3

XI. X2, X3 2:: 0

Yb Yz. Y3 = (0.1)

s

e
II
.-
of

s
e

.t

The formulation shows that the jth monthly flat fee will be part of the objective function z only
if Yj = 1, which can happen only if Xj > 0 (per the last three constraints of the model). If Xj = 0
at the optimum, then the minimization of z, together with the fact that the objective coefficient of
Yj is strictly positive. will force Yj to equal zero, as desired.

The optimum solution yields X3 = 200, Y3 ::;; 1. and all the remaining variables equal to zero,
which shows that BabyBell should be selected as my long-distance carrier. Remember that the in­
formation conveyed by Y3 = 1 is redundant because the same result is implied by X3 > a(= 200).
Actually. the main reason for using Yl. Y1, and Y3 is to account for the monthly fiat fee. In effect, the
three binary variables convert an ill-behaved (nonlinear) model into an analytically tractable for­
mulation.This conversion has resulted in introducing the integer (binary) variables in an otherwise
continuous problem.

PROBLEM SET 9.1C

1. Leatherco is contracted to manufacture batches of pants, vests. and jackets. Each product
requires a special setup of the machines needed in the manufacturing processes. The fol­
lowing table provides the pertinent data regarding the use of raw material (leather) and
labor time together with cost and revenue estimates. Current supply of leather is estimat­
ed at 3000 ft2 and available labor time is limited to 2500 hours.

Pants Vests Jackets

Leather material per unit (ft2) 5 3 8
Labor time per unit (hrs) 4 3 5
Production cost per unit ($) 30 20 80
Equipment setup cost per batch ($) 100 80 150
Price per unit ($) 60 40 120
Minimum number of units needed 100 150 200

Determine the optimum number of units that Leatherco must manufacture of each
product.
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*2. lobco is planning to produce at least 2000 widgets on three machines. The minimum lot
size on any machine is 500 widgets. The following table gives the pertinent data of the
situation.

Machine

1
2
3

Cost

300
100
200

Production cosUunit

2
10
5

Capacity (units)

600
800

1200

Formulate the problem as an ILp, and find the optimum solution.

*3. OiIco is considering two potential drilling sites for reaching four targets (possible oil
wells). The following table provides the preparation costs at each of the two sites and the
cost of drilling from site i to target j (i = 1,2; j = 1,2,3,4).

Drilling cost (million $) to target

Site

1
2

1

2
4

2

1
6

3

8
3

4

5
1

Preparation cost (million $)

5
6

Fonnulate the problem as an ILP, and find the optimum solution.

4. Three industrial sites are considered for locating manufacturing plants. The plants send
their supplies to three customers. The supply at the plants, the demand at the customers,
and the unit transportation cost from the plants to the customers are given in the follow­
ing table.

Unit transportations cost ($)

~
1 2 3 Supply

Plant

1 10 15 12 1800
2 17 14 20 1400
3 15 10 11 1300

Demand 1200 1700 1600

In addition to the transportation costs, fixed costs are incurred at the rate of $12,000,
$11,000, and $12,000 for plants 1,2, and 3, respectively. Formulate the problem as an ILP
and find the optimum solution.

5. Repeat Problem 4 assuming that the demands at each of customers 2 and 3 are changed
to 800.

6. (Liberatore and Miller, 1985) A manufacturing facility uses two production lines to
produce three products over the next 6 months. Backlogged demand is not allowed.
However, a product may be overstocked to meet demand in later months. The follow­
ing table provides the data associated with the demand, production, and storage of the
three products.

-:7 '..
::;,~. :,_: .
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Demand in period

Unit holding Initial
Product 1 2 ] 4 5 6 cost ($)/month inventory

1 50 30 40 60 20 45 .50 55
2 40 60 50 30 30 55 .35 75
3 30 40 20 70 40 30 .45 60

There is a fixed cost for switching a line from one product to another. The following tables
give the switching cost, the production rates, and the unit production cost for each line:

Line switching cost ($)

Line 1
Line 2

Product 1

200
250

Product 2

180
200

Product]

300
174

Production rate (units/month) Unit production cost ($)

Product 1 Product 2 Product] Product 1 Product 2 Product]

Line 1
Line 2

40
90

60
70

80
60

10
12

8
6

15
10

Develop a model for detennining the optimal production schedule.

7. (Jarvis and Associates, 1978) Seven cities are being considered as potential locations for
the construction of at most four wastewater treatment plants. The table below provides
the data for the situation. Missing links indicate that a pipeline cannot be constructed.

Cost ($) of pipeline construction between cities per 1000 gal/hr capacity

~
1 2 ] 4 5 6 7

1 100 200 50
2 120 150
3 400 120 90
4 120 120
5 200 100 200

),
6 110 180 70
7 200 150

Cost ($million) of
plant construction 1.00 1.20 2.00 1.60 1.80 .90 1.40

Population (1000s) 50 100 45 90 75 60 30

TIle capacity of a pipeline (in gallons per hour) is a direct function of the amount of waste­
water generated, which is a function of the populations. Approximately 500 gallons per 1000
residents are discharged in the sewer system per hour. The maximum plant capacity is
100,000 gallhr. Determine the optimal location and capacity of the plants.

-.:'7 '.
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8. (Brown and Associates, 1987) A company uses four special tank trucks to deliver four dif­
ferent gasoline products to customers. Each tank has five compartments with different ca­
pacities: 500,750,1200,1500, and 1750 gallons. The daily demands for the four products are
estimated at 10,15,12, and 8 thousand gallons. Any quantities that cannot be delivered by
the company's four trucks must be subcontracted at the additional costs of 5,12,8, and 10
cents per gallon for products 1,2,3, and 4, respectively. Develop the optimal daily loading
schedule for the four trucks that will minimize the additional cost of subcontracting.

9. A household uses at least 3000 minutes of long-distance telephone calls monthly and can
choose to use the services of any of three companies: A, B, and C. Company A charges a
fiXed monthly fee of $10 and 5 cents per minute for the first 1000 minutes and 4 cents per
minute for all additional minutes. Company B's monthly fee is $20 with a flat 4 cents per
minute. Company C's monthly charge is $25 with 5 cents per minute for the first 1000
minutes and 3.5 cents per minute beyond that limit. Which company should be selected
to minimize the total monthly charge?

*10. (Barnett, 1987) Professor Yataha needs to schedule six round-trips between Boston and
Washington, D.C.The route is served by three airlines: Eastern, US Air, and Continental
and there is no penalty for the purchase of one-way tickets. Each airline offers bonus miles
for frequent fliers. Eastern gives 1000 miles per (one-way) ticket plus 5000 extra miles if the
number of tickets in a month reaches 2 and another 5000 miles if the number exceeds 5. US
Air gives 1500 miles per trip plus 10,000 extra for each 6 tickets. Continental gives 1800 miles
plus 7000 extra for each 5 tickets. Professor Yataha wishes to allocate the 12 one-way tickets
among the three airlines to maximize the total number of bonus miles earned.
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9.1.4 Either-Or and If-Then Constraints

In the fIxed-charge problem (Section 9.1.3), we used binary variables to handle the dis­
continuity in the objective cost function. In this section, we deal with models in which
constraints are not satisfied simultaneously (either-or) or are dependent (if-then),
again using binary variables. The transformation does not change the "or" or "depen­
dence" nature of the constraints. It simply uses a mathematical trick to present them in
the desired format of "and" constraints.

Example 9.1-4 (Job-Sequencing Model)

Jobco uses a single machine to process three jobs. Both the processing time and the due date (in
days) for each job are given in the following table. The due dates are measured from zero, the as­
sumed start time of the first job.

Processing Due date Late penalty
Job time (days) (days) $/day

1 5 25 19
2 20 22 12
3 15 35 34

The objective of the problem is to determine the minimum late-penalty sequence for processing
the three jobs.

Define

Xj = Start date in days for job j (measured from zero)

The problem has two types of constraints: the noninterference constraints (guaranteeing that no
two jobs are processed concurrently) and the due-da te constraints. Consider the noninterference
constraints first.
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Two jobs i and j with processing time Pi and Pj will not be processedcoDCurrently if either
Xi ~ Xj + Pj or Xj ~ Xi + Pi, depending on whether job j precedes job i, or vice versa. Because all
mathematical programs deal with simultaneous constraints only, we transfono the either-or con­
straints by introducing the following auxiliary binary variable:

.. = {1, if i precedes j
YIJ 0, if j precedes i

For M sufficiently large, the either-or constraint is converted to the following two simultaneous
constraints

The conversion guarantees that only one of the two constraints can be active at anyone
time. If Yij = 0, the first constraint is active, and the second is redundant (because its left-hand
side will include M, which is much larger than Pi)' If Yij = 1, the first constraint is redundant, and
the second is active.

Next, the due-date constraint is considered. Given that dj is the due date for job j, let Sj be
an unrestricted variable. Then, the associated constraint is

Xj + Pj + Sj = d j

If Sj ~ 0, the due date is met, and if Sj < 0, a late penalty applies. Using the substitution

the constraint becomes

- + dXj + Sj - Sj = j - Pj

The late-penalty cost is proportional to sj.
The model for the given problem is

Minimize z = 19st + 12si + 34sj

subject to

J,

Xl - X2 + MYIZ

-Xl + Xz - MY12

Xl - X3 + MY13

-Xl + X3 - MY13

X2

~ 20

~5- M

~ 15

~ 5 - M

~ 15

~20- M

+~-~ =~-5

+ s"2 - si = 22 - 20

+ s) - sr = 35 - 15
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#continuous
#0-1
# s=sMinus-sPlus

The integer variables, Y12, Y13, and Y23, are introduced to convert the either-or constraints
into simultaneous constraints. The resulting model is a mixed ILP.

To solve the model, we choose M = 100, a value that is larger than the sum of the process­
ing times for aU three activities.

TIle optimal solution is Xl = 20, X2, =0, and X3 = 25, This means that job 2 starts at time 0,
job 1 starts at time 20, and job 3 starts at time 25, thus yielding the optimal processing sequence
2~ 1~ 3. The solution calls for completing job 2 at time 0 + 20 = 20, job 1 at
time = 20 + 5 = 25, and job 3 at 25 + 15 = 40 days. Job 3 is delayed by 40 - 35 = 5 days past
its due date at a cost of 5 X $34 = $170.

AMPl Moment

File ampIEx9.1-4.txt provides the AMPL model for the problem of Example 9.1-4. The
model is self-explanatory because it is a direct translation of the general mathematical
model given above. It can handle any number of jobs by changing the input data. Note
that the model is a direct function of the raw data: processing time p, due date d, and
delay penalty perDayPenal ty.

FIGURE 9.4

AMPL model of the job sequencing problem (file ampIEx9.1-4.txt)

#------------------Example 9.1-4-------------------
param n;
set I={l.. n};
set J={l .. n}; #1 is the same as J
param p {I};

paramd{1};
param perDayPenalty{I};
param M=1000;
var x{J}>=O;
var y{1,J} binary;
var sMinus(J}>=O;
var sPlus(J}>=O;
minimize penalty: sum {j in J}

perDayPenalty[j]*splus[j];
subject to
eitherOr1{i in 1,j in J:i<>j}:

M*y[i,j]+x[i]-x{j]>=p[j];
eitherOr2{i in I,j in J:i<>j}:

M*(l-y[i,j])+x[j]-x(iJ>=p[iJ;
dueDate{j in J}:x[j]+sMinus(j]-sPlus[j]=d[j]-p(j];
data;
param n:=3;
param p:= 1 5 2 20 3 15;
param d:= 1 25 2 22 3 35;
param perDayPenalty := 1 19 2 12 3 34;
option solver cplex; solve;
display penalty,x;
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Example 9.1-5 (Job Sequencing Model Revisited)

In Example 9.1-4, suppose that we have the following additional condition: If job i precedes job
j then job k must precede job m. Mathematically, this if-then condition is translated as

Given e > 0 and infinitesimally small and M sufficiently large, this condition is equivalent to the
following two simultaneous constraints:

Xj - (Xi + Pi) ~ M(l - w) - e

w = (0,1)

If Xi + Pi ~ Xj, then Xj - (Xi + Pi) ~ 0, which requires w = 0, and the second constraint be­
comes Xk + Pk :5 Xm , as desired. Else, 'W may assume the value 0 or 1, in which case the second
constraint mayor may not be satisfied, depending on other conditions in the modeL

PROBLEM SET 9.10

*1. A game board consists of nine equal squares. You are required to fill each square with a
number between 1 and 9 such that the sum of the numbers in each row, each column, and
each diagonal equals 15. Additionally, the numbers in all the squares must be distinct.
Use ILP to determine the assignment of numbers to squares.

2. A machine is used to produce two interchangeable products. The daily capacity of the
machine can produce at most 20 units of product 1 and 10 units of product 2. Alterna­
tively, the machine can be adjusted to produce at most 12 units of product 1 and 25
units of product 2 daily. Market analysis shows that the maximum daily demand for the
two products combined is 35 units. Given that the unit profits for the two respective
products are $10 and $12, which of the two machine settings should be selected? For­
mulate the problem as an ILP and find the optimum. [Note: This two-dimensional prob­
lem can be solved by inspecting the graphical solution space. This is not the case for the
n-dimensional problem.]

*3. Gapco manufactures three products, whose daily labor and raw material requirements
are given in the following table.

Product

1

2
3

Required daily labor
(hr/unit)

3
4
5

Required daily raw material
(lb/unit)

4
3
6
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The profits per unit of the three products are $25, $30, and $22, respectively. Gapco has
two options for locating its plant. The two locations differ primarily in the availability of
labor and raw material, as shown in the following table:

Location

1
2

Available daily labor (hr)

100
90

Available daily raw material (lb)

100
120

Formulate the problem as an ILp, and determine the optimum location of the plant.

4. lobco Shop has 10 outstanding jobs to be processed on a single machine. The following
table provides processing times and due dates. All times are in days and due time is mea­
sured from time 0:

Job Processing time Due time

1 10 20
2 3 98
3 13 100
4 15 34
5 9 50
6 22 44
7 17 32
8 30 60
9 12 80

10 16 150

The profits per unit for the three products are $25, $30, and $45, respectively. If product 3
is to be manufactured at all, then its production level must be at least 5 units daily. For­
mulate the problem as a mixed ILP, and find the optimal mix.

If job 4 precedes job 3, then job 9 must precede job 7. The objective is to process a1l1O
jobs in the shortest possible time. Formulate the model as an ILP and determine the opti­
mum solution by modifying AMPL file ampIEx9.1-4.txt.

5. In Problem 4, suppose that job 4 cannot be processed until job 3 has been completed.
Also, machine settings for jobs 7 and 8 necessitate processing them one right after the
other (Le., job 7 immediately succeeds or immediately precedes 8). lobco's objective is to
process all ten jobs with the smal1est sum of due-time violations. Formulate the model
mathematically and determine the optimum solution.

6. laco owns a plant in which three products are manufactured. The labor and raw material
requirements for the three products are given in the following table.,

i,
,I
-I

1
I

I
j
1,
;
~,,
I

I.,,

Product

1
2
3

Daily availability

Required daily labor
(hr/unit)

3
4
5

100

Required daily raw material
(lb/unit)

4
3
6

100
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FIGURE 9.5

Solution spaces for Problem 9, Set 9.1d

3

1 2
(b)

1 2
(c)

7. UPak is a subsidiary of an LTL (Iess-than-truck-load) transportation company. Cus­
tomers bring their shipments to the UPak terminal to be loaded on the trailer and can
rent space up to 36 ft. The customer pays for the exact linear space (in foot increments)
the shipment occupies. No partial shipment is allowed, in the sense that the entire ship­
ment per customer must be on the same trailer. A movable barrier, called bulkhead, is in­
stalled to separate different shipments. The per-foot fee UPak collects depends on the
destination of the shipment: The longer the trip, the higher the fee. The following table
provides the outstanding orders UPak needs to process.

Order 1

Size (it) 5
Rate ($) 120

2 3

11 22
93 70

4 5 6

15 7 9
85 125 104

7 8

18 14
98 130

9 10

10 12
140 65

The terminal currently has two trailers ready to be loaded. Detennine the priority orders that
will maximize the total income from the two trailers. (Hint A formulation using binary xij to
represent load i on trailer j is straightforward. However, you are challenged to define Xij as
feet assigned to load i in trailer j. The use if-then constraint to prevent partial load shipping.)

8. Show how the nonconvex shaded solution spaces in Figure 9.5 can be represented by a
set of simultaneous constraints. Find the optimum solution that maximizes z = 2x\ + 3X2

subject to the solution space given in (a).

9. Suppose that it is required that any k out of the following m constraints must be active:

Show how this condition may be represented.

10. In the following constraint, the right-hand side may assume one of values, hI> b2, ..• , and bm'

Show how this condition is represented.

9.2 INTEGER PROGRAMMING ALGORITHMS

The ILP algorithms are based on exploiting the tremendous computational success of
LP. The strategy of these algorithms involves three steps.
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Step 1.

Step 2.

Step 3.

Integer Linear Programming

Relax the solution space of the ILP by deleting the integer restriction on aU
integer variables and replacing any binary variable y with the continuous
range 0 $ Y $ 1. The result of the relaxation is a regular LP

Solve the LP, and identify its continuous optimum.

Starting from the continuous optimum point, add special constraints that iter­
atively modify the LP solution space in a manner that will eventually render
an optimum extreme point satisfying the integer requirements.

Two general methods have been developed for generating the special constraints
in step 3.

1. Branch-and-bound (B&B) method

2. Cutting-plane method

Although neither method is consistently effective computationally, experience
shows that the B&B method is far more successful than the cutting-plane method. This
point is discussed further in this chapter.

9.2.1 Branch-and-Bound (B&B) Algorithm3

The first B&B algorithm was developed in 1960 by A. Land and G. Doig for the gener­
al mixed and pure ILP problem. Later, in 1965, E. Balas developed the additive algo­
rithm for solving ILP problems with pure binary (zero or one) variables4

. The additive
algorithm's computations were so simple (mainly addition and subtraction) that it was
hailed as a possible breakthrough in the solution of general ILP. Unfortunately, it failed
to produce the desired computational advantages. Moreover, the algorithm, which ini­
tially appeared unrelated to the B&B technique, was shown to be but a special case of
the general Land and Doig algorithm.

This section will present the general Land-Doig B&B algorithm only. A numeric
example is used to explain the details.

Example 9.2-1

Maxmize z = 5x\ + 4X2

subject to

XI + X2 s; 5

lOx] + 6X2 s; 45

XI> x2 nonnegative integer

3TORA integer programming module is equipped with a facility for generating the B&B tree interactively.
To use this facility, select .User-g·ulded B&B.. in the output screen of the integer programming module. The
resulting screen provides all the information needed to create the B&B tree.
4A general ILP can be expressed in terms of binary (Q-.-l) variables as follows. Given an integer variable x
with a finite upper bound u (i.e., 0 ~ x ~ u), then

x = 20yo + 2'YI + 22.>'2 + --- + 2kYk

The variables }'o, Yl> ...• and Yk are binary and the index k is the smallest integer satisfying Zk+1 - 1 ~ u.
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Optimum(continuous):
xl = 3.75, x2 = 1.25
z = 23.75

FIGURE 9.6

....=-~-'-'-"~=-'=<~c.=~~.....>i.._--l__ xl Solution spaces for ILP (lattice points) and LP1
(shaded area) of Example 9.2-1
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The lattice points (dots) in Figure 9.6 define the ILP solution space. The associated contin­
uous LPI problem at node 1 (shaded area) is defined from rLP by removing the integer restric­
tions. The optimum solution of LPI is Xl = 3.75, X2 = 1.25, and z = 23.75.

Because the optimum LPI solution does not satisfy the integer requirements, the B&B al­
gorithm modifies the solution space in a manner that eventually identifies the ILP optimum.
First, we select one of the integer variables whose optimum value at LPI is not integer. Selecting
Xl (= 3.75) arbitrarily, the region 3 < Xl < 4 of the LPI solution space contains no integer val­
ues of XI> and thus can be eliminated as nonpromising. This is equivalent to replacing the original
LPI with two new LPs:

LP2 space = LPI space + (Xl ::; 3)

LP3 space = LPI space + (Xl 2: 4)

:ly.
he

Figure 9.7 depicts the LP2 and LP3 spaces. The two spaces combined contain the same feasi­
ble integer points as the original ILp, which means that, from the standpoint of the integer solu­
tion, dealing with LP2 and LP3 is the same as dealing with the original LPl; no information is lost.

If we intelligently continue to remove the regions that do not include integer solutions (e.g.,
3 < Xl < 4 at LPl) by imposing the appropriate constraints, we will eventually produce LPs
whose optimum extreme points satisfy the integer restrictions. In effect, we will be solving the
ILP by dealing with a sequence of (continuous) LPs.

The new restrictions, Xl ::;; 3 and XI ~ 4, are mutually exclusive, so that LP2 and LP3 at
nodes 2 and 3 must be dealt with as separate LPs, as Figure 9.8 shows. This dichotomization gives
rise to the concept of branching in the B&B algorithm. In this case, Xl is called the branching
variable.

The optimum ILP lies in either LP2 or LP3. Hence, both subproblems must be examined.
We arbitrarily examine LP2 (associated with Xl ::; 3) first:

u. Maxmize z = 5XI + 4X2
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LP2

6

5

4

LP3

FIGURE 9.7

Solution Spaces of LP2 and LP3 for Example 9.2-1

LPI
XI = 3.75, x2 = 1.25, z = 23.75

LP2
XI=3,X2=2,z=23

Lower bound (optimum)

LP3
xI = 4, x2 = .83, z = 23.33

FIGURE 9.8

Using branching variable Xl to create LP2 and LP3 for Example 9.2-1

subject to

XI + x2::=;; 5

lOXl + 6x2 :5 45

The solution of LP2 (which can be solved efficiently by the upper-bounded algorithm of

Section 7.3) yields the solution

Xl = 3, X2 = 2, and z = 23
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The LP2 solution satisfies the integer requirements for Xl and X2' Hence, LP2 is said to be
fathomed, meaning that it need not be investigated any further because it cannot yield any beller
ILP solution.

We cannot at this point say that the integer solution obtained from LP2 is optimum for the
original problem, because LP3 may yield a better integer solution with a higher value of z. All we
can say is that z = 23 is a lower bound on the optimum (maximum) objective value of the origi­
nal ILP. This means that any unexamined subproblem that cannot yield a better objective value
than the lower bound must be discarded as nonpromising. If an unexamined subproblem pro­
duces a better integer solution, then the lower bound must be updated accordingly.

Given the lower bound z = 23, we examine LP3 (the only remaining unexamined subprob­
lem at this point). Because optimum z = 23.75 at LPI and all the coefficients of the objective
function happen to be integers, it is impossible that LP3 (which is more restrictive than LPl) will
produce a better integer solution with z > 23. As a result, we discard LP3 and conclude that it
has been fathomed.

TIle B&B algorithm is now complete because both LP2 and LP3 have been examined and
fathomed (the first for producing an integer solution and the second for failing to produce a
better integer solution). We thus conclude that the optimum ILP solution is the one associated
with the lower bound-namely, Xl = 3, x2, and z = 23.

Two questions remain unanswered regarding the procedure.

1. At LPl, could we have selected x2 as the branching variable in place of Xl?

2. When selecting the next subproblem to be examined, could we have solved LP3 first in­
stead of LP2?

The answer to both questions is "yes," but ensuing computations could differ dramatically.
Figure 9.9 demonstrates this point. Suppose that we examine LP3 first (instead of LP2 as we did in
Figure 9.8). The solution is XI = 4, Xz = .83, and z = 23.33 (verify!). Because x2 (= .83) is nonin­
teger, LP3 is examined further by creating subproblems LP4 and LPS using the branches X2 :5 0
and Xz ~ 1, respectively. This means that

LP4 space = LP3 space + (X2 :5 0)

= LPI space + (x] ~ 4) + (X2 :5 0)

LP5 space = LP3 space + (xz ~ 1)

= LPI space + (x] ~ 4) + (xz ~ 1)

We now have three "dangling" subproblems to be examined: LP2, LP4, and LP5. Suppose
that we arbitrarily examine LP5 first. LP5 has no solution, and hence it is fathomed. Next, let us
examine LP4.11le optimum solution is Xl = 4.5, Xz = 0, and z = 22.5. The noninteger value of
x] leads to the two branches Xl :5 4 and Xl ~ 5, and the creation of subproblems LP6 and LP7
from LP4.

LP6 space = LP1 space + (x] ~ 4).+ (X2 :5 0) + (XI :5 4)

LP7 space = LPI space + (XI ~ 4) + (X2 :5 0) + (Xl ~ 5)

Now, subproblems LP2, LP6, and LP7 remain unexamined. Selecting LP7 for examination,
the problem has no feasible solution, and thus is fathomed. Next, we select LP6. The problem
yields the firsl integer solution (Xl = 4, X2 = 0, Z = 20), and thus provides the first lower bound
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LPI
XI = 3.75, x2 = 1.25, z = 23.75

LP2
xl = 3, x2 = 2, Z = 23

Lower bound (optimum)

LP3
Xl = 4, x2 = 0.83, z = 23.33

LP4
xI = 4.5,x2 = 0, Z = 22.5

LPS
No feasible solution

LP6
xl = 4, x2 = 0, Z = 20

Lower bound

LP7
No feasible solution

FIGURE 9.9

Alternative B&B tree for Example 9.2-1

(= 20) on the optimum [LP objective value. We are now left with subproblem LPl, which yields a
better integer solution (x] = 3, X2 = 2, z = 23). Thus, the lower bound is updated from z = 20 to
z = 23. At this point, all the subproblems have been fathomed (examined) and the optimum so­
lution is the one associated with the most up-to-date lower bound-namely, Xl = 3, X2 = 2, and
z = 23.

The solution sequence in Figure 9.9 (LPl---+ LP3 ---+ LP5 ---+ LP4 ---+ LP7 ---+ LP6 ---+ LP2) is a
worst-case scenario that, nevertheless, may well occur in practice. In Figure 9.8, we were lucky to
"stumble" upon a good lower bound at the very first subproblem we examined (LPl), thus allowing
us to fathom LP3 without investigating it. [n essence, we compieted the procedure by solving a total
of two LPs. In Figure 9.9, the story is different: We needed to solve seven LPs before the B&B algo­
rithm could be terminated.

Remarks. The example points to a principal weakness in the B&B algorithm: Given multiple
choices, how do we select the next subproblem and its branching variable? Although there are
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heuristics for enhancing the ability of B&B to "foresee" which branch can lead to an improved
ILP solution (see Taha, 1975, pp. 154-171), solid theory with consistent results does not exist, and
herein lies the difficulty that plagues computations in ILP. Indeed, Problem 7, Set 9.2a, demon­
strates the bizarre behavior of the B&B algorithm in investigating over 25,000 LPs before opti­
mality is verified, even though the problem is quite small (16 binary variables and 1 constraint).
Unfortunately, to date, and after more than four decades of research coupled with tremendous
advances in computing power, available ILP codes (commercial and academic alike) are not to­
tally reliable, in the sense that they may not find the optimum ILP solution regardless of how
long they execute on the computer. What is even more frustrating is that this behavior can apply
just the same to some relatively small problems.

AMPL Moment

AMPL can be used interactively to generate the B&B search tree. The following table
shows the sequence of commands needed to generate the tree of Example 9.2-1
(Figure 9.9) starting with the continuous LPO. AMPL model (file ampIEx9.2-1.txt) has
two variables xl and x2 and two constraints cO and cl. You will find it helpful to syn­
chronize the AMPL commands with the branches in Figure 9.9.

AMPL command

ampl:model arnplEx9.2-l.txt;solve;display xl,x2;
ampl:c2:xl>=4;solve;display xl,x2;
ampl: c3 :x2>=1; solve;display xl, x2;
ampl:drop c3;c4:x2<=O;solve;display xl,x2;
ampl: c5 :xl>=5; solve;display xl, x2;
ampl: drop cS; c6: xl<=4; solve; display xl, x2;
ampl: drop c2; drop c4; drop c6; c7 : xl<=3;

solve;display xl,x2;

Result

LPI (XI = 3.75, Xz := 1.25)
LP3 (Xl = 4, Xz = .83)
LP5 (no solution)
LP4 (Xl = 4.5, Xz := 0)
LP7 (no solution)
LP6 (Xl = 4, Xz := 0)

LP2 (Xl = 3,X2:= 2)
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Solver Moment

Solver can be used to obtain the solution of the different subproblems by using the
add/change/delete options in the Solver Parameters dialogue box.

Summary of the B&B Algorithm. We now summarize the B&B algorithm. Assuming
a maximization problem, set an initial lower bound z = -00 on the optimum objective
value of ILP. Set i = O.

Step 1. (Fathoming/bounding). Select LPi, the next subproblem to be examined.
Solve LPi, and attempt to fathom it using one of three conditions:
(a) The optimal z-value of LPi cannot yield a better objective value than

the current lower bound.
(b) LPi yields a better feasible integer solution than the current lower bound.
(c) LPi has no feasible solution.
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Two cases will arise.
(a) If LPi is fathomed and a better solution is found, update the lower

bound. If all subproblems have been fathomed, stop; the optimum ILP
is associated with the current finite lower bound. If no finite lower
bound exists, the problem has no feasible solution. Else, set i = i + 1,
and repeat step 1.

(b) If LPi is not fathomed, go to step 2 for branching.
Step 2. (Branching). Select one of the integer variables Xj, whose optimum value xj

in the LPi solution is not integer. Eliminate the region

[xj] < Xj < [xj] + 1

(where [v] defines the largest integer :5v) by creating two LP subproblems
that correspond to

Set i = i + 1, and go to step 1.

The given steps apply to maximization problems. For minimization, we replace
the lower bound with an upper bound (whose initial value is z = +(0).

The B&B algorithm can be extended directly to mixed problems (in which only
some of the variables are integer). If a variable is continuous, we simply never select it
as a branching variable. A feasible subproblem provides a new bound on the objective
value if the values of the discrete variables are integer and the objective value is im­
proved relative to the current bound.

PROBLEM SeT 9.2A5

1. Solve the ILP of Example 9.2-1 by the B&B algorithm starting with X2 as the branching
variable. Start the procedure by solving the subproblem associated with X2 :s [x;].

2. Develop the B&B tree for each of the following problems. For convenience, always select
Xl as the branching variable at node O.

*(a) Maximize z = 3Xl + 2X2

subject to

2x( + 5X2 :5 9

4xl + 2X2 S 9

Xl, X; <:=: 0 and integer

SIn this set, you may solve the subproblems interactively with AMPL or Solver or using TORA's MODIFY
option for the upper and lower bounds.

..::.
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(b) Maximize z = 2xI + 3X2

subject to

5XI + 7x2 ::5 35

4Xl + 9Xl ::5 36

Xl> X2 ~ 0 and integer

(c) Maximize z = Xl + Xl

subject to

2XI + 5X2 ::5 16

6Xl + 5X2 ::5 27

Xl> Xl ~ 0 and integer

*(d) Minimize z = 5x 1 + 4Xl

subject to

3Xl + 2Xl ~ 5

2x( + 3X2 ~ 7

xl> X2 2:: 0 and integer

(e) Maximize z = 5xI + 7X2

subject to

2Xl + X2 ::5 13

5XI + 9X2 ::5 41

xl> X2 ~ 0 and integer

*3. Repeat Problem 2, assuming that Xl is continuous.

4. Show graphically that the following ILP has no feasible solution, and then verify the re­
sult using B&B.

Maximize z = 2Xl + Xl

subject to

lOXI + lOx2 ::5 9

lOx! + 5Xl ~ 1

Xl, X2 ~ 0 and integer

5. Solve the following problems by B&B.

Maximize z = 18xl + 14xl + 8x3 + 4X4

subject to

15Xj + 12xl + 7X3 + 4X4 + Xs ::5 37

Xt> Xl,X3,X4,XS = (0,1)
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6. Convert the following problem into a mixed ILP and find the optimum solution.

Maximize z = Xl + 2X2 + 5x)

subject to

7. TORA/Solver /AMPL Experiment. The following problem is designed to demonstrate the
bizarre behavior of the B&B algorithm even for small problems. In particular, note how
many subproblems are examined before the optimum is found and how many are needed
to verify optimality.

Minimize y

subject to

2(Xl + x2 + ... + XIS) + Y = 15
All variables are (0, 1)

(a) Use TORA's automated option to show that although the optimum is found after only
9 subproblems, over 25,000 subproblems are examined before optimality is confirmed.

(b) Show that Solver exhibits an experience similar to TORA's. [Note: In Solver, you can
watch the change in the number of generated branches (subproblems) at the bottom
of the spreadsheet.]

(c) Solve the problem with AMPL and show that the solution is obtained instantly with
oMIP simplex iterations and 0 B&B nodes. The reason for this superior perfor­
mance can only be attributed to preparatory steps performed by AMPL and/or the
CPLEX solver prior to solving the problem.

8. TORA Experiment. Consider the following ILP:

Maximize z = 18xI + 14x2 + 8x3

subject to

Xl, X2, X3 nonnegative integers

Use TORA's B&B user-guided option to generate the search tree with and without acti­
vating the objective-value bound. What is the impact of activating the objective-value
bound on the number of generated subproblems? For consistency, always select the
branching variable as the one with the lowest index and investigate all the subproblems
in a current row from left to right before moving to the next row.

*9. TORA Experiment. Reconsider Problem 8 above. Convert the problem into an equiva­
lent 0-1 ILP, then solve it with TORA's automated option. Compare the size of the search
trees in the two problems.

10. AMPL Experiment. In the following 0-1 ILP use interactive AMPL to generate the asso­
ciated search tree. In each case, show how the z-bound is used to fathom subproblems.

Maximize z = 3Xl + 2X2 - 5x3 - 2X4 + 3xs
.,
~~
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subject to

Xl + Xl + X3 + 2X4 + X5 5 4

7xI + 3X3 - 4X4 + 3X5 5 8

11Xl - 6X2 + 3X4 - 3X5 ~ 3

9.2.2 Cutting-Plane Algorithm

e As in the B&B algorithm, the cutting-plane algorithm also starts at the continuous op­
timum LP solution. Special constraints (called cuts) are added to the solution space in

d a manner that renders an integer optimum extreme point. In Example 9.2-2, we first
demonstrate graphically how cuts are used to produce an integer solution and then im­
plement the idea algebraically.

Example 9.2-2

Consider the following ILl'.

Maximize z = 7Xl + lOx2

subject to

1

1
-Xl + 3X2 5 6

7Xl + X2 5 35

Xl> Xl ~ 0 and integer

The cutting-plane algorithm modifies the solution space by adding cuts that produce an op­
timum integer extreme point. Figure 9.10 gives an example of two such cuts.

Initially, we start with the continuous LP optimum z = 66~, XI = 4~, X2 = 3~. Next, we

add cut I, which produces the (continuous) LP optimum solution z = 62, Xl = 4~, X2 = 3. Then,
we add cut II, which, together with cut I and the original constraints, produces the LP optimum
z = 58, Xl = 4, X2 = 3. The last solution is all integer, as desired.

The added cuts do not eliminate any of the original feasible integer points, but must pass
through at least one feasible or infeasible integer point. These are basic requirements of any cut.

FIGURE 9.10

Illustration of the use of cuts in ILP

X2 Optimum: (4i ' 3t) x2 Optimum: (4~, 3)

4 4 4

3 3 3

2 2 2
~ -.-

1 1

......-...------- Xl02345



It is purely accidental that a 2-variable problem used exactly 2 cuts to reach the optimum in­
teger solution. In general, the number of cuts, though finite, is independent of the size of the
problem, in the sense that a problem with a small number of variables and constraints may re­
quire more cuts than a larger problem.

Next, we use the same example to show how the cuts are constructed and implemented
algebraically.

Given the slacks X3 and X4 for constraints 1 and 2, the optimum LP tableau is given as

.j

!

I
I
I
I
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I
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Basic Xl X2 X3 X4 Solution

0 0 63 31 66!Z 22 22 2

0 1 7 1 31
x2 n n 2

1 0 1 J 4Xl -22 22 2

The optimum continuous solution is z = 66~, Xl = 4i, X2 = 3~, X3 = 0, X4 = O. The cut is
developed under the assumption that all the variables (including the slacks X3 and X4) are integer.
Note also that because all the original objective coefficients are integer in this example, the value
of z is integer as well.

The information in the optimum tableau can be written explicitly as

(z-equation)

(xI-equation)

A constraint equation can be used as a source row for generating a cut, provided its right­
hand side is fractional. We also note that the z-equation can be used as a source row because z
happens to be integer in this example. We will demonstrate how a cut is generated from each of
these source rows, starting with the z-equation.

First, we factor out all the noninteger coefficients of the equation into an integer value and
a fractional component, provided that the resulting fractional component is strictly positive. For
example,

~:o:(2+D

-~ = (-3 +~)

TIle factoring of the z-equation yields

z + (2 + *)X3 + (1 + ?2)X4 = (66 + D
Moving all the integer components to the left-hand side and all the fractional components to the
right-hand side, we get

(1)

,".;.-

<~~,..~", ,",

.~. ;-,~!,
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Because XJ and X4 are nonnegative and all fractions are originally strictly positive, the right-hand
side must satisfy the following inequality:

m­
the
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19 9 + 1 < 1

- 22 X3 - 22 X4 2 - 2 (2)
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Next, because the left-hand side in Equation (1), z + 2x3 + IX4 - 66, is an integer value by con-
. h' h h d'd 19 19 1 lb' IstructlOn, t e ng t- an Sl e, -22 x3 - 22 X4 + 2' must a so e mteger. t

then follows that (2) can be replaced with the inequality:

This result is justified because an integer value $~ must necessarily be $0.

The last inequality is the desired cut and it represents a necessary (but not sufficient) condi­
tion for obtaining an integer solution. It is also referred to as the fractional cut because all its co­
efficients are fractions.

Because X3 = X4 = 0 in the optimum continuous LP tableau given above, the current continu­
ous solution violates the cut (because it yields ~ $ 0). Thus, if we add this cut to the optimum
tableau, the resulting optimum extreme point moves the solution toward satisfying the integer
requirements.

Before showing how a cut is implemented in the optimal tableau, we will demonstrate how
cuts can also be constructed from the constraint equations. Consider the Xl-row:

XI-1... x +1. x =41
22 3 22 4 2

Factoring the equation yields

XI + (-1 + H)X3 + (0 + ?2)X4 = (4 + D
The associated cut is

Similarly, the xz-equation

is factored as

X2 + (0 + {z)xJ + (0 + 2\:)X4 = 3+ ~

Hence, the associated cut is given as

Anyone of three cuts given above can be used in the first iteration of the cutting-plane a1­
gorithm. It is not necessary to generate aU three cuts before selecting one.

Arbitrarily selecting the cut generated from the xz-row, we can write it in equation form as

(1) (Cut I)
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This constraint is added to the LP optimum tableau as follows:

Basic

zOO ~ ~ :l}:;:~:t-~l~ 66~

i\i);;:Ji~}:~1\\;~i:~~\~~:j~~t;{~i\\\1\;:~~L~&J;!~
The tableau is optimal but infeasible. We apply the dual simplex method (Section 4.4.1) to

recover feasibility, which yields

Basic XI X2 X3 X 4 Sl Solution

z 0 0 0 1 9 62

X2 0 1 0 0 1 3
1 0 0 I 1 4ix\ =; -=; 7

0 0 1 1 22 1~X3 '; -7 1

The last solution is still noninteger in xl and X3- Let us arbitrarily select Xl as the next source
row-that is,

The associated cut is

(Cut II)

Basic XI Xl .1:3 .1:4 Sl '·S;·~~E·~ Solution

z 0 0 0 1 9 ~,W~~§,,~:~, 62

The dual simplex method yields the following tableau:

Basic XI X2 X3 .\"4 SI S2 Solution

z 0 0 0 0 3 7 58

X2 0 1 0 0 1 0 3
XI 1 0 0 0 -1 1 4
x3 0 0 1 0 -4 1 1
X4 0 0 0 1 6 -7 4
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The optimum solution (Xl = 4, X2 = 3, z = 58) is all integer. It is not accidental that all the
coefficients of the last tableau are integers, a property of the implementation of the fractional cut.

Remarks. It is important to point out that the fractional cut assumes that all the
variables, including slack and surplus, are integer. This means that the cut deals with pure
integer problems only. The importance of this assumption is illustrated by an example.

Consider the constraint

+ 1 <: 13
Xl 3X2 -"2

Xl> X2 ~ 0 and integer

From the standpoint of solving the associated ILP, the constraint is treated as an
equation by using the nonnegative slack sl-that is,

The application of the fractional cut assumes that the constraint has a feasible inte­
ger solution in all Xl> X2, and Sl' However, the equation above will have a feasible integer
solution in Xl and X2 only if Sl is noninteger. This means that the cutting-plane algo­
rithm will show that the problem has no feasible integer solution, even though the vari­
ables of concern, Xl and X2, can assume feasible integer values.

There are two ways to remedy this situation.

1. Multiply the entire constraint by a proper constant to remove all the fractions.
For example, multiplying the constraint above by 6, we get

Any integer solution of Xl and X2 automatically yields integer slack. However, this type
of conversion is appropriate for only simple constraints, because the magnitudes of the
integer coefficients may become excessively large in some cases.

2. Use a special cut, called the mixed cut, which allows only a subset of variables
to assume integer values, with all the other variables (including slack and surplus) re­
maining continuous. The details of this cut will not be presented in this chapter (see
Taha, 1975, pp. 198-202).

PROBLEM SET 9.2B

1. In Example 9.2-2, show graphically whether or not each of the foHowing constraints can
form a legitimate cut:

*(a) Xl + 2xz :5 10

(b) 2xl + X2 :5 10

(c) 3X2:5 10

(d) 3xl + X2 :5 15
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2. In Example 9.2-2, show graphically how the following two (legitimate) cuts can lead to
the optimum integer solution:

XI + 2X2 ~ 10

3Xl + x2 ::S 15

(cut I)

(cut II)

3. Express cuts I and II of Example 9.2-2 in terms of Xl and X2 and show that they are the
same ones used graphically in Figure 9.10.

4. In Example 9.2-2, derive cut II from the x3-row. Use the new cut to complete the solution
of the example.

5. Show that, even though the following problem has a feasible integer solution in Xl and
X2, the fractional cut would not yield a feasible solution unless all the fractions in the con­
straint were eliminated.

Maximize z = Xl + 2X2

subject to

Xl + ~X2 ::s ¥
X[,X2 ~ 0 and integer

6. Solve the following problems by the fractional cut, and compare the true optimum inte­
ger solution with the solution obtained by rounding the continuous optimum.

*(a) Maximize z = 4XI + 6X2 + 2X3

subject to

4xI - 4X2 s: 5

-Xl + 6X2 ::s 5

- Xl + X2 + X3 ::s 5

Xl> X2, X3 ~ 0 and integer

(b) Maximize z = 3Xl + X2 + 3X3

subject to

- Xl + 2X2 + X3 ::s 4

4X2 - 3X3 ::s 2

Xl - 3X2 + 2x3 s: 3

Xl, X2, X3 ~ 0 and integer

9.2.3 Computational Considerations in ILP

To date, and despite over 40 years of research, there does not exist a computer code
that can solve ILP consistently. Nevertheless, of the two solution algorithms presente~

in this chapter,B&B is more reliable. Indeed, practically aU commercial ILP codes are
B&B based. Cutting-plane methods are generally difficult and uncertain, and the
roundoff error presents a serious problem. This is true because the "accuracy" of the
cut depends on the accuracy of a true representation of its fractions on the computer.
For instance, in Example 9.2-2, the fraction ~ cannot be represented exactly as a floating

9.3
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point regardless of the level of precision that may be used. Though attempts have been
made to improve the cutting-plane computational efficacy, the end results are not en­
couraging. In most cases, the cutting-plane method is used in a secondary capacity to
improve B&B performance at each subproblem by eliminating a portion of the solu­
tion space associated with a subproblem.

The most important factor affecting computations in integer programming is the
number of integer variables and the feasible range in which they apply. Because avail­
able algorithms are not consistent in producing a numeric ILP solution, it may be ad­
vantageous computationally to reduce the number of integer variables in the ILP
model as much as possible. The following suggestions may prove helpful:

1. Approximate integer variables by continuous ones wherever possible.
2. For the integer variables, restrict their feasible ranges as much as possible.

3. Avoid the use of nonlinearity in the model.

The importance of the integer problem in practice is not yet matched by the de­
velopment of reliable solution algorithms. The nature of discrete mathematics and the
fact that the integer solution space is a nonconvex set make it unlikely that new theo­
retical breakthroughs will be achieved in the area of integer programming. Instead,
new technological advances in computers (software and hardware) remain the best
hope for improving the efficiency of ILP codes.

9.3 TRAVELING SALESPERSON (TSP) PROBLEM

Historically, the TSP problem deals with finding the shortest (closed) tour in an n-city
situation where each city is visited exactly once. The problem, in essence, is an assign­
ment model that excludes subtours. Specifically, in an n-city situation, define

x .. = {I, if city j is reached from city i
IJ 0, otherwise

Given that dij is the distance from city i to city j, the TSP model is given as

n n

Minimize z = ""d·x· d· = 00 for all i = J'L.J L.J IJ IJ' IJ
i=1 j=l

subject to

n

~Xij = 1, i = 1,2, ... , n
j=1

II

~Xij = 1, j = 1,2, ... , n
i=l

Xij = (0,1)

Solution forms an n-city tour

(1)

(2)

(3)

(4)
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5-city problem Tour solution Subtour solution
(xl2 = x25 = xS4 = x43 = x31 = 1) (X23 = x32 = xIS = xS4 = x41 = 1)

FIGURE 9.11

A 5-city TSP example with a tour and subtour solutions of the associated assignment model

Constraints (1), (2), and (3) define a regular assignment model (Section 5.4). Figure 9.11
demonstrates a 5-city problem. The arcs represent two-way routes. The figure also il­
lustrates a tour and a subtour solution of the associated assignment model. If the opti­
mum solution of the assignment model (i.e., excluding constraint 4) happens to
produce a tour, then it is also optimum for the TSP. Otherwise, restriction (4) must be
accounted for to ensure a tour solution.

Exact solutions of the TSP problem include branch-and-bound and cutting-plane
algorithms. Both are rooted in the ideas of the general B&B and cutting plane algo­
rithms presented in Section 9.2. Nevertheless, the problem is typically difficult compu­
tationally, in the sense that either the size or the computational time needed to obtain
a solution may become inordinately large. For this reason, heuristics are sometimes
used to provide a "good" solution for the problem.

Before presenting the heuristic and exact solution algorithms, we present an ex­
ample that demonstrates the versatility of the TSP model in representing other practi­
cal situations (see also Problem Set 9.3a).

Example 9.3-1

The daily production schedule at the Rainbow Company includes batches of white (W), yellow
(Y), red (R), and black (B) paints. Because Rainbow uses the same facilities for all four types of
paint, proper cleaning between batches is necessary. The table below summarizes the clean-up
time in minutes. Because each color is produced in a single batch, diagonal entries in the table
are assigned infinite setup time. The objective is to determine the optimal sequencing for the
daily production of the four colors that will minimize the associated total clean-up time.

Cleanup min given next paint is

Current paint White Yellow Black Red

White 00 10 17 15
Yellow 20 00 19 18
Black 50 44 00 25
Red 45 40 20 00
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Each paint is thought of as a "city" and the "distances" are represented by the clean-up time
needed to switch from one paint batch to the next. The situation reduces to determining the shortest
loop that starts with one pain~batch and passes through each of the remaining three paint batches
exactly once before returning back to the starting paint.

We can solve this problem by exhaustively enumerating the six [(4 - 1)1 = 31 = 6] possi­
ble loops of the network. The following table shows that W --)0 Y --)0 R --)0 B --)0 W is the opti­
mum loop.

Production loop

W-4Y~B-4R~W

W~Y-4R~B~W

W---+B-4Y-4R-4W
W~B-4R---+Y~W

W---+R---+B---+Y~W

W~R~Y---+B~W

Total clean-up time

10 + 19 + 25 + 45 = 99
10 + 18 + 20 + 50 = 98
17 + 44 + 18 + 45 = 124
17 + 25 + 40 + 20 = 102
15 + 20 + 44 + 20 = 99
15 + 40 + 19 + 50 = 124

t1
il­
ti­
to
be

ne
~o-

)U­

lin
les

ex-
:;ti-

low
s of
l-Up

lble
the

Exhaustive enumeration of the loops is not practical in general. Even a modest size ll-city
problem will require enumerating 1O! = 3,628,800 tours, a daunting task indeed. For this reason,
the problem must be formulated and solved in a different manner, as we will show later in this
section.

To develop the assignment-based formulation for the paint problem, define

Xij = 1 if paint j follows paint i and zero otherwise

Letting M be a sufficiently large positive value, we can formulate the Rainbow problem as

Minimize z = Mxww + 10xwy + 17xwB + 15xwR + 20xyw + Mxyy + 19xYB + 18xYR

+ 50xB", + 44xBY + MX8B + 25xBR + 45xmv + 40XRY + 20XRn + MXRR

subject to

xww + XWY + XWB + XWR = 1

xYW + xYY + XYB + xYR = 1

XBW + XBY + XBn + XBR = 1

XRW + XRY + XRB + XRR = 1

XW\\! + XYW + Xmv + XRW = 1

XWY + XYY + XRY + XRY = 1

xWB + xYB + xBn + XRB = 1

XWR + XYR + XnR + XRR = 1

x·· = (0 1) for all i and jIJ '

Solution is a tour (loop)

The use of M in the objective function guarantees that a paint job ca~not follow itself. The
same result can be realized by deleting Xww, XYY, XEB, and XRR from the entire model.
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PROBLEM SET 9.3A

*1. A manager has a total of 10 employees working on six projects.1l1ere are overlaps
among the assignments as the following table shows:

Project
1 2 3 4 5 6

1 x x x

2 x x x

3 x x x x

4 x x x
9.

Employee 5 x x x

6 x x x x x

7 x x x x

8 x x x

9 x x

10 x x x x x

The manager meets with each employee individually once a week for a progress re­
port. Each meeting lasts about 20 minutes for a total of 3 hours and 20 minutes for all 10
employees. To reduce the total time, the manager wants to hold group meetings depend­
ing on shared projects. The objective is to schedule the meetings in a way that will reduce
the traffic (number of employees) in and out of the meeting foam. Formulate the prob­
lem as a mathematical model.

2. A book salesperson who lives in Basin must call once a month on four customers located
in Wald, Bon, Mena, and Kiln. The following table gives the distances in miles among the
different cities.

Miles between cities

Basin Wald Bon Mena Kiln

Basin 0 120 220 150 210
Wald 120 0 80 no 130
Bon 220 80 0 160 185
Mena 150 110 160 0 190
Kiln 210 130 185 190 0

The objective is to minimize the total distance traveled by the salesperson. Formu­
late the problem as an assignment-based ILP.



9.3 Traveling Salesperson (TSP) Problem 389

3. Circuit boards (such as those used with PCS) are fitted with holes for mounting different
electronic components. The holes are drilled with a movable drill. The following table pro­
vides the distances (in centimeters) between pairs of 6 holes of a specific circuit board.

1.2 .5 2.6 4.1 3.2
1.2 3.4 4.6 2.9 5.2

Ild;jll =
.5 3.4 3.5 4.6 6.2

2.6 4.6 3.5 3.8 .9
4.1 2.9 4.6 3.8 1.9
3.2 5.2 6.2 .9 1.9

Formulate the assignment portion of an ILP representing this problem.

9.3.1 Heuristic Algorithms

This section presents two heuristics: the nearest-neighbor and the subtour-reversal al­
gorithms. The first is easy to implement and the second requires more computations.
The tradeoff is that the second algorithm generally yields better results. Ultimately, the
two heuristics are combined into one heuristic, in which the output of the nearest­
neighbor algorithm is used as input to the reversal algorithm.

The Nearest-Neighbor Heuristic. As the name of the heuristic suggests, a "good"
solution of the TSP problem can be found by starting with any city (node) and then
connecting it with the closest one. The just-added city is then linked to its nearest
unlinked city (with ties broken arbitrarily). The process continues until a tour is formed.

Example 9.3-2
The matrix below summarizes the distances in miles in as-city TSP problem.

00 120 220 150 210
120 00 100 110 130

Ild;jll = 220 80 00 160 185
150 00 160 00 190
210 130 185 00 00

The heuristic can start from any of the five cities. Each starting city may lead to a different
tour. TIle following table provides the steps of the heuristic starting at city 3.

Step Action

1 Start with city 3
2 Link to city 2 because it is closest to city 3 (d32 = min {220, 80, 00, 160, 185} )
3 Link to node 4 because it is closest to node 2 (d24 = min {120, 00, -, 110, 130} )
4 Link to node 1 because it is closest to node 4 (d41 = min {ISO, 00, -, -,190})
5 Link to node 5 by default and connect back to node 3 to complete the tour

(Partial) tour

3
3-2
3-2-4
3-2-4-1
3-2-4-1-5-3

Notice the progression of the steps: Comparisons exclude distances to nodes that are part
of a constructed partial tour. These are indicated by (-) in the Action column of the table.
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The resulting tour 3-2-4-1-5-3 has a total length of 80 + 110 + 150 + 210 + 185 = 735
miles. Observe that the quality of the heuristic solution is starting-node dependent. For exam­
ple, starting from node 1, the constructed tour is 1-2-3-4-5-1 with a total length of 780 miles
(try it!).

Subtour Reversal Heuristic. In an n-city situation, the subtour reversal heuristic
starts with a feasible tour and then tries to improve on it by reversing 2-city subtours,
followed by 3-city subtours, and continuing until reaching subtours of size n - 1.

Example 9.3-3

Consider the problem of Example 9.3-2. The reversal steps are carried out in the following table
using the feasible tour 1-4-3-5-2-1 of length 745 miles:

Type Reversal Tour Length

Start (1-4-3-5-2-1) 745

Two-at-a-time reversal 4-3 1-3-4-5-2-1 820
3-5 (1-4-5-3-2-1) 725
5-2 1-4-3-2-5-1 730

Three-at-a-time reversal 4-5-3 1-3-5-4-2-1 00

5-3-2 1-4-2-3-5-1 00

Four-at-a-time reversal 4-5-3-2 1-2-3-5-4-1 00

The two-at-a-time reversals of the initial tour 1-4-3-5-2-1 are 4-3, 3-5, and 5-2, which leads
to the given tours with their associated lengths of 820, 725, and 730. Since 1-4-5-3-2-1 yields a
smaller length (= 725), it is used as the starting tour for making the three-at-a-time reversals.
As shown in the table, these reversals produce no better results. The same result applies to the
four-at-a-time reversal. Thus, 1-4-5-3-2-1 (with length 725 miles) provides the best solution of
heuristic.

Notice that the three-at-a-time reversals did not produce a better tour, and, for this rea­
son, we continued to use the best two-at-a-time tour with the four-at-a-time reversal. Notice
also that the reversals do not include the starting city of the tour (= 1 in this example) because
the process does not yield a tour. For example, the reversal 1-4 leads to 4-1-3-5-2-1, which is
not a tour.

The solution determined by the reversal heuristic is a function of the initial feasible tour
used to start the algorithm. For example, if we start with 2-3-4-1-5-2 with length 750 miles, the
heuristic produces the tour 2-1-4-3-5-2 with length 745 miles (verify!), which is inferior to the
solution we have in the table above. For this reason, it may be advantageous to first utilize the
nearest-neighbor heuristic to determine all the tours that result from using each city as a
starting node and then select the best as the starting tour for the reversal heuristic. This com­
bined heuristic should, in general, lead to superior solutions than if either heuristic is applied
separately. The following table shows the application of the composite heuristic to the pre­
sent example.
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~5 Heuristic Starting city Tour Length
(1-

~s 1 1-2-3-4--5-1 780
2 2-3.-4-1-5-2 750

- Nearest neighbor 3 (3-2-4-1-5-3) 735
4 4-1-2-3-5-4 00

ic 5 5-2-3.-4-1-5 750

'5, 2.-4 3-4-2-1-5-3 00

4-1 (3-2-1-4-5-3) 725
1-5 3-2-4-5-1-3 810

Reversals 2-1.-4 3.-4-1-2-5-3 745
1.-4-5 3-2-5.-4-1-3 00

2-1-4-5 3-5-4-1-2-3 00

Ie

Excel Moment.

Figure 9.12 provides a general Excel template (file exceITSP.xls) for the heuristics. It
uses three execution options depending on the entry in cell H3:

1. If you enter a city number, the nearest-neighbor heuristic is used to find a tour
starting with the designated city_

2. If you enter the word "tour" (without the quotes), you must simultaneously pro­
vide an initial feasible tour in the designated space. In this case, only the reversal
heuristic is applied to the tour you provided.

3. If you enter the word "aU," the nearest-neighbor heuristic is used first, and its
best tour is then used to execute the reversal heuristic.

File exceITSP.v2.xls automates the operations of Step 3.
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FIGURE 9.12

Execution of the TSP heuristic using Excel spreadsheet (file exceITSP.xls)
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PROBLEM SET 9.3B

1. Apply the heuristic to the following problems:

(a) The paint sequencing problem of Example 9.3-1.

(b) Problem 1 of Set 9.3a.

(c) Problem 2 of Set 9.3a.

(d) Problem 3 of Set 9.3a.

9.3.2 B&B Solution Algorithm

The idea of the B&B algorithm is to start with the optimum solution of the associated
assignment problem. If the solution is a tour, the process ends. Otherwise, restrictions
are imposed to remove the subtours. This can be achieved by creating as many branch­
es as the number of xirvariables associated with one of the subtours. Each branch will
correspond to setting one of the variables of the subtour equal to zero (recall that all
the variables associated with a subtour equal 1). The solution of the resulting assign­
ment problem mayor may not produce a tour. If it does, we use its objective value as
an upper bound on the true minimum tour length. If it does not, further branching is
necessary, again creating as many branches as the number of variables in one of the
subtours. The process continues until all unexplored subproblems have been fathomed,
either by producing a better (smaller) upper bound or because there is evidence that
the subproblem cannot produce a better solution. The optimum tour is the one associ­
ated with the best upper bound.

The following example provides the details of the TSP B&B algorithm.

Example 9.3-4

Consider the following 5-city TSP problem:

00 10 3 6 9
5 00 5 4 2

IldiJiI = 4 9 00 7 8

7 1 3 00 4

3 2 6 5 00

We start by solving the associated assignment, which yields the following solution:

z = 15, (X13 = X31 = 1), (X25 = X54 = X42 = 1), all others = 0

This solution yields two subtours: (1-3-1) and (2-5-4-2), as shown at node 1 in Figure 9.13.
The associated total distance is z = 15, which provides a lower bound on the optimal length of
the 5-city tour.

A straightforward way to determine an upper bound is to select any tour and use its length as
an upper bound estimate. For example, the tour 1-2-3-4-5-1 (selected totally arbitrarily) has a total
length of 10 + 5 + 7 + 4 + 3 = 29. Alternatively, a better upper bound can be found by applying
the heuristic of Section 9.3.1. For the moment, we will use the upper bound of length 29 to apply the
B&B algorithm. Later, we use the "improved" upper bound obtained by the heuristic to demon­
strate its impact on the search tree.

,'.
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FIGURE 9.13

B&B solution of the TSP problem of Example 9.3-4

The computed lower and upper bounds indicate that the optimum tour length lies in range (15,
29). A solution that yields a tour length larger than (or equal to) 29 is discarded as nonpromising.

To eliminate the subtours at node 1, we need to "disrupt" its loop by forcing its member
variables, Xij' to be zero. Subtour 1-3-1 is disrupted if we impose the restriction Xl3 = 0 or
X31 = 0 (i.e., one at a time) on the assignment problem at node 1. Similarly, subtour 2-5-4-2 is
eliminated by imposing one of the restrictions X25 = 0, X54 = 0, or X42 :=: O. In terms of the B&B
tree, each of these restrictions gives rise to a branch and hence a new subproblem. It is important
to notice that branching both subtours at node 1 is not necessary. Instead, only one subtour needs
to be disrupted at anyone node. The idea is that a breakup of one subtour automatically alters
the member variables of the other subtour and hence produces conditions that are favorable to
creating a tour. Under this argument, it is more efficient to select the subtour with the smallest
number of cities because it creates the smallest number of branches.

Targeting subtour (1-3-1), two branches Xt3 = 0 and X31 = 0 are created at node 1. The as­
sociated assignment problems are constructed by removing the row and column associated with
the zero variable, which makes the assignment problem smaller. Another way to achieve the
same result is to leave the size of the assignment problem unchanged and simply assign an infi­
nite distance to the branching variable. For example, the assignment problem associated with
Xl3 = 0 requires substituting dn = 00 in the assignment model at node 1. Similarly, for X31 = 0,
we substitute d3~ = 00.

In Figure 9.13, we arbitrarily start by solving the subproblem associated with X13 = 0 by setting
d l3 = 00, Node 2 gives the solution z = 17 but continues to produce the subtours (2-5-2) and (1-4­
3-1). Repeating the procedure we applied at node 1 gives rise to two branches: X25 = 0 and XS2 = O.

We now have three unexplored subproblems, one from node 1 and two from node 2, and we
are free to investigate any of them at this point. Arbitrarily exploring the subproblem associated
with X25 = 0 from node 2, we set d t3 = 00 and d25 = 00 in the original assignment problem, which
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yields the solution z = 21 and the tour solution 1-4-5-2-3-1 at node 3. The tour solution at node 3
lowers the upper bound from z == 29 to z == 21. This means that any unexplored subproblem that
can be shown to yield a tour length larger than 21 is discarded as nonpromising.

We now have two unexplored subproblems. Selecting the subproblem 4 for exploration, we
set d l3 == 00 and d52 == 00 in the original assignment, which yields the tour solution 1-4-2-5-3-1
with z == 19. The new solution provides a better tour than the one associated with the current
upper bound of 21. Thus, the new upper bound is updated to z = 19 and its associated tour, 1-4­
2-5-3-1, is the best available so far.

Only subproblem 5 remains unexplored. Substituting d31 == 00 in the original assignment
problem at node 1, we get the tour solution 1-3-4-2-5-1 with z = 16, at node 5. Once again, this is
a better solution than the one associated with node 4 and thus requires updating the upper
bound to z == 16.

There are no remaining unfathomed nodes, which completes the search tree. The optimal
tour is the one associated with the current upper bound: 1-3-4-2-5-1 with length 16 miles.

Remarks. The solution of the example reveals two points:

1. Although the search sequence 1 - 2 - 3 - 4 - 5 was selected deliberately to
demonstrate the mechanics of the B&B algorithm and the updating of its upper bound, we
generally have no way of predicting which sequence should be adopted to improve the effi­
ciency of the search. Some rules of thumb can be of help. For example, at a given node we
can start with the branch associated with the largest d ij among all the created branches. By can­
celing the tour leg with the largest dij, the hope is that a "good" tour with a smaller total length
will be found. In the present example, this rule calls for exploring branch X31 == 0 to node 5 be­
fore branch x13 to node 2 because (d31 == 4) > (dB == 3), and this would have produced the
upper bound z == 16, which automatically fathoms node 2 and, hence, eliminates the need to cre­
ate nodes 3 and 4. Another rule calls for sequencing the exploration of the nodes in a horizontal
tier (rather than vertically). The idea is that nodes closer to the starting node are more likely to
produce a tighter upper bound because the number of additional constraints (of the type Xi; = 0)
is smaller. This rule would have also discovered the solution at node 5 sooner.

2. The B&B should be applied in conjunction with the heuristic in Section 9.3.1. The
heuristic provides a "good" upper bound which can be used to fathom nodes in the search tree.
In the present example, the heuristic yields the tour 1-3-4-2-5-1 with a length of 16 distance units.

9.

AMPl Moment

Interactive AMPL commands are ideal for the implementation of the TSP B&B algo­
rithm using the general assignment model (file ampIAssignment.txt). The following
table summarizes the AMPL commands needed to create the B&B tree in Figure 9.13
(Example 9.3-4):

AMPL command

ampl: model amplAss ignment . txt; display x;
ampl:fix x[1,3}:~O;solve;displayx;
amp~fix x[2,5} :=O;solve;display x;
ampl:unfix x[2, 5] ; fix x(5,2] :=O;solve;display X;

ampl:unfix x[5,2j;unfix x[1,3];fix x[3,1]:=O;
solve;display x;

Result

Node 1 solution
Node 2 solution
Node 3 solution
Node 4 solution

Node 5 solution

1

2

3

4

5
6
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PROBLEM SET 9.3C

1. Solve Example 9.3-3 using subtour 2-5-4-2 to start the branching process at node 1, using
the following sequences for exploring the nodes.

(a) Explore all the subproblems horizontally from left to right in each tier.before pre­
ceeding to the next tier.

(b) Follow each path vertically from node 1 until it ends with a fathomed node.

*2. Solve Problem 1, Set 9.3a using B&B.

3. Solve Problem 2, Set 9.3a using B&B.

4. Solve Problem 3, Set 9.3a using B&B.

9.3.3 Cutting-Plane Algorithm

The idea of the cutting plane algorithm is to add a set of constraints to the assignment
problem that prevent the formation of a subtour. The additional constraints are defined
as follows. In an n-city situation, associate a continuous variable Uj (;:::: 0) with cities
2, 3, ... , and n. Next, define the required set of additional constraints as

Uj - Uj + nXjj :s;; n - 1, i = 2,3, ... , n; j = 2,3, ... , n; i i= j

These constraints, when added to the assignment model, will automatically remove all
subtour solutions.

Example 9.3-5

Consider the following distance matrix of a 4-city TSP problem.

e

,.

13 21

29
20
30 7

26)20
5

g
3

...
.:::;' .

3:: ~~{:~':

The associated LP consists of the assignment model constraints plus the additional constraints in
the table below. All Xjj = (0, 1) and all Uj ~ O.

No. XII XI2 Xl3 X14 X21 X22 X23 X24 X31 X32 X33 X34 X41 X42 X43 X44 U2 U3 U4

1 4 1 -1 ~3

2 4 1 -1 ~3

3 4 -1 1 ~3

4 4 1 -1 ~3

5 4 -1 1 ~3

6 4 -1 1 ~3

The optimum solution is

U2 = 0, UJ = 2, U4 = 3, X12 = X23 = X34 = X41 = 1, tour length = 59.
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This corresponds to the tour solution 1-2-3-4-1. The solution satisfies all the additional con­
straints in Uj (verify!).

To demonstrate that subtour solutions do not satisfy the additional constraints, consider
(1-2-1,3-4-3), which corresponds to X12 = X21 = 1, X34 = X43 = 1. Now, consider constraint 6 in
the tableau above:

Substituting X43 ;: 1, U3 = 2, U4 = 3 yields 5 ~ 3, which is impossible, thus disallowing X43 = 1
and subtour 3-4-3.

The disadvantage of the cutting-plane model is that the number of variables grows expo-­
nentially with the number of cities, making it difficult to obtain a numeric solution for practical
situations. For this reason, the B&B algorithm (coupled with the heuristic) may be a more feasi­
ble alternative for solving the problem.

AMPL Moment

Figure 9.14 provides the AMPL model of the cutting-plane algorithm (file amplEx9.3­
5.txt).The data of the 4-cityTSP of Example 9.3-5 are used to drive the model. The for­
mulation is straightforward: The fIrst two sets of constraints define the assignment
model associated with the problem, and the third set represents the cuts needed to re­
move subtour solutions. Notice that the assignment-model variables must be binary
and that option solver cplex; must precede solve; to ensure that the obtained so­
lution is integer.

The for and if - then statements at the bottom of the model are used to present the out­
put in the following readable·format:

Optimal tour length = 59.00
Optimal tour: 1- 2- 3- 4- 1

PROBLEM SET 9.30

1. An automatic guided vehicle (AGV) is used to deliver mail to 5 departments located on
a factory floor. The trip starts at the mail sorting room and makes the delivery round to
the different departments before returning to themailroom.Using the mailroom as the
origin (0,0), the (x, y) locations of the delivery spots are (10,30), (10, 50), (30, 10), (40,40),
and (50,60) for departments 1 through 5, respectively. All distances are in meters. The
AGV can move along horizontal and vertical aisles only. The objective is to minimize the
length of the round trip.

Formulate the problem as a TSP, including the cuts.

2. Write down the cuts associated with the following TSP:

00

12

Ild;j!1 = 20
14
44

43 21
00 9
10 00

30 42
7 9

20 10
22 30
5 13

00 20
10 00

.-~
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param k;
param n;

param c(l .. n,l .. n} default 10000;
var xli in 1 .. n,j in l .. n} binary;
var uri in 1 .. n:i>l}>=O;

minimize tourLength:sum{i in 1 .. n,j in 1 .. n}c[i,j)*x[i,j);
subject to

fromCity {i in 1 .. n}:sum {j in 1 .. n} x[i,j] = 1;
toCity {j in 1 .. n}:sum (i in 1 .. n) x[i,j] = 1;
cut{i in 1 .. n,j in 1 .. n:i>l and j>l and i<>j}:

u[ij-u(jj+n*x[i,j) <= n-1;
data;
pararn n:=4;
param c:

1 2 3 4:=
1 13 21 26
2 10 29 20
3 30 20 5
4 12 30 7 . ,

option solver cplex; solve;
display u;

#---------------------------------print formatted output
printf "\n\nOptirnal tour length = %7.2f\n",tourLength;
printf "Optimal tour:";

let k:=l; #tour starts at city k=l
for (i in 1. .n)

{

printf "%3i", k;

for {j in 1 .. n} #search for next city following k
{

if x[k,j}=1 then
{

let k:=j; #next city found, set k=j
break;
}

)

printf " ";
}

printf" l\n\n";

#insert last hyphen

FIGURE 9.14

AMPL cutting·plane model of the TSP problem (file ampIEx9.3-5.txt)

3. AMPL experiment. Use AMPL to solve the following TSP problem by the cutting plane
algorithm.

(a) Problem 2, Set 9.3a.

(b) Problem 3, Set 9.3a.
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