
CHAPTER 1

What Is Operations Research?

Chapter Guide. The first formal activities of Operations Research (OR) were initiated
in England during World War II, when a team of British scientists set out to make sci­
entifically based decisions regarding the best utilization of war materiel. After the war,
the ideas advanced in military operations were adapted to improve efficiency and pro­
ductivity in the civilian sector.

This chapter will familiarize you with the basic terminology of operations re­
search, including mathematical modeling, feasible solutions, optimization, and iterative
computations. You will learn that defining the problem correctly is the most important
(and most difficult) phase of practicing OR. The chapter also emphasizes that, while
mathematical modeling is a cornerstone of OR, intangible (unquantifiable) factors
(such as human behavior) must be accounted for in the final decision. As you proceed
through the book, you will be presented with a variety of applications through solved
examples and chapter problems. In particular, Chapter 24 (on the CD) is entirely de­
voted to the presentation of fully developed case analyses. Chapter materials are cross­
referenced with the cases to provide an appreciation of the use of OR in practice.

1.1 OPERATIONS RESEARCH MODELS

Imagine that you have a 5-week business commitment between Fayetteville (FYV)
and Denver (DEN). You fly out of Fayetteville on Mondays and return on Wednes­
days. A regular round-trip ticket costs $400, but a 20% discount is granted if the dates
of the ticket span a weekend. A one-way ticket in either direction costs 75% of the reg­
ular price. How should you buy the tickets for the 5-week period?

We can look at the situation as a decision-making problem whose solution re­
quires answering three questions:

1. What are the decision alternatives?
2. Under what restrictions is the decision made?

3. What is an appropriate objective criterion for evaluating the alternati-ves?
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2 Chapter 1 What Is Operations Research?

Three alternatives are considered:

1. Buy five regular FYV-DEN-FYV for departure on Monday and return on Wednes­
day of the same week.

2. Buy one FYV-DEN, four DEN-FYV-DEN that span weekends, and one DEN­
FYV.

3. Buy one FYV-DEN-FYV to cover Monday of the first week and Wednesday of
the last week and four DEN-FYV-DEN to cover the remaining legs. All tickets in
this alternative span at least one weekend.

The restriction on these options is that you should be able to leave FYV on Monday
and return on Wednesday of the same week.

An obvious objective criterion for evaluating the proposed alternative is the
price of the tickets. The alternative that yields the smallest cost is the best. Specifically,
we have

Alternative 1 cost = 5 X 400 = $2000

Alternative 2 cost = .75 X 400 + 4 X (.8 X 400) + .75 X 400 = $1880

Alternative 3 cost = 5 X (.8 X 400) = $1600

Thus, you should choose alternative 3.
Though the preceding example illustrates the three main components of an OR

model-alternatives, objective criterion, and constraints-situations differ in the de­
tails of how each component is developed and constructed. To illustrate this point, con­
sider forming a maximum-area rectangle out of a piece of wire of length L inches. What
should be the width and height of the rectangle?

In contrast with the tickets example, the number of alternatives in the present ex­
ample is not finite; namely, the width and height of the rectangle can assume an infinite
number of values. To formalize this observation, the alternatives of the problem are
identified by defining the width and height as continuous (algebraic) variables.

Let

w = width of the rectangle in inches

h = height of the rectangle in inches

Based on these definitions, the restrictions of the situation can be expressed verbally as

1. Width of rectangle + Height of rectangle = Half the length of the wire
2. Width and height cannot be negative

These restrictions are translated algebraically as

1. 2(w + h) = L
2. w ~ 0, h ;?: 0
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1.1 Operations Research Models 3

The only remaining component now is the objective of the problem; namely,
maximization of the area of the rectangle. Let z be the area of the rectangle, then the
complete model becomes

Maximize z = wh

subject to

2(w + h) = L

w, h 2:: 0

The optimal solution of this model is w = h = ~, which calls for constructing a square
shape.

Based on the preceding two examples, the general OR model can be organized in
the following general format:

Maximize or minimize Objective Function

subject to

Constraints

A solution of the mode is feasible if it satisfies all the constraints. It is optimal if,
in addition to being feasible, it yields the best (maximum or minimum) value of the ob­
jective function. In the tickets example, the problem presents three feasible alterna­
tives, with the third alternative yielding the optimal solution. In the rectangle problem,
a feasible alternative must satisfy the condition w + h = ~ with wand h assuming
nonnegative values. This leads to an infinite number of feasible solutions and, unlike
the tickets problem, the optimum solution is determined by an appropriate mathemat­
ical tool (in this case, differential calculus).

Though OR models are designed to "optimize" a specific objective criterion sub­
ject to a set of constraints, the quality of the resulting solution depends on the com­
pleteness of the model in representing the real system. Take, for example, the tickets
model. If one is not able to identify all the dominant alternatives for purchasing the tick­
ets, then the resulting solution is optimum only relative to the choices represented in the
model. To be specific, if alternative 3 is left out of the model, then the resulting "opti­
mum" solution would call for purchasing the tickets for $1880, which is a suboptimal so­
lution. The conclusion is that "the" optimum solution of a model is best only for that
model. If the model happens to represent the real system reasonably well, then its solu­
tion is optimum also for the real situation.

PROBLEM SET 1.1A

L In the tickets example, identify a fourth feasible alternative.

2. In the rectangle problem, identify two feasible solutions and determine which one is better.

3. Determine the optimal solution of the rectangle problem. (Hint: Use the constraint to ex­
press the objective function in terms of one variable, then use differential c<iICufus.)
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4. Amy, Jim, John, and Kelly are standing on the east bank of a river and wish to croSs to
the west side using a canoe. The canoe can hold at most two people at a time. Amy, being
the most athletic, can row across the river in 1 minute. Jim, John, and Kelly would take 2,
5, and 10 minutes, respectively. If two people are in the canoe, the slower person dictates
the crossing time. The objective is for all four people to be on the other side of the river
in the shortest time possible.

(a) Identify at least two feasible plans for crossing the river (remember, the canoe is the
only mode of transportation and it cannot be shuttled empty).

(b) Define the criterion for evaluating the alternatives.

*(C)1 What is the smallest time for moving all four people to the other side of the river?

*5. In a baseball game, Jim is the pitcher and Joe is the batter. Suppose that Jim can throw
either a fast or a curve ball at random. If Joe correctly predicts a curve ball, he can main­
tain a .500 batting average, else if Jim throws a curve ball and Joe prepares for a fast ball,
his batting average is kept down to .200. On the other hand, if Joe correctly predicts a fast
ball, he gets a .300 batting average, else his batting average is only .100.

(a) Define the alternatives for this situation.

(b) Define the objective function for the problem and discuss how it differs from the
familiar optimization (maximization or minimization) of a criterion.

6. During the construction of a house, six joists of 24 feet each must be trimmed to the cor­
rect length of 23 feet. The operations for cutting a joist involve the following sequence:

1.~

Operation

1. Place joist on saw horses
2. Measure correct length (23 feet)
3. Mark cutting line for circular saw
4. Trim joist to correct length
5. Stack trimmed joist in a designated area

Time (seconds)

15
5
5

20
20

1.2

Three persons are involved: Two loaders must work simultaneously on operations 1,2,
and 5, and one cutter handles operations 3 and 4. There are two pairs of saw horses on
which untrimmed joists are placed in preparation for cutting, and each pair can hold up
to three side-by-side joists. Suggest a good schedule for trimming the six joists.

SOLVING THE OR MODEL

In OR, we do not have a single general technique to solve all mathematical models that
can arise in practice. Instead, the type and complexity of the mathematical model dic­
tate the nature of the solution method. For example, in Section 1.1 the solution of the
tickets problem requires simple ranking of alternatives based on the total purchasing
price, whereas the solution of the rectangle problem utilizes differential calculus to de­
termine the maximum area.

The most prominent OR technique is linear programming. It is designed for
models with linear objective and constraint functions. Other techniques include integer
programming (in which the variables assume integer values), dynamic programming

IAn asterisk (*) designates problems whose solution is provided in Appendix C.
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(in which the original model can be decomposed into more manageable subproblems),
network programming (in which the problem can be modeled as a network), and
nonlinear programming (in which functions of the model are nonlinear). These are
only a few among many available OR tools.

A peculiarity of most OR techniques is that solutions are not generally obtained
in (formulalike) closed forms. Instead, they are determined by algorithms. An algo­
rithm provides fixed computational rules that are applied repetitively to the problem,
with each repetition (called iteration) moving the solution closer to the optimum. Be­
cause the computations associated with each iteration are typically tedious and volu­
minous, it is imperative that these algorithms be executed on the computer.

Some mathematical models may be so complex that it is impossible to solve them
by any of the available optimization algorithms. In such cases, it may be necessary to
abandon the search for the optimal solution and simply seek a good solution using
heuristics or rules ofthumb.

1.3 QUEUING AND SIMULATION MODELS

Queuing and simulation deal with the study of waiting lines. They are not optimization
techniques; rather, they determine measures of performance of the waiting lines, such
as average waiting time in queue, average waiting time for service, and utilization of
service facilities.

Queuing models utilize probability and stochastic models to analyze waiting lines,
and simulation estimates the measures of performance by imitating the behavior of the
real system. In a way, simulation may be regarded as the next best thing to observing a
real system. The main difference between queuing and simulation is that queuing mod­
els are purely mathematical, and hence are subject to specific assumptions that limit
their scope of application. Simulation, on the other hand, is flexible and can be used to
analyze practically any queuing situation.

The use of simulation is not without drawbacks. TIle process of developing simu­
lation models is costly in both time and resources. Moreover, the execution of simula­
tion models, even on the fastest computer, is usually slow.

1.4 ART OF MODELING

The illustrative models developed in Section 1.1 are true representations of real situa­
tions. This is a rare occurrence in OR, as the majority of applications usually involve
(varying degrees of) approximations. Figure 1.1 depicts the levels of abstraction that
characterize the development of an OR model. We abstract the assumed real world.
from the real situation by concentrating on the dominant variables that control the be­
havior of the real system. The model expresses in an amenable manner the mathemat­
ical functions that represent the behavior of the assumed real world.

To illustrate levels of abstraction in modeling, consider the Tyko Manufacturing
Company, where a variety of plastic containers are produced. When a production order
is issued to the production department, necessary raw materiars are acquired from the
company's stocks or purchased from outside sources. Once the production batch is
completed, the sales department takes charge of distributing the product to customers.
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Model

FIGURE 1.1

Levels of abstraction in model development

A logical question in the analysis of Tyko's situation is the determination of the
size of a production batch. How can this situation be represented by a model?

Looking at the overall system, a number of variables can bear directly on the
level of production, including the following (partial) list categorized by departments.

1. Production Department: Production capacity expressed in terms of available ma­
chine and labor hours, in-process inventory, and quality control standards.

2. Materials Department: Available stock of raw materials, delivery schedules from
outside sources, and storage limitations.

3. Sales Department: Sales forecast, capacity of distribution facilities, effectiveness
of the advertising campaign, and effect of competition.

Each of these variables affects the level of production at Tyko. Trying to establish ex­
plicit functional relationships between them and the level of production is a difficult
task indeed.

A first level of abstraction requires defining the boundaries of the assumed real
world. With some reflection, we can approximate the real system by two dominant
variables:

1. Production rate.
2. Consumption rate.

Determination of the production rate involves such variables as production capacity,
quality control standards, and availability of raw materials. The consumption rate is de­
termined from the variables associated with the sales department. In essence, simplifi­
cation from the real world to the assumed real world is achieved by "lumping" several
real-world variables into a single assumed-real-world variable.

It is easier now to abstract a model from the assumed real world. From the pro­
duction and consumption rates, measures of excess or shortage inventory can be estab­
lished. The abstracted model may then be constructed to balance the conflicting costs
of excess and shortage inventory-i.e., to minimize the total cost of inventory.
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1.5 MORE THAN JUST MATHEMATICS

Because of the mathematical nature of OR models, one tends to think that an OR
study is always rooted in mathematical analysis. Though mathematical modeling is a
cornerstone of OR, simpler approaches should be explored first. In some cases, a "com­
mon sense" solution may be reached through simple observations. Indeed, since the
human element invariably affects most decision problems, a study of the psychology of
people may be key to solving the problem. Three illustrations are presented here to
support this argument.

1. Responding to complaints of slow elevator service in a large office building,
the OR team initially perceived the situation as a waiting-line problem that might re­
quire the use of mathematical queuing analysis or simulation. After studying the be­
havior of the people voicing the complaint, the psychologist on the team suggested
installing full-length mirrors at the entrance to the elevators. Miraculously the com­
plaints disappeared, as people were kept occupied watching themselves and others
while waiting for the elevator.

2. In a study of the check-in facilities at a large British airport, a United States­
Canadian consulting team used queuing theory to investigate and analyze the situa­
tion. Part of the solution recommended the use of well-placed signs to urge passengers
who were within 20 minutes from departure time to advance to the head of the queue
and request immediate service. The solution was not successful, because the passen­
gers, being mostly British, were "conditioned to very strict queuing behavior" and
hence were reluctant to move ahead of others waiting in the queue.

3. In a steel mill, ingots were first produced from iron ore and then used in the
manufacture of steel bars and beams. The manager noticed a long delay between the
ingots production and their transfer to the next manufacturing phase (where end prod­
ucts were manufactured). Ideally, to reduce the reheating cost, manufacturing should
start soon after the ingots left the furnaces. Initially the problem was perceived as a
line-balancing situation, which could be resolved either by reducing the output of in­
gots or by increasing the capacity of the manufacturing process. TIle OR team used
simple charts to summarize the output of the furnaces during the three shifts of the
day. They discovered that, even though the third shift started at 11:00 PM., most of the
ingots were produced between 2:00 and 7:00 A.M. Further investigation revealed that
third-shift operators preferred to get long periods of rest at the start of the shift and
then make up for lost production during morning hours. The problem was solved by
"leveling out" the production of ingots throughout the shift.

Three conclusions can be drawn from these illustrations:

1. Before embarking on sophisticated mathematical modeling, the OR team
should explore the possibility of using "aggressive" ideas to resolve the situation. The
solution of the elevator problem by installing mirrors is rooted in human psychology
rather than in mathematical modeling. It is also simpler and less costly than any rec­
ommendation a mathematical model might have produced. Perhaps this. is the reason
OR teams usually include the expertise of "outsiders" from nonmathernatical fields
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(psychology in the case of the elevator problem). This point was recognized and imple­
mented by the first OR team in Britain during World War II.

2. Solutions are rooted in people and not in technology. Any solution that does
not take human behavior into account is apt to fail. Even though the mathematical so­
lution of the British airport problem may have been sound, the fact that the consulting
team was not aware of the cultural differences between the United States and Britain
(Americans and Canadians tend to be less formal) resulted in an unimplementable
recommendation.

3. An OR study should never start with a bias toward using a specific mathemat­
ical tool before its use can be justified. For example, because linear programming is a
successful technique, there is a tendency to use it as the tool of choice for modeling
"any" situation. Such an approach usually leads to a mathematical model that is far re­
moved from the real situation. It is thus imperative that we first analyze available data,
using the simplest techniques where possible (e.g., averages, charts, and histograms),
with the objective of pinpointing the source of the problem. Once the problem is de­
fined, a decision can be made regarding the most appropriate tool for the soiution.2 In
the steel mill problem, simple charting of the ingots production was all that was need­
ed to clarify the situation.

1.6 PHASES OF AN OR STUDY

An OR study is rooted in teamwork, where the OR analysts and the client work side by
side. The OR analysts' expertise in modeling must be complemented by the experience
and cooperation of the client for whom the study is being carried out.

As a decision-making tool, OR is both a science and an art. It is a science by
virtue of the mathematical techniques it embodies, and it is an art because the success
of the phases leading to the solution of the mathematical model depends largely on the
creativity and experience of the operations research team. Willemain (1994) advises
that "effective [OR] practice requires more than analytical competence: It also re­
quires, among other attributes, technical judgement (e.g., when and how to use a given
technique) and skills in communication and organizational survival."

It is difficult to prescribe specific courses of action (similar to those dictated by
the precise theory of mathematical models) for these intangible factors. We can, how­
ever, offer general guidelines for the implementation of OR in practice.

TIle principal phases for implementing OR in practice include

1. Definition of the problem.
2. Construction of the model.

2Deciding on a specific mathematical model before justifying its use is like "putting the cart before the
horse," and it reminds me of the story of a frequent air traveler who was paranoid about the possibility of a
terrorist bomb on board the plane. He calculated the probability that such an event could occur, and though
quite small, it wasn't small enough to calm his anxieties. From then on, he always carried a bomb in his brief·
case on the plane because, according to his calculations, the probability of having two bombs aboard the
plane was practically zero!
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3. Solution of the model.
4. Validation of the model.
5. Implementation of the solution.

Phase 3, dealing with model solution, is the best defined and generally the easiest to im­
plement in an OR study, because it deals mostly with precise mathematical models. Im­
plementation of the remaining phases is more an art than a theory.

Problem definition involves defining the scope of the problem under investiga­
tion. This function should be carried out by the entire OR team. The aim is to identify
three principal elements of the decision problem: (1) description of the decision alter­
natives, (2) determination of the objective of the study, and (3) specification of the lim­
itations under which the modeled system operates.

Model construction entails an attempt to translate the problem definition into
mathematical relationships. If the resulting model fits one of the standard mathe­
matical models, such as linear programming, we can usually reach a solution by
using available algorithms. Alternatively, if the mathematical relationships are too
complex to allow the determination of an analytic solution, the OR team may opt to
simplify the model and use a heuristic approach, or they may consider the use of
simulation, if appropriate. In some cases, mathematical, simulation, and heuristic
models may be combined to solve the decision problem, as the case analyses in
Chapter 24 demonstrate.

Model solution is by far the simplest of all OR phases because it entails the use of
well-defined optimization algorithms. An important aspect of the model solution phase
is sensitivity analysis. It deals with obtaining additional information about the behavior
of the optimum solution when the model undergoes some parameter changes. Sensitiv­
ity analysis is particularly needed when the parameters of the model cannot be esti­
mated accurately. In these cases, it is important to study the behavior of the optimum
solution in the neighborhood of the estimated parameters.

Model ,'alidity checks whether or not the proposed model does what it purports
to do-that is, does it predict adequately the behavior of the system under study? Ini­
tially, the OR team should be convinced that the model's output does not include
"surprises." In other words, does the solution make sense? Are the results intuitively
acceptable? On the formal side, a common method for checking the validity of a
model is to compare its output with historical output data. The model is valid if,
under similar input conditions, it reasonably duplicates past performance. Generally,
however, there is no assurance that future performance will continue to duplicate
past behavior. Also, because the model is usually based on careful examination of
past data, the proposed comparison is usually favorable. If the proposed model rep­
resents a new (nonexisting) system, no historical data would be available. In such
cases, we may use simulation as an independent tool for verifying the output of the
mathematical model.

Implementation of the solution of a validated model involves the translation of
the results into understandable operating instructions to be issued to the people who
will administer the recommended system. The burden of this task lies primarily with
the OR team.
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1.7 ABOUT THIS BOOK

Morris (1967) states that "the teaching of models is not equivalent to the teaching of
modeling." I have taken note of this important statement during the preparation of the
eighth edition, making an effort to introduce the art of modeling in OR by including
realistic models throughout the book. Because of the importance of computations in
OR, the book presents extensive tools for carrying out this task, ranging from the tuto­
rial aid TORA to the commercial packages Excel, Excel Solver, and AMPL.

A first course in OR should give the student a good foundation in the mathemat­
ics of OR as well as an appreciation of its potential applications. This will provide OR
users with the kind of confidence that normally would be missing if training were con­
centrated only on the philosophical and artistic aspects of OR. Once the mathematical
foundation has been established, you can increase your capabilities in the artistic side
of OR modeling by studying published practical cases. To assist you in this regard,
Chapter 24 includes 15 fully developed and analyzed cases that cover most of the OR
models presented in this book. There are also some 50 cases that are based on real-life
applications in Appendix E on the CD. Additional case studies are available in journals
and publications. In particular, Interfaces (published by INFORMS) is a rich source of
diverse OR applications.
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