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ABSTRACT

BRONDEEL, R., B. PANNIER, and B. CHAIX. Using GPS, GIS, and Accelerometer Data to Predict Transportation Modes. Med. Sci.

Sports Exerc., Vol. 47, No. 12, pp. 2669–2675, 2015. Introduction: Active transportation is a substantial source of physical activity,

which has a positive influence on many health outcomes. A survey of transportation modes for each trip is challenging, time-consuming,

and requires substantial financial investments. This study proposes a passive collection method and the prediction of modes at the trip

level using random forests. Methods: The RECORD GPS study collected real-life trip data from 236 participants over 7 d, including

the transportation mode, global positioning system, geographical information systems, and accelerometer data. A prediction model of

transportation modes was constructed using the random forests method. Finally, we investigated the performance of models on the basis

of a limited number of participants/trips to predict transportation modes for a large number of trips. Results: The full model had a correct

prediction rate of 90%. A simpler model of global positioning system explanatory variables combined with geographical information

systems variables performed nearly as well. Relatively good predictions could be made using a model based on the 991 trips of the first

30 participants. Conclusions: This study uses real-life data from a large sample set to test a method for predicting transportation modes at

the trip level, thereby providing a useful complement to time unit-level prediction methods. By enabling predictions on the basis of a

limited number of observations, this method may decrease the workload for participants/researchers and provide relevant trip-level data

to investigate relations between transportation and health. Key Words: PHYSICAL ACTIVITY, ACTIVE TRANSPORT, PASSIVE

DATA COLLECTION, MACHINE LEARNING, RECORD COHORT STUDY, FRANCE

P
hysical activity has a positive influence on several
health outcomes, such as obesity, cardiovascular health
problems, depression, and certain cancers (15,36,39).

Active transportation modes, such as walking, biking, and
public transport, represent a substantial source of physical
activity (27,28). However, reliably assessing the use of trans-
portation modes has proven challenging (9,11,12), thereby
hindering the study of the relation between transportation

and physical activity. Self-reported measures of the use of
transportation modes are prone to memory biases (3). Short
trips, especially walking trips, tend to be underreported.
Moreover, the time spent during car trips tends to be under-
reported, whereas the time spent in public transport tends to
be exaggerated.

Using objective measurements using accelerometers or
global positioning system (GPS) receivers is useful to over-
come some of these issues. These devices can, in theory,
register the spatial location and body movements of partici-
pants over several days. The difficulty lies in transforming
the raw data into qualitative trip information, such as the
transportation modes used or the departure and arrival loca-
tions of each trip.

One approach used in transportation sciences is to per-
form a so-called GPS-based prompted recall survey, i.e.,
using information derived from GPS receivers to prompt
participant recall (32,38). Using this approach, GPS and
accelerometer data are first collected. The departure and ar-
rival points (in space and time) of each trip are then identi-
fied by detecting the activity places, i.e., the places visited
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by the participant for which a function can be identified such
as a residence, workplace or shop. One technique to identify
departure and arrival points involves manually segmenting
the trips with geographical information systems (GIS) (31).
Another approach is to apply algorithms that identify the
departure and arrival points of trips on the basis of the raw
GPS data (33), as conducted in the RECORD GPS study.
Finally, the resulting information is verified and data on the
transportation mode in each trip are collected via phone
or Internet recall surveys with the participants (3,11,12).
Combining device and survey data, the memory bias, and
social desirability bias in survey data are reduced by the
objective measures. With this approach, information derived
concerning trips using the manual processing or automatic
algorithms is completed with the survey information. Such
GPS-based prompted recall surveys can be performed either
at the end of the observation period or on a daily basis
during this period (1,32); the latter method is useful for re-
ducing memory biases.

More recently, SenseCam, a camera worn around the neck
that takes pictures at regular intervals or when triggered by
imbedded sensors, has been suggested to improve data col-
lection of daily activities including trips (6,16,30). Pictures
are then used to identify transportation modes or other trip
characteristics.

To obtain high-quality data using these approaches, a
substantial investment from both participants and research
teams is required. In the RECORD GPS study, in which we
performed a complete mobility survey for an observation
period of 7 d, a research assistant was often able to survey
only one participant per day (the entire process included the
preparation, the survey, and entering the data into the ap-
plication). Using SenseCam is likely to be even more bur-
densome, as research assistants must code all photographs.
The time and cost investments required for data collection
strongly limit the number of participants, whereas the burden
on participant limits the extent of the remainder of the survey.

Therefore, researchers have developed algorithms to pre-
dict transportation modes on the basis of device data and
sometimes on a limited number of survey items (18,20). Most
of these algorithms designed to recognize modes consider
short periods (time units) ranging from 1 to 60 s. These al-
gorithms sometimes use sliding windows to optimize the
prediction for a given unit using the information from one or
more previous and subsequent time frame units. In addition
to transportation modes, certain classifications take into ac-
count body posture (including lying, sitting, standing, etc.)
or household activities. Classifications in these algorithms
are based on criteria-based methods, machine learning (such
as random forests, support vector machine, and Bayesian
network), and probability methods (such as fuzzy logic and
multinomial regression) (20).

A smaller number of detection methods, such as the
present one, uses trips or trip stages (parts of trips made by a
single transportation mode) as the prediction level. These
methods first segment the data into trips and activity places

and then predict the transportation mode for each trip. This
additional step of segmenting the data into trips is an obvi-
ous drawback compared with time unit prediction methods.
However, trips are meaningful units in behavioral and trans-
portation sciences when analyzing transport-related issues.
For example, when studying physical activity associated with
the use of public transport, the walking distance required to
travel to a train or bus is more important than the physical
activity needed during the actual use of these modes. These
types of research questions therefore must be addressed at the
trip level, thereby making prediction models at the trip level
complementary to prediction models at the time unit level.

The present study does not address the segmentation of
trips process (algorithms are available for this first step (33))
but rather focuses on transportation mode detection. The
aim of this study was to construct an algorithm, building on
passive data collection methods that reduce the burden of
work for both respondents and research teams. The approach
should yield reliable predictions of the transportation mode
used at the trip level, which could reduce the time required
for the mobility survey or even allow researchers to avoid it
completely. We propose a method based on random forests
to predict transportation modes at the trip level.

METHODS

Population. As previously described in detail, the RE-
CORD participants were recruited during preventive health
checkups in 2007–2008 and 2011–2013, born between 1928
and 1978, and resided at baseline in 112 municipalities of
the I

˘

le-de-France Paris region (5,7,13,34). In the second
wave of the study (8,26), after undergoing a medical checkup
and filling computerized questionnaires at the IPC Medical
Centre (10,23), 410 individuals were invited to participate in
the RECORD GPS study (9), of which 247 subjects agreed to
participate. Nine participants abandoned the study, and data
collection failed for two participants, thereby yielding a final
participation and completion rate of 57.6% (n = 236). A
written informed consent was obtained from all participants.
The RECORD GPS study was approved by the French Data
Protection Authority.

Data collection procedures. The recruitment was
guided using a standardized recruitment form. Participants
wore a BT-Q1000XT GPS (QStarz) and a GT3X+ acceler-
ometer (ActiGraph) on the right hip with a dedicated elastic
belt for the recruitment day and seven additional days, all
day long from the time of waking up until bedtime. The par-
ticipants completed a travel diary to report their activity places
over 7 to 8 d, each time with arrival and departure times.

Using a GIS-based Python language algorithm (33) to
assess the GPS data, we identified the sequence of activity
places for each participant and, consequently, the departure
and arrival times of trips between these places. The algo-
rithm automatically uploaded the history of visits to places
into the electronic survey application. As previously described
(9), this information and the travel diary were then used for
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the prompted recall survey conducted during a phone call
(10). This procedure resulted in the observation of 7425 trips
for 236 participants.

Measures. During the survey, participants reported a
chronological sequence of transportation modes for each
trip. For modeling purposes, this information was coded
into a transportation mode variable consisting of four
categories: ‘‘walking’’ (i.e., only walking), ‘‘bicycle,’’ ‘‘pri-
vate motorized,’’ and ‘‘public transport.’’ When both walking
and another transportation mode were sequentially used
within a trip, the nonwalking mode was attributed to the trip.
We excluded 96 trips with two or more nonwalking modes
because they could not be attributed to the mutually exclusive
categories of modes required to perform the comparison and
there were not enough trips with each combination of two
nonwalking modes to define additional categories.

The random forests method is able to use a large variety
of variables as predictors of the outcome of interest. How-
ever, because the aim of the study is also to lower the burden
for researchers, we only used predictors that are relatively
easy to define, such as GPS and accelerometer variables, GIS
variables that require only standard data, and seven simple
survey questions.

The accelerometer recorded the acceleration on three axes
for each 5-s epoch or period during the trip. We used both
the standard filter and a low-frequency extension filter (37),
as implemented in the ActiLife software. The optional low-
frequency extension filter extends the lower end of the filter,
which is useful for example when processing the data of
people who move slowly. On the basis of the raw accelera-
tions obtained with these two filtering approaches, we esti-
mated for each epoch 1) the number of footsteps taken
(ActiLife software), 2) the energy expenditure calculated
from activity counts and participant weight based on the
Sasaki and Freedson equation (29), 3) whether moderate-to-
vigorous physical activity (MVPA) was performed (29),
and 4) whether the participant was sedentary during the
epoch (22). We aggregated these time unit data at the trip
level. To capture a maximum of relevant information, we
derived standard measures of central tendency (i.e., mean
and median) and measures of dispersion (i.e., SD, minimum,
maximum, 10th and 90th percentiles). On the basis of the
accelerometer data, the accelerations at each of the three
axes separately, the number of steps taken, MVPA, seden-
tary time, and energy expenditure in kilocalories were ag-
gregated in this way. In addition, we calculated the total
number of steps taken, the number of MVPA epochs, the
number of sedentary epochs, and total energy expenditure
for each trip. We also determined the percentage of epochs
that were characterized sedentary or MVPA. Each of these
variables was calculated for both accelerometer filters.

Every 5 s, the GPS device registered the position co-
ordinates (i.e., latitude, longitude, and elevation), speed, and
the following three indicators of the quality of the observa-
tion: horizontal, vertical, and positional dilution of precision
(HDOP, VDOP, and PDOP, respectively). To derive the

summary values described earlier, only the good-quality ob-
servations (HDOP G 6, VDOP G 7, PDOP G 8) were re-
tained (9) for the aggregation of time-unit observations at
the trip level. GPS observations were determined to be valid,
invalid (high dilution of precision), or missing (less than
three satellites in view). On average, 27% of GPS observa-
tions were missing and 1.5% of the existing observations
were invalid. The distribution of potential GPS data points
across these three categories provides information on the
circumstances of the trips (e.g., underground public trans-
port, tunnel, high buildings). To capture this trip character-
istic, the total number of GPS observations, number of valid
GPS observations, percentage of valid GPS observations
among recorded observations, and percentage of valid GPS
observations relative to the maximum number of observa-
tions (including missing ones) were included in the model.

On the basis of the GPS data and geographical infor-
mation on the street network provided by the National
Geographic Institute, four distance measures between the
departure and arrival points of each trip were calculated, as
follows: the straight line distance, the shortest walking dis-
tance following the street network, the shortest street net-
work distance by car, and the map-matched distance. The
latter distance is based on the most likely route taken by the
participant derived by projecting the GPS data points onto
the street network (35). These four distance measures and
their combination provide complementary information to
differentiate between alternative transportation modes. For
example, for two trips for which the shortest distance by
car would be the same, a difference in the shortest walk-
ing distance could add information to differentiate between
motorized and nonmotorized transport. Speed measures were
calculated on the basis of these distance measures. The GIS
was also used to determine whether the residence and the
departure and arrival points of each trip were inside or out-
side the Paris inner city. All geographic calculations were
conducted with Python scripts for ArcGIS 10.1. The ad-
ministrative files of the study provided the sex and age of the
participants. During phone call interviews, it was recorded
whether the participant possessed a car, bicycle, motorbike,
driving license, or public transport pass. Supplemental Dig-
ital Content 1 provides an overview of the variables used in
the prediction model (see Table, Supplemental Digital Con-
tent 1, Overview of 170 predictors used in the random forest
models, http://links.lww.com/MSS/A549).

Statistical analysis. We used random forests to predict
the transportation mode of each trip (among four possible
modes). The random forests method (4) is based on the de-
cision tree method. Decision trees classify data into groups
in subsequent steps, each time searching for the feature that
best differentiates the group into consideration (branch). To
obtain better generalizability, the random forests method adds
two sources of randomness to the simple decision tree method
and repeats the process a large number of times, thereby
resulting into a forest of decision trees. The first source of
randomness consists of considering only a random subsample
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of the explanatory variables in the definition of each knot of
the trees. Secondly, for each tree, only a random subsample
of the observations (the trips in our case) is used. Predictions
are obtained from each tree for the data not used to grow the
tree (so-called out-of-bag data). Finally, a forest prediction
of the transportation mode is obtained for each trip as the
majority of the tree predictions that were derived when the
corresponding trip was out-of-bag. A forest is evaluated on
the prediction error rate, in our case, the percentage of trips
for which the mode has been wrongly predicted. Regarding
missing values, we attributed the median value or the modal
value to the corresponding observations for continuous or
categorical variables, respectively. All analyses were performed
using R with the ‘‘randomForest’’ package (24).

RESULTS

Among the 7329 trips retained for the analyses, 43.1% of
the trips were made by walking, 2.9% were with a bike,
39.0% relied on a private motorized vehicle, and 15.0% re-
lied on public transport. The median duration of a trip was
15 min (interdecile range, 3–61 min).

A first forest was grown on the full data set of 7329 trips
with all 170 variables. The model had an overall error rate
of 10.0% and specific error rates of 4.7% for walking, 46.0%
for biking, 10.3% for private motorized transport, and 17.2%
for public transport. Table 1 cross-tabulates the observed
versus the predicted number of trips for each mode.

The overall error rate was relatively low, but the error rate
was larger for the modes with a lower number of trips, such
as bicycle or public transport use. When minimizing the
overall error rate, classification methods favor precision in
the categories with a greater number of observations over
precision in the categories with a lower number of obser-
vations (25). When interested in greater precision for the
smaller categories, the majority-vote-prediction rule can be
weighted by the inverse of the probability of belonging to a
category. This method greater penalizes the decision rule
for mistakes in smaller categories. Growing a random forest

using this method, the error rate for the prediction of ‘‘bi-
cycle’’ and ‘‘public transport’’ dropped to 16.9% and 12.8%,
respectively. The error rate for the larger categories (‘‘walk-
ing’’ and ‘‘private motorized’’) rose to 14.4% and 19.9%, re-
spectively. The overall error rate rose to 16.4%.

The importance of the source of information (acceler-
ometer, GPS, or GPS/GIS data) was then evaluated using
separate forests grown with only the respective subsamples
of variables (Table 2). The overall error rate for the forest
with only the accelerometer variables was 17.7%. The over-
all error rates for the forests with GPS variables only and GPS/
GIS variables only were 17.6% and 11.6%, respectively.
Interestingly, the latter error rate was thus not markedly
higher than the error rate of the full model (10.0%).

To mimic a study in which participant and trip data are
used to predict modes for subsequent trips, forests were
grown on the basis of the first 5, 10, 20, 30, 40, 50, 100, 150,
and 200 participants. These forests were evaluated by using
the prediction error rates for subsequently observed partici-
pants (Table 3). A model based on the first five participants
(143 trips) yielded a prediction error rate of 28% for the
other 231 participants (7187 trips). The overall error rate
dropped and then stabilized when at least 30 participants
were used to grow the forest (991 trips). The error rates for
transportation modes with a larger number of trips were
relatively small even for the model based on only a few par-
ticipants. The gain in prediction quality was relatively small
when including additional participants (i.e., more than 30 in-
dividuals) in the model. For the transportation modes with a
small number of trips, the error rate was high in models with
few participants, and it dropped relatively slowly. The reduc-
tion in the error rates became negligible only when including
more than 50 participants.

DISCUSSION

Main results. When using the data of all participants,
the random forest correctly predicted the transportation mode
in 90.0% of the trips. This is comparable with the prediction
rates found in studies that made predictions at the time-unit
level. Ellis et al. (17) have reported prediction rates of 89.8%
and 91.9% (depending on the method) when using random
forests to predict five different modes for units of 1 min on
the basis of GPS and accelerometer data. Using 1-s units,

TABLE 1. Observed and predicted number of trips with each transportation mode.

Predicted

Observed

Walking Bicycle Private Motorized Public

Walking 3010 59 229 76
Bicycle 6 115 1 1
Motorized 107 26 2565 112
Public 35 13 65 909

n = 7329.

TABLE 2. Error rates (%) of models considering only a subset of the explanatory variables.

Accelerometer GPS GPS/GIS
Accelerometer

+ GPS
Accelerometer
+ GPS/GIS

Overall 17.7 17.6 11.6 12.1 10.6
Walking 12.3 7.3 5.6 4.9 4.9
Bicycle 66.2 52.1 51.2 57.3 49.3
Motorized 15.1 14.4 11.3 12.8 10.6
Public 31.0 49.4 21.9 22.4 19.5

No. of trees in each forest = 1000; n = 7329.

TABLE 3. Error rates (%) of the predictions from models based on a limited number
of participants.

Overall Walking Bicycle
Private

Motorized Public n

First 5 28.0 7.4 100.0 16.1 95.5 143
First 10 17.0 5.8 85.3 21.6 21.2 298
First 20 15.2 4.6 95.9 14.4 28.4 630
First 30 13.9 4.1 79.5 14.1 26.2 991
First 40 13.7 4.5 81.4 12.6 26.5 1340
First 50 13.0 5.0 57.7 13.0 24.9 1639
First 100 13.6 5.0 64.1 14.3 24.7 3280
First 150 12.9 4.5 64.6 10.8 27.2 4757
First 200 10.2 4.7 61.7 7.6 15.4 6261

No. of trees in each forest = 1000; n = number of trips; total number of trips = 7329.
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Feng and Timmermans (18) have found a prediction rate of
approximately 90% for eight modes using a Bayesian Belief
Network Model using GPS, accelerometer, and survey data.

Few studies addressing mode prediction at the trip or trip-
stage level have been reported. Gong et al. (19) and Chen
et al. (14) have yielded prediction rates of 79.1% and 82.6%,
respectively, in two New York–based studies using a step-
by-step algorithm. Other work attempting to predict modes
at the level of trip stages (unimodal components of trips)
have used more complex strategies. For example, Kohla
et al. (21) have used time unit-level detection of walking
stages within trips to further segment the trips into trip
stages. The nonwalking modes were then identified. Multi-
nomial logistic regression yielded a prediction rate of 80%.

The prediction rates found in the present study are within
the range of those reported in the aforementioned studies,
which is promising for future applications of the method.
However, it is difficult to compare the performance of our
algorithm with those of previous studies. Most of these
models relied on relatively small convenience samples or
scripted/controlled travel behavior data collections (in which
participants are asked to follow a specific itinerary with a
specific mode). Models based on controlled data to predict
activity modes are less generalizable and less apt to predict
real-life data (2,16); the same may be expected for the pre-
diction of transportation modes. In contrast, small conve-
nience samples might lack some variety, and they do not
represent the relative importance of the different categories
well. Because the size of the categories influences the overall
prediction rate, these overall rates are not easily comparable
between studies. More studies are required to compare the
different prediction methods in the same context, with the
same quality of data and the same choice of categories (21).

Importantly, we found that the method differentiated be-
tween public and private motorized transport well. Additional
analysis of these two categories only (not reported) indicated
that the highest predictive variables were ‘‘possessing a car’’
(survey), ‘‘proportion of valid GPS observations among all
possible (including observed and missing) observations,’’
and ‘‘possessing a public transport pass.’’ The findings sug-
gest that these indicators that are not always included in
published models may be of particular interest. However, it
must be kept in mind that the public transport system is
particularly well served in Paris and that these variables may
have a different predictive contribution in other settings.

Testing trees grown on the data of various numbers of
participants enabled us to evaluate the predictive perfor-
mance of the algorithm for data collected later (i.e., to un-
derstand from how many participants detailed mode data
should be collected to make reliable predictions using less
detailed data). When using no more than 30 participants, the
overall prediction rate for the remaining 206 participants
was 86.1%. This observation shows that data on a relatively
small number of participants can provide valuable informa-
tion on a much larger data set. However, prediction models
based on less than 30 participants displayed poor performance

for the mode categories with the fewest trips. To limit the
number of participants required to grow the random forest,
oversampling the categories with the fewest trips or partici-
pants could be considered.

The approach of collecting limited data from the con-
text in which one is willing to make predictions to build a
prediction model contrasts with pretrained models (i.e.,
prediction models trained on data from a different context).
Pretrained models are considerably less expensive because
no preliminary data collection is required in each particular
context. However, pretrained models are less well adapted to
the specific context of interest. It can be expected that the
optimal set of variables and thresholds of variables used to
differentiate transportation modes vary between different
contexts. Further studies are required to compare pretrained
and same-context prediction models and then determine
whether the extra effort of preliminary data collection yields
a significant improvement in prediction quality.

In previous studies, it has been argued that accelerometer
data may enhance the predictive power of a model for trans-
portation modes, especially concerning trips with frequent
missing GPS data values (e.g., during subway use) (18). We
found relatively good prediction rates from an accelerometer
data-only model. However, we noted only a small increase
in prediction rates when including accelerometer data in the
GPS/GIS model, which may be attributable to our study
design in which observation units represented trips rather
than time units, as applied in most previous studies. The
indicators associated with GPS data (proportion of invalid or
missing data, dispersion of speed throughout the trip) are
possibly more informative in the trip-level models than in a
time unit-level approach, thus rendering it less useful to also
consider accelerometer data.

Strengths and limitations. The algorithm of imputa-
tion of transportation modes developed in our study was
relatively accurate, using a combination of GPS and GIS
data processed with algorithms, travel diaries, and a phone
prompted recall survey. However, the preparation of the
survey and difficulties to contact some of the participants by
phone proved to be a bottleneck in the data collection pro-
cess, thereby causing delays between the device data col-
lection and the survey for a median period of 17 d. This
delay very likely led to memory bias in identification of
activity places and transportation modes, despite the infor-
mation available to prompt participant recall. Our prediction
method proved to be convenient to implement and reliable
compared with the results of previous studies. This predic-
tion method can be easily adapted to a different study con-
text, and the explanatory variables used to grow the random
forest can be selected depending on the available informa-
tion. In our approach, the prediction model was accurate
because it was constructed on data obtained from the same
population for which the predictions were made. To obtain
this context specificity and the ability to select the set of
locally available variables, one must conduct a preliminary
data collection to adequately train the model. The duration
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of this learning phase depends on the complexity of the
prediction (i.e., the number of categories of the outcome and
especially the number of observations in the smallest cate-
gories). Importantly, our work demonstrated that a fairly
short-term learning phase is sufficient for adequate pre-
dictions. When adapting this methodology, data collection
for a limited number of participants could include tech-
niques such as a system of survey of modes and activity
locations (if not too burdensome for the participants) or the
SenseCam methodology. The extra burden on the partici-
pants during this learning phase could be compensated for
by reducing the amount of data collected in other parts of the
data collection process or reducing the number of observa-
tion days per participant.

Compared with a time unit-level prediction method, pre-
dictions at the trip level provide less detailed information.
However, as trip-level data are useful in transportation sci-
ences and behavioral sciences, a trip-level prediction method
has some interesting advantages over time unit-level pre-
diction methods. First, information on the entire trip can be
used to derive predictors, such as quantification of the
intratrip variability in GPS and accelerometer indicators
(e.g., speed or acceleration) and summaries of the GPS data
quality. Second, a trip-level method is more parsimonious in
the number of predictions made. Because only one predic-
tion per trip is required, the method allows for more partic-
ipants and more observation days per participant in the
model. In this RECORD GPS study, 7329 trips were ob-
served for 236 participants and 1647 observation days.
Given 12 hIdj1 of observations, a 5-s window approach
would yield more than 14 million predictions, while a 1-min
window approach would yield nearly 1.2 million predictions.
Modeling this number of predictions would require a very
high computational time. For large-scale studies with 1000
participants or more, time unit predictions would therefore
require high performance computing. Finally, time unit-level
models also model the data at activity places and must include
activity mode categories in the model, which may reduce the
quality of the overall prediction. In conclusion, we do not
argue that a trip-level method is better than a unit-level
method, although it does provide researchers with a valid
alternative to address a large number of research questions.

A clear limit of our proposed mode detection algorithm is
that its application requires data segmented into trips because
the present algorithm was intended to be a complement of
another trip segmentation algorithm that we commonly use in
our studies (33). Moreover, it should be emphasized that the
use of an algorithm of mode detection at the time unit level
(e.g., min) would also require the application of a second

algorithm to derive coherent information on the mode(s) used
at the trip level.

This method is inappropriate for trips with multiple trans-
portationmodes. In our study, we observed 1.3% ofmultimodal
trips (comprising more than one nonwalking mode), and we
excluded them to train the prediction model. The model
predicted one of the two modes for 99% of these trips.
Depending on the application of this method and the pro-
portion of multimodal trips in the study area, this limitation
may be problematic and may provide an argument for the
use of more advanced prediction methods that segment trips
into trip stages and impute the corresponding modes (38).

Finally, it should be kept in mind that any mode predic-
tion algorithm will have a certain error rate. In specific cir-
cumstances, researchers may want to collect more accurate
data on modes for each trip. Although using SenseCam in
addition to GPS receivers is useful to obtain an accurate cri-
terion for validating algorithms, we argue that wearable cam-
eras are too intrusive and the corresponding data are too
burdensome to process to permit data collection across a large
sample size. In that case, combining GPS data collection with
the use of a GPS-based prompted recall mobility survey may
represent a feasible option to derive accurate trip-level data.

CONCLUSIONS

This study is one of the first to use real-life data from a
relatively large and diverse sample to test a prediction method
for transportation modes. The approach uses a trip-level
model, thereby rendering the application more convenient for
subsequent application in a variety of transportation or be-
havioral study designs. This method could improve future data
collection processes by decreasing the workload for both
participants and researchers and providing relevant data to
investigate the relation between transportation and health.
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