
Meteor trail diffusion and fields: 1. Simulations

Y. S. Dimant and M. M. Oppenheim

Center for Space Physics, Boston University

Abstract. A meteoroid penetrating the Earth’s atmosphere leaves behind a trail
of dense plasma embedded in the lower E/upper D-region ionosphere. While
radar measurements of meteor trail evolution have been collected and used to infer
meteor and atmospheric properties since the 1950s, no accurate quantitative model
of trail fields and diffusion exists. This paper describes finite-element simulations
of trail plasma physics applicable to the majority of small meteors. Unlike earlier
research, our simulations resolve both the trail and a vast current-closure area
in the background ionosphere. This paper also summarizes a newly developed
analytical theory of meteor electrodynamics and shows that our simulations and
theory predict nearly identical fields and diffusion rates. This study should enable
meteor and atmospheric researchers to more accurately interpret radar observations
of specular and non-specular meteor echoes.

1. Introduction

Meteoroids have a number of important consequences for
the space environment and the Earth’s upper atmosphere:
They damage spacecraft. They deposit material in the lower
thermosphere and upper mesosphere, most notably metals
and dust. They create layers of charged material which
radars and ionosondes detect, modifying the plasma density
and conductivity of the lower ionosphere. They leave plasma
columns which can be used to monitor atmospheric con-
ditions in the lower thermosphere and enable meteor burst
communication [Schilling, 1993].

While large meteoroids generate spectacular optical dis-
plays, particles much smaller than a sand grain comprise the
majority of all meteoroids and represent the major source
of all extra-terrestrial material deposited in the Earth’s at-
mosphere [Bronshten, 1983;Ceplecha et al., 1998]. Such
small meteoroids can rarely be observed by a naked eye or
even by a sensitive optical technique, but radars can easily
detect them. Such observations become possible because
meteoroids frequently enter the Earth’s atmosphere with a
sufficient speed (11.2–72.8 km/s) [Ceplecha et al., 1998]
and energy to cause the formation of a dense plasma visible
to radars. The front edge of this plasma can often be ob-
served by high-power large-aperture (HPLA) radars, while
smaller, lower-power radars can detect the residual trail as
either specular or non-specular echoes.

Specular echoes, usually observed by small-aperture and
HF-VHF radars, originate from parts of the plasma trail
where the wavevector of the backscattered wave is nearly
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Figure 1. Non-specular radar echo (Jicamarca Radio Obser-
vatory near the magnetic equator, July 12, 2005, 3:43 AM
local time).
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perpendicular to the axis of a slowly diffusing, quasi-cylindrical
plasma trail [Baggaley and Webb, 1980; Levitskii et al.,
1982; Jones and Jones, 1990;Chilson et al., 1996;Elford
and Elford, 2001;Galligan et al., 2004;Hocking, 2004] (for
review, seeCeplecha et al.[1998]). Non-specular meteor
echoes observed by HPLA VHF or UHF radars like the one
shown in Fig. 1 typically originate from trails where the
radar points close to perpendicular to the geomagnetic field
[Chapin and Kudeki, 1994;Oppenheim et al., 2000;Close
et al., 2000;Zhou et al., 2001]. Non-specular echoes ap-
pear to result from small-scale electron density irregulari-
ties caused by plasma turbulence and measured when the
radar wavevector lies parallel to the irregularity wavevector
but with a wavenumber twice the irregularity wavenumber,
satisfying the Bragg condition [Chapin and Kudeki, 1994].

Modeling specular echoes requires knowledge of the spa-
tial and temporal distribution of the plasma trail density,
while modeling non-specular trails also requires knowledge
of the evolution and structure of the polarization electric
field which drives trail instabilities. A number of studies
have looked at the evolution of dense plasma columns in col-
lisional magnetized plasma [Kaiser et al., 1969;Pickering
and Windle, 1970]. More generally, transport phenomena in
weakly ionized magnetized plasmas have been studied for
many years [Simon, 1955a, b;Gurevich and Tsedilina, 1967;
Rozhanskii and Tsendin, 1975] (for review, seeRozhansky
and Tsendin[2001]). However, the majority of these studies
were applied to moderate disturbances of a homogeneous
plasma background while a meteor trail often has plasma
density several orders of magnitude denser than the back-
ground plasma.

The analytical theory byJones[1991] represents a sig-
nificant step forward. He proposed a 2D self-similar solu-
tion (SSS) of the meteor trail evolution, starting from an ini-
tial line density. Using a combination of a Gaussian spatial
distribution of the plasma density with a parabolic distribu-
tion of the electric potential, Jones developed a mathemati-
cal scheme, which describes the initial evolution and struc-
ture of the trail plasma density reasonably well. However, it
improperly describes the spatial structure of the polarization
electric field because the assumed plasma density structure
requires that the field goes to infinity with distance from the
trail axis. As we show in this paper, that theory also fails to
predict significant deviations from the self-similar diffusion
at a later stage of the meteor trail evolution. The reason for
this is that the SSS does not account for interaction with the
background ionospheric plasma (as opposed to the major-
ity of ambipolar diffusion studies [Gurevich and Tsedilina,
1967;Rozhansky and Tsendin, 2001]).

In the earlier stage of plasma trail diffusion, the back-
ground plasma density is usually small compared to the

plasma density within the trail. However, this low-density
plasma plays a crucial role for carrying electric currents orig-
inating from the trail during its ambipolar diffusion. This
current significantly affects the evolution and structure of
the trail density in the later stage. Further, the electrody-
namic interaction of the meteor trail with the background
ionosphere provides a natural restriction for the polarization
electric field which drives plasma instabilities. The research
presented in this paper includes the interaction of the trail
with the background ionosphere.

Note that in a recent theoretical paper on meteor trail dif-
fusion,Robson[2001] (see alsoElford and Elford[2001]) at-
tempted to revise the previous theories. Robson’s approach,
however, has a fundamental problem. In addition to the
quasineutral assumption, Robson assumed that the electron
and ion fluxes along the magnetic field are equal. In the gen-
eral case, the latter assumption causes the resulting electric
field to have a significant non-zero curl. Estimates show,
however, that the contribution of the induction electric field
to the trail dynamics in the E/D regions is negligible, so that
to high accuracy the electric field within and around the trail
should be electrostatic, i.e., curl-free.

The earliest simulations appropriate to meteor diffusion
had restricted box sizes which could not properly describe
the actual ionospheric situation [Lyatskaya and Klimov, 1988].
In a more recent series of papers,Oppenheim et al.[2003a];
Dyrud et al.[2002]; Oppenheim et al.[2000]; Dyrud et al.
[2001]; Oppenheim et al.[2003b];Dyrud et al.[2005] have
simulated the development of plasma instabilities in me-
teor trails when the axis of an axially-symmetric cylindrical
plasma trail was perfectly aligned with the geomagnetic field
or, in a two-dimensional (2D) case, making the trail a slab
instead of a cylinder. This represent a severe oversimplifi-
cation because most of meteor trails are oriented at a large
angle with respect to the magnetic field.

In order to improve modeling of meteor trails and en-
hance our knowledge of plasma column diffusion and fields,
we revisit this problem. As in the majority of the previous
studies, we restrict ourselves to plasma columns that remain
homogeneous along their length and assume constant elec-
tron and ion temperatures. Homogeneity along the trail im-
plies that diffusion occurs only in the plane perpendicular to
the trail, though electron fluxes have all three vector com-
ponents. We assume that the trail axis can be directed at
an arbitrary angle to the geomagnetic field and it includes
the important effect of the background ionospheric plasma.
Unlike previous studies, we include not only the trail, but
a vast area around the trail where the currents originating
in the trail close. Only such simulations can accurately de-
scribe the trail structure and accompanying electric fields.
Here we include no external electric fields or strong neutral
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winds which often exist in real E-region ionosphere [Hock-
ing, 2004], leaving these important effects to future papers.
In this paper, we present results of numerical simulations
and their comparison with our analytical theory and discuss
some physical implications. We present details of the ana-
lytical theory in a companion paper byDimant and Oppen-
heim[this issue]. The combined work provides an accurate
quantitative description of meteor trail evolution and the po-
larization electric field associated with trail ambipolar diffu-
sion. Results of simulations and our analytical model agree
remarkably well. We expect that applying our theoretical
model to radar echoes from trails should help researchers ob-
tain useful information about meteoroids and the surround-
ing atmosphere.

This paper is organized as follows. In Section 2, we
describe the fundamental assumptions used to describe the
ambipolar diffusion of meteor trails in the E-region iono-
sphere, introduce the concept of the residual potential, and
present the governing equations for meteor fields and diffu-
sion based on a simple two-fluid model model of a highly
collisional isothermal plasma. In Section 3 we discuss re-
sults of our 2D finite-element simulations. In Section 4, we
summarize the analytical results from the companion paper.
In Section 5, we compare these with simulation results. In
Section 6, we discuss some caveats and implications of our
theory. In Section 7, we give a summary of the paper. Ap-
pendix A lists major variables used in the paper. Appendix
B gives the explicit expressions for the self-similar solution,
some of which we used in our simulations as the initial con-
ditions.

2. Fundamentals of Meteor Trail Diffusion

In this section, we discuss qualitative aspects of the me-
teor trail diffusion and present the governing diffusion equa-
tions.

2.1. Plasma physics conditions in lower E/upper
D-region ionosphere

The majority of specular and non-specular radar echoes
are observed in the lower E/upper D regions at altitudes
80–120 km, where the neutral atmosphere is many orders
of magnitudes denser than the ionospheric plasma. While
the plasma left behind a fast meteoroid in the form of a dif-
fusing trail can be several orders of magnitude denser than
the background ionospheric plasma, it is usually much less
dense than the neutral atmosphere.

All characteristic spatial scales of the diffusion state are
much larger than the Debye length. The typical diffusion
time scale is much longer that the electron plasma period.
Due to these facts, the quasi-neutrality holds to good accu-

racy, ne ≈ ni ≡ n, wherene,i are the electron and ion
densities, respectively.

In the lower E/upper D region, the charged particles col-
lide predominantly with neutral particles rather than between
themselves. The following inequalities hold:Ωi ¿ νin

and νen ¿ Ωe [Farley, 1985; Dimant and Oppenheim,
2004], whereΩe,i = eB/me,i are the electron and ion gy-
rofrequencies;νen andνin are the electron-neutral and ion-
neutral collision frequencies respectively;e is the elemen-
tary charge,me,i are the electron and ion masses, respec-
tively, andB = |B| whereB is the geomagnetic flux den-
sity. The above inequalities express the fact that electrons
are strongly magnetized, while ions are demagnetized due
to frequent collisions with neutrals. In the equatorial re-
gion, B ' 0.25 × 10−4T, while at mid- and high latitudes
B ' 0.5×10−4T. In the E-region ionosphere, O+2 and NO+

ions dominate:mi ' 30 mp, wheremp is the proton mass,
so thatmi/me ' 5.5× 104. Throughout the upper E/lower
D regions,νen ' 10 νin [Gurevich, 1978;Kelley, 1989;Di-
mant and Milikh, 2003].

2.2. Ambipolar diffusion of plasma columns

At the earliest stage of trail plasma formation, kinetic pro-
cesses associated with ionization of ablated material domi-
nate. After a short time, however, the newly formed plasma
cools down, typical transport velocities become much smaller
than the ion-acoustic speed, and the trail spreads over dis-
tances at least several times the characteristic mean free path
[Jones, 1995]. This can be considered as the beginning of
the diffusion stage. In this paper, we restrict our treatment to
this stage.

The meteoroid velocity is usually much higher than typ-
ical diffusion velocities. This means that the trail diffusion
starts roughly simultaneously over a sufficiently long dis-
tance along the trail. Considering a part of the trail which
is smaller than the typical variation scale of ionospheric and
neutral atmospheric parameters, we will neglect the spatial
inhomogeneity and assume approximate translational sym-
metry along the trail axis, making all variations occur in the
plane perpendicular to this axis.

We will consider the diffusion of a 2D plasma trail where
the density varies withx andy and remains invariant along
z (see Fig. 2). The homogeneous magnetic fieldB lies in
the y, z-plane. In this geometry, the plasma density gra-
dient,∇n, and the electrostatic polarization electric field,
E = −∇Φ, have onlyx andy components, while the elec-
tron drift velocity may have all three vector components.

When the trail axis lies parallel toB, the ambipolar dif-
fusion is axially symmetric aroundz and its rate roughly
follows the lowest mobility [Oppenheim et al., 2000]. When
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Figure 2. Geometry of the trail and magnetic field.

the trail is not aligned alongB, the ambipolar diffusion is
more complicated because all components of the polariza-
tion electric field are determined by the scalar electric po-
tentialΦ. This means that the diffusion in one direction nec-
essarily affects the diffusion in other directions. Quasineu-
trality requires the divergences of the electron and ion fluxes
to be equal, while the fluxes themselves may differ. The
combined force acting on electrons, which includes both the
electric field and the pressure gradient can be represented as
a gradient of a new scalar potential [Rozhansky and Tsendin,
2001],−eE−∇Pe/n = (Te + Ti)∇φres, so that

φres ≡ eΦ− Te ln(n/n0)
Te + Ti

, (1)

wheren0 is the undisturbed ionospheric background density
assumed constant and uniform. We will refer to the dimen-
sionless quantityφres as the residual potential. The concept
of the residual potential is crucial for our treatment. Further-
more, the macroscopic force that drives plasma instabilities
is the total force acting on electrons, which is proportional
to∇φres.

2.3. Diffusion Equations

If there is no significant ionization and recombination
during the diffusion stage then the plasma trail line density
remains nearly constant. The diffusion stage is adequately
described by fluid equations which include two inertialess
momentum equations for electrons and ions, two continuity
equations, and quasineutrality:ne ≈ ni = n, ∇ · j = 0
[Rozhansky and Tsendin, 2001; Bittencourt, 2004], where
j = en(Vi − Ve) is the current density andVe,i are the
electron and ion fluid velocities. This set of equations can
be readily reduced to two coupled nonlinear partial differ-
ential equations (PDEs) for the common plasma density and
the electric potential,

∂tn +∇ · Γi = 0, (2a)

∇ · Γi −∇ · Γe = 0, (2b)

where for unmagnetized ions and strongly magnetized elec-
trons the diffusion flux densities,Γe,i, are given by

Γi ≡ nVi = − n
∇ [eΦ + Ti ln(n/n0)]

miνin
, (3a)

Γe‖ ≡ nVe‖ = n
∇‖ [eΦ− Te ln(n/n0)]

meνen
, (3b)

Γe⊥ ≡ nVe⊥ = n

{
νen∇⊥ [eΦ− Te ln(n/n0)]

meΩ2
e

+
b̂×∇⊥ [eΦ− Te ln(n/n0)]

meΩe

}
. (3c)

Here the subscripts‖ and⊥ pertain to the directions paral-
lel and perpendicular to the magnetic fieldB, respectively,
andb̂ is the unit vector in theB direction. The first term in
the right-hand side (RHS) of Eq. (3c) describes the electron
Pedersen flux, while the second term describes the electron
Hall flux. Here we assume the isothermal approximation
which is justified by frequent collisions with the huge ther-
mal reservoir of neutral atmosphere (in a more general adia-
batic process, we would have additional factorsγe,i in front
of Te.i ln(n/n0).).

Passing fromΦ to the residual potential, Eq. (1), we
rewrite Eqs. (2) in thex, y coordinates as

∂tn−D
[∇2n +∇ · (n∇φres)

]
= 0, (4a)

(1 + ψ)∂x (n∂xφres) + (1 + Q)∂y (n∂yφres) +∇2n

+ µ (∂xφres ∂yn− ∂xn ∂yφres) = 0, (4b)

where we introduced the ambipolar diffusion coefficient for
miνin À meνen [Bittencourt, 2004],

D ≡ Te + Ti

miνin
=

(Te + Ti)Θ0

eB
√

ψ
, (5)

and dimensionless parameters

ψ ≡ gPed
e⊥
gi

=
νenνin

ΩeΩi
(6)

Q ≡ ψ cos2 θ +
sin2 θ

Θ2
0

, (7)

µ ≡ νin cos θ

Ωi
=
√

ψ

Θ0
cos θ, (8)

Θ0 ≡
(

gi

ge‖

)1/2

=
(

meνen

miνin

)1/2

. (9)

The parameterΘ0 represents a small critical angle (in ra-
dians) which remains nearly constant throughout the upper
D/lower E-region ionosphere,Θ0 ' 1.35 × 10−2 (in de-
grees,Θ0 ' 0.8◦), while the parameterψ [Farley, 1985] ex-
ponentially decreases as altitude increases with thee-folding
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length-scale∼ (2.5–3) km, see Fig. 2 inDimant and Oppen-
heim [2004]. In our simulations, we normalized plasma to
the undisturbed background densityn0 = 1, n/n0 → n.

3. Simulations of Trail Diffusion and Fields

In this section, we discuss general results of our numer-
ical solution of Eq. (4) using a finite-element PDE solver
FlexPDE [FlexPDE, 2006]. The challenge of these simula-
tions is to simultaneously resolve both the relatively small
scale of the trail density variations and the large scale of
the residual potential variations parallel to the magnetic field
(alongy). This requires the box size alongx to be at least
several times the effective trail size in that direction,σx,
while the box size alongy should be at least several times the
productΘ−1

0 σy, more than two orders of magnitude larger
than the box size alongx. FlexPDE uses an adaptive finite
element mesh to solve this highly inhomogeneous problems.
In regions with rapidly changing field or density gradients it
uses a high density mesh while it maintains a coarse mesh in
regions with modest or uniform gradients.

In order to evaluate the effects of boundary condition on
the solution, we varied the simulation box size. We also
varied boundary conditions, setting either the density distur-
bances,∆n(t) ≡ n(t) − 1, andφres, or the corresponding
flux densities, Eq. (3), to zero on the boundaries. These tests
demonstrated that, for sufficiently large box sizes, the solu-
tion in the inner region remained essentially unaffected by
the choice of boundary conditions.

In our simulations, we solved Eq. (4) withmi/me =
5.5× 105 andνen/νin = 10. As the initial condition at time
t = t0, we chose a narrow and dense column of plasma, de-
scribed by the self-similar solution (SSS), see Appendix B.
We used normalized units where the diffusion coefficient
D = 1 and the initial timet0 = 1, so that the initial spatial
distribution of the total plasma density was given by Eq. (B1)
with C = ∆n(t0) ≡ ∆n0. For sin2 θ À νen/Ωe, the char-
acteristic sizes of the initial Gaussian density distribution of
the trail, see Eqs. (B5) and (B7), in thex andy directions
are given byσx0 = (2Dt0/Axx)1/2 ≈ [2ψ/(sin2 θ +ψ)]1/2

andσy0 = (2Dt0/Ayy)1/2 ≈ √
2. They are nearly equal for

ψ À 1 (lower altitudes), but differ significantly forψ ¿ 1
(higher altitudes). To check the effect of the initial condi-
tions, we tried different initial Gaussian density distributions
corresponding to the same trail line density. We have found
that, after the time needed for the trail to diffuse over a dis-
tance several times the original size of the trail, the solution
becomes virtually the same.

Equation (4b) involves no time derivatives, so that for-
mally φres needs no initial condition. However, the FlexPDE
application requires setting initial conditions for all vari-
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(along y) at x = 0 of residual potential (solid curve, left
scale) and trail density (dashed curve, right scale) [forψ =
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has exponentially strong variation alongy, while the residual
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absolute value. At some point beyond the trail (here about
y = −10), the potential acquires a noticeabley-derivative
(electric field parallel to the magnetic fieldB). This deriva-
tive is always much less than the typicalx-derivative (elec-
tric field perpendicular toB).
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ables. In our simulations, we usually set upφres(t0) = 0.
We tested that after a rather short time, the solver automat-
ically sets up a time-dependent spatial distribution ofφres

which proves to be independent of the initial condition for
φres.

While we have simulated trail evolution for different an-
glesθ between0◦ and90◦, we have focused on the strictly
perpendicular case,θ = 90◦, µ = 0, because our analyti-
cal theory applies best to this case. Forθ = 90◦, there is
a mirror symmetry along both thex andy axis allowing us
to only simulate a half-box alongB (y ≤ 0) with boundary
conditions aty = 0 given by zero derivatives of bothn and
φres.

In order to model different stages of trail diffusion, for
each set of parametersθ andψ, we performed overlapping
runs by varying the initial peak densities from∆n0 = 104 to
∆n0 = 10. We finished each run att = 40−500, so that the
box size alongx (|xmax| = 30–60) remained at least several
timesσx(t) and the half-box size alongy, |ymax| = 1000–
3000, was always at least two orders of magnitude larger
thanσy(t). This is necessary because electric fields prop-
agate enormous distances alongB. The smallψ cases re-
quired much more time and resources than those ofψ ∼> 1
because higher anisotropies and stronger gradients develop.
On a 3GHz Pentium 4 Windows-based PC, our runs lasted
from several hours (forθ = 90◦, ψ = 10, ∆n0 = 10) to
more than two weeks (forθ = 45◦, ψ = 0.05, ∆n0 = 104,
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full box). FlexPDE intrinsic restrictions have not allowed us
to simulateψ < 0.05.

Our simulations with different angles have shown that for
sufficiently large angles,θ ∼> 15◦, the simulated density and
residual potential look very similarly to the case ofθ = 90◦.
Figure 3 shows typical plasma density and residual potential
plotted over the small fraction of the simulation box near-
est the trail a short time after the simulation begins. Fig-
ure 4 compares an example of the trail density contours in
the x, y-plane corresponding to the SSS (a) and to the full
simulation (b) after the trail has diffused to several times its
initial radius. Our simulations have revealed the following
major features of large-angle trail diffusion:

1 Initially, the plasma density distribution within the
trail closely follows the anisotropic (forψ ∼< 1) SSS. At
a later stage, the trail remains roughly Gaussian in each di-
rection but becomes more isotropic and diffuses faster than
does the SSS as shown in Fig. 4. The transition to nearly
isotropic diffusion usually takes place while the peak den-
sity remains much larger than the background density.

2 The residual electric potential spreads alongy well
beyond the trail, see Fig. 5, with spatial gradients along
y much less than those alongx. Along x it has a non-
monotonic symmetric structure with a deep minimum at the
trail center and two symmetric maxima around it, as shown
in Fig. 3(b). At the later stage, when the trail diffusion be-
comes nearly isotropic, the residual electric field becomes
much smaller than if the density had followed the SSS.

3 Beyond the trail, where the trail density becomes
much less than the background density, the residual electric
field extending alongB may substantially disturb the den-
sity as shown in Fig. 6. The field evacuates plasma from
the region that maps alongB back to the trail’s potential
maxima. As a result, the disturbance of background plasma
evolves in antiphase to the potential distribution with a max-
imum atx = 0 and two symmetric minima roughly where
the residual potential has the two maxima, as visible on the
edge of Fig. 3(a). In our simulations, the maximum cen-
tral density compression more than doubled the undisturbed
background density, while the depletions reached about 80%
of that. These strong disturbances were reached near the
trail when the peak trail density was at least several orders
of magnitude larger than the background density as shown
in Fig. 6.

We will discuss these features in the companion paper
by Dimant and Oppenheim[this issue], when describing our
analytical theory. Here we only give brief explanations of
some features.

Feature 1 In the later stage, when the peak exceeds the
background density by less than a few hundred times, the

gradual isotropization and acceleration of diffusion to the
unmagnetized ambipolar rate result from the sharp decrease
with time of the residual electric field (Feature 2). This re-
duction is because currents from the background plasma pro-
vide quasineutrality, instead of requiring trail electrons to
follow the ions as assumed by the SSS. The resulting diffu-
sion is mainly determined by the pressure gradient acting on
the ions which are unaffected by the magnetic field.

Feature 2 The extension of the residual potential along
B, due to high parallel electron mobility, and the deep po-
tential minimum in the trail center formed by anisotropic
ambipolar trail diffusion are independent of the existence
of background plasma and appear in the SSS. However,
the two maxima seen in the residual potential distribution
alongx, see Fig. 3(b), result from particle fluxes originat-
ing in the trail and extending into the background iono-
sphere. The electron and ions fluxes have different and
highly anisotropic patterns, though the divergences of the
two fluxes remain equal. Well beyond the trail, these patterns
have a quadrupole-like structures providing current closure.
To drive the return currents, the background ionosphere de-
velops potential gradients which oppose those within the
trail, i.e., those responsible for the trail diffusion. This gives
rise to the two symmetric potential bumps around the deep
potential minimum and draws background plasma into the
trail edges.

Simulations of trails with smaller angles,θ < 15◦, shows
the density closely follows the SSS for a rather long time.
Within the trail area, the contours of constant density and
potential are rotated in thex, y-plane due to the electron
Hall drift as seen in the right panel of Fig. 7. This feature is
similar to that found earlier in simulations with a small box
[Lyatskaya and Klimov, 1988]. Beyond the trail, however,
the potential is extended alongy as in the large-angle case,
see the left panel of Fig. 7. Asθ decreases, the two-bump
structure of the residual potential becomes less pronounced,
although it is still visible even atθ = 1◦ as shown in Fig. 8.
As θ decreases further,θ → 0, the two-bump structure grad-
ually disappears, and the residual potential and trail density
approach the exact analytical solution for the purely field-
aligned case,θ = 0◦,

φres = − ln(1 + ∆n)
1 + ψ

, (10a)

∆n =
Nlin

4πn0Dt
exp

[
− (1 + ψ)r2

4ψDt

]
, (10b)

where r2 ≡ x2 + y2. The residual potential given by
Eq. (10a) has one deep minimum and no bumps, as seen
in Fig. 8(b). Note that forψ ¿ 1 andθ ∼> 1◦, the trail re-
mains nearly isotropic but with a significantly broader spa-
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tial distribution of the density and residual potential than
those given by Eq. (10).

4. Summary of Analytical Results

In this section, we summarize our major analytical results
from the companion paper byDimant and Oppenheim[this
issue]. The analytical theory has been developed for suffi-
ciently largeθ whenQ ≈ sin2 θ/Θ2

0 À 1, with the electron
Hall term neglected. The trail density maintains an approxi-
mately anisotropic Gaussian form throughout its evolution,

∆nTrail(x, y, t) = ∆n0

√
t0ρ(t0)
tρ(t)

exp
[
− 1

4D

(
γx2

ρ(t)
+

y2

t

)]
.

(11)
To account for the time-dependant and anisotropic diffusion
rates, we use a time-varying parameterρ(t) that is deter-
mined by solving

γt = ρ +
1

1 + ψ
ln

(
1 +

1 + ψ

ψ
ρ

)
, (12)

or given explicitly by

ρ(t) =
W

(
ψe(1+ψ)γt+ψ

)− ψ

1 + ψ
, (13)

where

γ ≡ 2πn0(Te + Ti) sin θ√
ψ(1 + ψ)NlineB

(14)

andW (x) is the Lambert W-function [Corless et al., 1996].

The time-dependent parameterρ, which represents a mas-
ter parameter of our analytical theory, is discussed in detail
in the companion paper. Here we note that it is proportional
to the square of the trail effective size in the perpendicu-
lar to B direction (x). It characterizes a transition from an
anisotropic diffusion of the trail at early time,ρ ¿ 1, where
ρ(t) ≈ γtψ/(1 + ψ), to a nearly isotropic diffusion at late
time,ρ(t) À 1, whereρ(t) ≈ γt.

By eliminating the time dependence from Eqs. (12) and
(11), one can express the peak Gaussian density,∆nPeak ≡
∆nTrail(0, 0, t), in terms ofρ(t),

∆nPeak =

{
2Θ0

√
ρ

[
(1 + ψ) ρ + ln

(
1 +

1 + ψ

ψ
ρ

)]}−1

.

(15)

The residual potentialφres(x, y, t) defined in Eq. (1) is
also determined in terms ofρ(t). In the near zone, where
|y| ¿ (QDt)1/2, the potential is practicallyy-independent,
φres(x, y, t) ≈ φ0

res(x, t). In the earlier stage of dense-trail

diffusion whenρ(t) ≈ ψγt/(1 + ψ) ¿ 1, the near-zone
potential can be approximated by the piece-wise function,

φ0
res(x, t) ' 1

2(1 + ψ)
×

{
− η2

0
3 + η2

2 if |η(x, t)| < η0,
η4
0

6η2 if |η(x, t)| > η0,

(16)
whereη(x, t) = x[γ/Dρ(t)]1/2 andη0 ≈ 2 [ln(1/ρ(t))]1/2.
At the later diffusion stage,ρ(t) ∼> 1, the near-zone potential
is approximately given by

φ0
res(x, t) =

1
2(1 + ψ)ρ(t)

×
{

S(η)− 2λ(ρ)A(ρ)√
1 + 4λ(ρ)

[
4λ(ρ)

1 + 4λ(ρ)
(17)

+
(
3− 2λ(ρ)η2

)
S(η

√
1 + 4λ(ρ))

]}
,

where

S(η) = −
[
i
√

π

2
ηe− η2/4 erf

(
iη

2

)
+ 1

]
, (18)

λ(ρ) =
(

ρ + cρ2

40 + bρ + dρ2

)1/2

, (19a)

A(ρ) =
(

10 + Nρ

9ρ + Gρ2 + Nρ3

)1/2

, (19b)

andb ≈ 122.7, c ≈ 1.52, d ≈ 54.74, N ≈ 14.67, G ≈
29.7. For largeρ(t), in Eqs. (17) to (19) [but not in Eqs. (11)
and (15)!], one should replaceρ by ρ̃ andη by η̃(x, t) =
x[γ/Dρ̃(t)]1/2, where

ρ̃ = ρ

{[
1 +

1
(1 + ψ)ρ

ln
(

1 +
1 + ψ

ψ
ρ

)]
ψ

1 + ψ

}1/2

.

(20)
For ρ̃ À 1, the second term in the braces of Eq. (17) with
ρ, η → ρ̃, η̃, is small compared toS(η̃) and can be neglected.

5. Comparison of Theory and Simulations

In this Section, we compare our simulations with the an-
alytical theory summarized above. We will focus on trails at
altitudes corresponding toψ = 0.05–0.2 and whenθ = 90◦.
In the early stage of dense-trail diffusion,ρ ¿ 1, the analytic
solution given by Eq. (11) is close to the self-similar solution
(SSS) given by Eq. (B1). The density distribution from the
simulations shows a nearly Gaussian peak similar to both,
as seen in Fig. 9(a). However, asρ(t) increases with time
and becomes of order unity, the analytic solution given by
Eq. (11) starts deviating from the SSS and becomes closer to
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Figure 9. Trail density distribution alongx for ψ = 0.2. (a): ∆n0 = 104, t = 10, ρ ≈ 1.4×10−3. (b): ∆n0 = 1000, t = 20,
ρ ≈ 0.5. (c): ∆n0 = 100, t = 10, ρ ≈ 5.38. (d): ∆n0 = 10, t = 20, ρ ≈ 160. Solid curves: the numerical solution; dotted
curves: the self-similar solution, Eq. (B1); dashed curves: the analytical solution, Eq. (11).
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Figure 11. Residual potentials aty = 0, φ0
res(x, t), corresponding to density distributions in Fig. 9. Solid curves show the

numerical solutions, while dashed and dot-dashed curves show the analytical solutions according to different equations. (a):
∆n0 = 104, t = 10, ρ ≈ 1.4×10−3, dashed curve corresponds to Eq. (16). (b):∆n0 = 1000, t = 20, ρ ≈ 0.5, dashed curve
corresponds to Eq. (17) with̃ρ → ρ. (c): ∆n0 = 100, t = 10, ρ ≈ 5.38, dashed curve corresponds to Eq. (17) withρ̃ → ρ,
dot-dashed curve corresponds to Eq. (17) withρ̃ ≈ 3. (d): ∆n0 = 10, t = 20, ρ ≈ 160, dashed curve corresponds to Eq. (17)
with ρ̃ → ρ, dot-dashed curve corresponds to Eq. (17) withρ̃ ≈ 68.
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Figure 10. Peak trail density vs. parameterρ, Eq. (13),
for ψ = 0.05. Points shown as alternating crosses, dia-
monds, boxes, and circles represent the numerical solution
from several runs:∆n0 = 104, 103, 100, 50, 30, 10. For
each run, the consecutive points (from left to right) corre-
spond tot/t0 = 1, 2, 3 . . .. Solid curve shows the analytical
solution given by Eq. (15). Dashed curve shows the SSS
given by Eq. (B1).

the numerical solution, as illustrated in Fig. 9(b). Whenρ(t)
becomes larger,ρ À 1, the analytical theory shows an ex-
cellent agreement with simulations, while the SSS predicts a
noticeably slower diffusion, as shown in Figs. 9(c) and (d).

Figure 10 shows the peak trail densities vs.ρ taken from
the simulations, analytical theory, and self-similar solution.
The numerical solution is shown by separate groups of
points taken from several different runs. Each run started at
t0 = 1 with different values of the initial peak trail density.
In each group, consecutive points correspond to equidis-
tant moments of time:t = 1, 2, 3, . . . . The first point of
the group always lies on the dashed curve corresponding to
Eq. (B1) because the SSS was the initial condition for each
run. However, starting fromt = 2, the numerical points
closely approach the theoretical curve given by Eq. (15),
while the SSS solution given by Eq. (B1) remains notice-
ably offset. The theoretical curve overlays the numerical
points forρ ∼> 1, while for ρ ¿ 1 it shows a slight devi-
ation from the numerical points (see the beginning of this
Section). The transition from an anisotropic diffusion to
a more isotropic one occurs near the inflection point about
ρ = 1. Notice that this takes place when the trail peak den-
sity remains well above the background plasma density, e.g.,
∆nmax ∼ (Θ0

√
ψ)−1 ' 80 for ψ = 0.05.

Now we compare our simulations with the theoretical ex-
pressions for the residual potential in the near zone. Fig-

ure 11 shows the residual potential alongx for the same con-
ditions as in Fig. 9. Because the parameterρ spans a broad
range of values from small to large ones we will apply ei-
ther Eq. (16) or Eq. (17). Figure 11(a) shows that forρ ¿ 1
the simple piece-wise approximation agrees reasonably with
simulations in all areas not too close to the two positive
bumps of the potential. Indeed, while there is a significant
difference between the values of the potential minimum at
x = 0, the potential derivative (the residual electric field) is
the same in the inner region characterized by the parabolic
dependence and occupied by the trail, see Fig. 9(a). On the
other hand, a good agreement also exists well beyond the
trail, where the residual potential decreases with increasing
|x| and the corresponding electric field changes its sign. The
zero-order piece-wise approximation is rough in the transi-
tional zone near the two potential maxima, where it has a dis-
continuity in the electric field. The maximum electric fields
in the piece-wise formula are reached near the discontinuity
points, approaching them from inside. The maximum elec-
tric fields in simulations are reached at some locations in
the inner region closer to the center and hence have smaller
values. Thus the simple analytical formula yields nearly cor-
rect electric fields everywhere except the transitional zones
between the inner and outer regions, where it overestimates
the electric field magnitude. We have attempted modeling
the transitional electric field with higher-order interpolations
to provide a smooth transition, but this underestimated the
field. The error for the maximum electric field, however, re-
mains within less than forty percent for all our simulations.

For ρ ∼ 1, the theoretical expression given by Eq. (17)
agrees well with simulations practically in all locations, as
seen in Fig. 11(b). Asρ becomes large, Eq. (17) with unad-
justedρ shows a significant discrepancy, as seen in Fig. 11(c)
and (d), while Eq. (17) with the adjusted parameterρ → ρ̃
according to Eq. (20) shows an excellent agreement. We em-
phasize that the adjusted parameterρ̃ is only needed for the
residual potential and not for the trail density.

In this section, we showed the comparison of theory and
simulations mainly for smallψ. For larger values ofψ,
ψ ∼> 1, simulations of trail diffusion have always shown a
remarkable agreement with the analytical theory.

6. Discussion

In this section, we will briefly discuss the limitations of
the theory and simulations, then we will examine the im-
plications of our results for plasma instabilities. One limi-
tation results from our assumption of constant electron and
ion temperatures. However, the initially hot temperatures
of the newly produced meteor trail plasma require time to
cool. The ions cool in only a few collisions but the electrons
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take much longer. This will impact the early stage diffusion.
We also assumed single species plasma dominated by NO+

and O+
2 ions. However, meteor plasma includes multiple ion

species [Jones and Jones, 1990;Chilson et al., 1996]. For-
tunately, for the singly charged ions only the mass of species
is important and the mass of Si+ is similar to NO+ and O+

2 .
Even Fe+ is only twice as heavy, so the impact of having this
range of species should be limited. We assumed homogene-
ity of the trail and background atmosphere along its path,
allowing us to model only a 2D cross-section of the trail.
This appears reasonable since trails typically extend kilome-
ters in this direction while they are only a few 10s of meters
wide in the perpendicular direction. However, the effects of
trail or atmospheric density irregularities, E-region fields, or
neutral winds could add inhomogeneities [Hocking, 2004].
Also, our analytical model approximates meteor trail diffu-
sion where the angle between the trail andB is larger than
a few tens of degrees, i.e., for the great majority of mete-
ors. For smaller angles, the neglected electron Hall terms
become important.

The ambipolar electric field associated with trail diffu-
sion may drive plasma instabilities responsible for observ-
able non-specular radar echoes. Now we estimate the driving
field and instability threshold (for simplicity, for theθ = 90◦

case). The driving field is determined by the total force act-
ing on electrons,Eres = −(Te + Ti)∇φres. Equations (16)
to (20) give approximate analytical expressions for the resid-
ual potential. These expressions depend uponρ(t) given by
Eq. (13) in terms ofγ, Eq.(14), proportional to an effective
trail-background interaction cross-sectionσeff ≡ Nlin/n0.
After a critical time,t = tcr, whenρ(tcr) = 1, the residual
potential decreases drastically and the diffusion starts chang-
ing its character from the self-similar, sharply anisotropic
diffusion to the nearly isotropic one. The critical time is
given by

tcr =
NlineBK(ψ)

2π (Te + Ti)n0
, (21)

where

K(ψ) =

√
ψ

1 + ψ

[
1 + ψ + ln

(
1 + 2ψ

ψ

)]
(22)

The critical transition time from anisotropic to isotropic
diffusion is mostly relevant for high altitudes withψ ¿ 1,
where the anisotropy of diffusion is clearly pronounced. In
this case, the functionK(ψ) ' √

ψ ∝ Nn/B, whereNn is
the neutral density. From Eq. (21) we see thattcr is prac-
tically independent of the magnetic field, making the high-
and low-latitude diffusion evolve similarly. The altitudinal
dependence oftcr, however, results from it variability with
Nn and the background plasma density,n0. Nighttime E-

region conditions with lown0 for a givenNlin are equiva-
lent to daytime conditions with a much largern0 requires a
proportionally increasedNlin as illustrated in Fig. 12.

The strongest electric field occurs in the early diffusion
stage,ρ ¿ 1, at the edge of the nearly parabolic re-
gion of the potential, Eq. (16). According to the definition
of φres, Eq. (1), the maximum value of the residual elec-
tric field (in real units) in this case is roughly|Emax

x | '
[Dγ ln(1/ρ)/ρ]1/2miνin/e(1 + ψ), where the diffusion co-
efficientD is defined by Eq. (5). In the later stage of trail dif-
fusion whenρ À 1, Eq. (17), withρ → ρ̃ ≈ [ψ/(1+ψ)]1/2ρ
and neglected small second term in braces, gives for the
maximum field|Emax

x | ' 0.37 [(1 + ψ)/ψ]3/4 (Dγ/ρ)1/2

miνin/e(1 + ψ)ρ. Simple analytic interpolation between
the two limits yields a formula

|Emax
x | ' miνin

e(1 + ψ)

{
Dγ

2ρ
ln

[
1 +

0.27
ρ2

(
1 + ψ

ψ

)3/2
]}1/2

(23)
which is roughly valid in the entire domain ofρ.

Now we estimate the Farley-Buneman (FB) instability
criterion [Farley, 1963; Buneman, 1963]. For a homo-
geneous plasma, the simplest FB instability criterion, ob-
tained using the two-fluid plasma model for sufficiently
long-wavelength waves, is given by|V0| > (1+ψ)Cs [Far-
ley, 1985], whereV0 = Eres × B/B2 is the Eres × B
drift velocity andCs ≡ [(Te + Ti)/mi]1/2 = (Dνin)1/2

is the ion-acoustic speed. Applying this criterion to the
maximum field given by Eq. (23), expressing the corre-
sponding drift speed as|V0| = e|Emax

x |/miΩi, and using
Eqs. (6) and (9), we write the FB instability criterion as
|Emax

x | > (1 + ψ)(Dνin)1/2(miΩi/e). ExpressingEmax
x

in Nlin, we reduce the FB instability criterion to

1
ρ

ln

[
1 +

0.27
ρ2

(
1 + ψ

ψ

)3/2
]

> P, (24)

where

P =
Θ0 (1 + ψ)9/2 (eB)2 Nlin

π (Te + Ti)min0
. (25)

If this criterion is satisfied when the trail initially forms,
then the instability starts generating plasma irregularities. If
the instability persists for the sufficient time, then turbulence
will develop and partially saturate through nonlinear pro-
cesses. Becauseρ(t) monotonically increases with time then
at some moment,t = tFB, the two sides of Eq. (24) become
equal. At this moment, the linear growth of the FB instabil-
ity starts being replaced by linear damping and irregularities
will diffuse away. Att < tFB, the linear FB instability sus-
tain plasma turbulence at a certain level, while att > tFB
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Figure 12. Altitudinal dependence of FB instability durationtFB for the equatorial E region during (a) daytime (n0 =
1011m−3), where curve 1 is forNlin = 1014m−1 and curve 2 is forNlin = 1015m−1, and (b) nighttime (n0 = 109m−3),
where curve 3 is forNlin = 1014m−1 and curve 4 is forNlin = 1015m−1. Curves 1, 2, 3, and 4 correspond toσeff =
103, 104, 105, and106m2, respectively.

there is no more free energy to sustain the turbulence, so
that irregularities will quickly disappear.

The instability durationtFB depends critically upon the
altitudinal parameterψ and the effective trail-background
interaction cross-sectionσeff ≡ Nlin/n0. Due to this, the
nighttime conditions with lown0 will produce longer lived
meteor trail than will the daytime conditions. Figure 12
shows the altitude dependence of the instability durationtFB

for several constantσeff during daytime and nighttime con-
ditions. Notice clear peaks oftFB at some intermediate
altitudes which increase withσeff . The non-specular echo
boundary for a given trail, like that in Fig. 1, should roughly
follow the altitude dependence oftFB. However, because
column plasma density varies along the meteor trail and due
to other inhomogeneities, we expect more variability than
this model predicts. Measurements of the evolution of the
trail echoes, in combination with other observations, should
enable us to retrieve useful information about meteors, iono-
sphere and atmosphere. Implementation of this procedure
requires better models of instability generation than that
used above, as well as models of ablation and ionization to
give improved estimates ofNlin [Dyrud et al., 2002, 2005].

7. Summary

In this paper, we have described finite-element simula-
tions of meteor trail diffusion and fields and compared these
results with an analytical theory developed in the companion
paper byDimant and Oppenheim[this issue]. Unlike previ-
ous models, our simulations and theory applies to trails not
aligned with the geomagnetic field and includes both the trail
and the background plasma in a region large enough to incor-
porate the current-closure area well beyond the trail. In our
simulations, we have overcome the computational difficul-
ties by employing FlexPDE, a finite-element PDE solver that
uses adaptive cell structure. This has led to a better under-
standing of meteor diffusion which should lead to improved
methods of analyzing radar data in order to remotely retrieve
information about meteors and the surrounding atmosphere.

Our simulations and theory predict strong fields in the
direction perpendicular toB. These fields reverse direc-
tion just outside the trail, propagate a long distance along
B, modify diffusion rates, and can generate deep depletions
in the background plasma considerable distances alongB.
Comparing the simulation results with those from our ana-
lytical theory described in the companion paper demonstrate
good quantitative agreement.

We also see a transition from a sharply anisotropic (for
ψ ¿ 1) diffusion to a nearly isotropic one as the effects of
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currents in the background plasma become important. We
predict that this transition time is proportional to the ratio of
the meteor plasma density to the background density and de-
pends on the altitude (see Eq. 21). During the day, when the
background ionospheric density is high (n0 ∼ 105 cm−3),
this transition will occur in less than a second for most mete-
ors, but at night (n0 ∼ 103 cm−3), it can take many seconds
to 10s of seconds. This is important for plasma instabilities
responsible for non-specular radar echoes and for interpret-
ing specular radar echoes as diffusion rates.
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Appendix A: List of Major Variables

Below, in the tabular form, we list major non-standard no-
tations used in the text and figures. If the variable definition
is compact then we reproduce it in the left column. If the no-
tation is cumbersome, we only cite in the right column the
original equation for the definition. In the right column,e,
i, andnstand for ‘electron’, ‘ion’, and ‘neutral’, respectively.
θ angle betweenB and trail axis
Ωe,i = eB/me,i eandi gyrofrequencies
νen, νin e-nandi-n collision frequencies
n = ni ≈ ne quasineutral plasma density
n0 background plasma density
∆n = n/n0 − 1 relative density disturbance
∆n0 initial trail density
Nlin plasma trail line density
D = (Te + Ti)/miνin diffusion coefficient, Eq. (5)
Γi, Γe‖, Γe⊥ i andeflux densities, Eq. (3)
φres(x, y) residual potential, Eq. (1)
φ0

res(x) φres in near zone,|y| ¿ √
QDt

ψ = νenνin/ΩeΩi altitude parameter, Eq. (6)
Q = ψ cos2 θ + sin2 θ

Θ2
0

e-mobility parameter, Eq. (7)

µ =
√

ψ cos θ/Θ0 electron Hall parameter, Eq. (8)
Θ0 = (meνen/miνin)1/2 critical angle (in radians), Eq. (9)
γ trail density parameter, Eq. (14)
ρ(t) trail diffusion parameter, Eq. (13)
ρ̃(t) adjustedρ(t), Eq. (20)
η(x, t) = [γ/Dρ(t)]1/2x renormalizedx-coordinate
η̃(x, t) = [γ/Dρ̃(t)]1/2x adjustedη(x, t)
η0 ≈ 2[ln(1/ρ(t))]1/2 auxiliary parameter, Eq. (16)
S(η), λ(ρ), A(ρ) auxiliary functions, Eq. (18).

Appendix B: Self-Similar Solution of Meteor
Diffusion

In this Appendix, we obtain explicit expressions for the
meteor trail diffusion in the absence of ionospheric plasma.
This self-similar solution (SSS) was proposed in the general
form by Jones[1991], but not found explicitly. We use the
SSS as initial conditions for our simulations and for compar-
ison purposes. In our notations, the SSS density and residual
potential take the form

nss(x, y, t) =
C

t
exp

(
− Axxx2 + Ayyy2 + Axyxy

4Dt

)
,

(B1)

φss
res(x, y, t) =

Bxxx2 + Byyy2 + Bxyxy

4Dt
+ const, (B2)

with positive diagonal coefficientsAii, Bii and

AxxAyy >
A2

xy

4
, BxxByy >

B2
xy

4
. (B3)

This form provides a unique and self-consistent solution to
Eq. (4) in an infinite and homogeneous neutral atmosphere
with no background plasma, provided the diffusion starts
from an infinitely thin and dense plasma column with a
given line density. The electron Hall velocities give rise
to the non-diagonal coefficients,Axy = Bxy. Inequali-
ties given by Eq. (B3) mean that the contours of the con-
stant density and the residual potential form ellipses in the
xy-plane, whose major axes are rotated with respect to the
x and y axes through a common angleχ determined by
tan 2χ = Axy/(Axx − Ayy) = Bxy/(Bxx − Byy). By
assuming conserved total line density,Nlin, the constantC
in (B1) becomes

C =

(
4AxxAyy −A2

xy

)1/2

8πD

Nlin

n0
. (B4)

For arbitrary anisotropic particle mobilities, it is hard to ob-
tain explicit analytical expressions for the coefficientsAij

andBij [Jones, 1991]. However, under lower E/upper D-
region conditions, when electrons are strongly magnetized,
while ions are unmagnetized, one can obtain such expres-
sions. After cumbersome but straightforward algebra we ob-
tain

Axx = 1+Bxx, Ayy = 1+Byy, Axy = Bxy, (B5)

Bxx =
Q (2 + Q + ψ)2 + 2µ2 (Q + ψ)
Qψ (2 + Q + ψ)2 + µ2 (Q + ψ)2

,

Byy =
ψ (2 + Q + ψ)2 + 2µ2 (Q + ψ)

Qψ (2 + Q + ψ)2 + µ2 (Q + ψ)2
, (B6)

Bxy =
2µ(2 + Q + ψ)(ψ −Q)

Qψ(2 + Q + ψ)2 + µ2(Q + ψ)2
.
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The rotational angleχ is determined bytan 2χ = 2
√

ψ cos θ/[(2+
Q+ψ)Θ0]. These general expressions cover all angles from
θ = 0◦ (field-aligned trail), whenQ = ψ, Bxx = Byy =
1/ψ, Bxy = 0, to θ = 90◦ whenµ = 0.

Assumingsin2 θ À νen/Ωe = Θ0

√
ψ, we obtain much

simpler expressions for the coefficientsBik:

Bxx =
sin2 θ

ψ
,

Byy =
1 + cos2 θ

Q
= Θ2

0

(
1 + cos2 θ

sin2 θ

)
, (B7)

Bxy = − 2µ

Q

sin2 θ

ψ
= − 2Ωi

νin
cos θ.

The non-diagonal coefficients,Axy = Bxy, are small com-
pared toAxx (but not necessarily toBxx!), Ayy ≈ 1 and
Byy ¿ 1. The rotation angleχ is small, | tan 2χ| ≈
2νen cos θ/(Ωe sin2 θ). BecauseA2

xy ¿ 4AxxAyy we have

C ≈ Nlin

4πDn0

(
1 +

sin2 θ

ψ

)1/2

. (B8)

The residual potential is stretched along the coordinatey in
accord with the qualitative discussion in Sect. 2.

To the same accuracy, the particle fluxes are given by

Γex = Γix =
x

2t
nss(x, y, t), Γey = Γiy =

y

2t
nss(x, y, t),

Γiz = 0, Γez = − Ωe

νen

(
x sin θ

2t

)
nss(x, y, t). (B9)

The flux components in bothx andy directions are equal
for electrons and ions. The only disparity is in the flux com-
ponent along thez-axis due to electron Hall velocity. The
net electric current is directed along the trail axis with the
current density

jz =
eΩe

νen

(
x sin θ

2t

)
nss(x, y, t). (B10)

This simple expression allows one to estimate the magnetic
field perturbations caused by the trail and the contribution
of the induction field to the electric field. For the trail peak
densitynmax ¿ 1017 m−1, the induction electric field will
be negligible.
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