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Abstract. A meteoroid penetrating the Earth’s atmosphere leaves behind a trail

of dense plasma embedded in the lower E/upper D-region ionosphere. While
radar measurements of meteor trail evolution have been collected and used to infer
meteor and atmospheric properties since the 1950s, no accurate quantitative model
of trail fields and diffusion exists. This paper describes finite-element simulations
of trail plasma physics applicable to the majority of small meteors. Unlike earlier
research, our simulations resolve both the trail and a vast current-closure area

in the background ionosphere. This paper also summarizes a newly developed
analytical theory of meteor electrodynamics and shows that our simulations and
theory predict nearly identical fields and diffusion rates. This study should enable
meteor and atmospheric researchers to more accurately interpret radar observations
of specular and non-specular meteor echoes.

1. Introduction

Meteoroids have a number of important consequences for
the space environment and the Earth’s upper atmosphere:
They damage spacecraft. They deposit material in the lower
thermosphere and upper mesosphere, most notably metals
and dust. They create layers of charged material which

radars and ionosondes detect, modifying the plasma density10 20. -
and conductivity of the lower ionosphere. They leave plasma™ 3 )
columns which can be used to monitor atmospheric con- 100E 3 15'_?_5
ditions in the lower thermosphere and enable meteor burst e
communication $chilling 1993]. 5,992— ol VIt . 3 3
E 5 . 10.S
While large meteoroids generate spectacular optical dis% 98f B Y b A 3 S
plays, particles much smaller than a sand grain comprise the & % '*m !‘ E =
majority of all meteoroids and represent the major sourceX97¢ T -ﬂ 'ﬁ. . i 3 50 &
of all extra-terrestrial material deposited in the Earth’s at- 3 ' VR ; @
mosphere Bronshten 1983; Ceplecha et a).1998]. Such ' SoEngclar (il E
small meteoroids can rarely be observed by a naked eye or 95¢ . . . ~3LJ0.0

even by a sensitive optical technique, but radars can easily 00 05 10 Ti}hS 20 25 30
detect them. Such observations become possible because e(s)

meteoroids frequently enter the Earth’s atmosphere with a.. . .
sufficient speed (11.2-72.8 km/sgéplecha et aj.1998] ?:lgure 1. Non-specular radar echo (Jicamarca Radio Obser-

and energy to cause the formation of a dense plasma visibl\éatorx hear the magnetic equator, July 12, 2005, 3:43 AM
to radars. The front edge of this plasma can often be obl-Ocal time).
served by high-power large-aperture (HPLA) radars, while
smaller, lower-power radars can detect the residual trail as

either specular or non-specular echoes.

Specular echoes, usually observed by small-aperture and
HF-VHF radars, originate from parts of the plasma trail
where the wavevector of the backscattered wave is nearly
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perpendicular to the axis of a slowly diffusing, quasi-cylindricalasma density within the trail. However, this low-density
plasma trail Baggaley and Wehbl980; Levitskii et al, plasma plays a crucial role for carrying electric currents orig-
1982; Jones and Joned990; Chilson et al, 1996; Elford inating from the trail during its ambipolar diffusion. This
and Elford 2001;Galligan et al, 2004;Hocking 2004] (for ~ current significantly affects the evolution and structure of
review, seeCeplecha et al[1998]). Non-specular meteor the trail density in the later stage. Further, the electrody-
echoes observed by HPLA VHF or UHF radars like the onenamic interaction of the meteor trail with the background
shown in Fig. 1 typically originate from trails where the ionosphere provides a natural restriction for the polarization
radar points close to perpendicular to the geomagnetic fielelectric field which drives plasma instabilities. The research
[Chapin and Kudeki1l994;Oppenheim et gl.2000;Close  presented in this paper includes the interaction of the trail
et al, 2000;Zhou et al, 2001]. Non-specular echoes ap- with the background ionosphere.
pear to result from small-scale electron density irregulari- - Note that in a recent theoretical paper on meteor trail dif-
ties caused by plasma turbulence and measured when thgsion,Robsorf2001] (see als&lford and Elford[2001]) at-
radar wavevector lies parallel to the irregularity wavevectortempted to revise the previous theories. Robson’s approach,
but with a wavenumber twice the irregularity wavenumber,however, has a fundamental problem. In addition to the
satisfying the Bragg conditiorGhapin and Kudeki1994]. quasineutral assumption, Robson assumed that the electron
Modeling specular echoes requires knowledge of the spaand ion fluxes along the magnetic field are equal. In the gen-
tial and temporal distribution of the plasma trail density, eral case, the latter assumption causes the resulting electric
while modeling non-specular trails also requires knowledgefield to have a significant non-zero curl. Estimates show,
of the evolution and structure of the polarization electrichowever, that the contribution of the induction electric field
field which drives trail instabilities. A number of studies to the trail dynamics in the E/D regions is negligible, so that
have looked at the evolution of dense plasma columns in colto high accuracy the electric field within and around the trail
lisional magnetized plasmdagiser et al, 1969; Pickering  should be electrostatic, i.e., curl-free.
and Windle 1970]. More generally, transport phenomenain  The earliest simulations appropriate to meteor diffusion
weakly ionized magnetized plasmas have been studied faiad restricted box sizes which could not properly describe
many years$imon 1955a, bGurevich and Tsedilingl967;  the actual ionospheric situatiomyatskaya and Klimq\1988].
Rozhanskii and Tsendin975] (for review, se&kozhansky In a more recent series of pap@ppenheim et a[2003a]’
and Tsendirj2001]). However, the majority of these studies pyrud et al.[2002]; Oppenheim et al[2000]; Dyrud et al.
were applied to moderate disturbances of a homogeneoys01]; Oppenheim et a[2003b]; Dyrud et al.[2005] have
plasma background while a meteor trail often has plasmajmulated the development of plasma instabilities in me-
density several orders of magnitude denser than the backeor trails when the axis of an axially-symmetric cylindrical
ground plasma. plasma trail was perfectly aligned with the geomagnetic field
The analytical theory bylones[1991] represents a sig- or, in a two-dimensional (2D) case, making the trail a slab
nificant step forward. He proposed a 2D self-similar solu-instead of a cylinder. This represent a severe oversimplifi-
tion (SSS) of the meteor trail evolution, starting from an ini- cation because most of meteor trails are oriented at a large
tial line density. Using a combination of a Gaussian spatialangle with respect to the magnetic field.
distribution of the plasma density with a parabolic distribu- In order to improve modeling of meteor trails and en-
tion of the electric potential, Jones developed a mathematihance our knowledge of plasma column diffusion and fields,
cal scheme, which describes the initial evolution and strucwe revisit this problem. As in the majority of the previous
ture of the trail plasma density reasonably well. However, itstudies, we restrict ourselves to plasma columns that remain
improperly describes the spatial structure of the polarizatiothomogeneous along their length and assume constant elec-
electric field because the assumed plasma density structuggn and ion temperatures. Homogeneity along the trail im-
requires that the field goes to infinity with distance from the plies that diffusion occurs only in the plane perpendicular to
trail axis. As we show in this paper, that theory also fails tothe trail, though electron fluxes have all three vector com-
prEdiCt Significant deviations from the self-similar diffusion ponents_ We assume that the trail axis can be directed at
at a later stage of the meteor trail evolution. The reason foln arbitrary angle to the geomagnetic field and it includes
this is that the SSS does not account for interaction with tthe important effect of the background ionospheric p|asma_
background ionospheric plasma (as opposed to the majogniike previous studies, we include not only the trail, but
ity of ambipolar diffusion studiesQurevich and Tsedilina 3 vast area around the trail where the currents originating
1967;Rozhansky and Tsend2001]). in the trail close. Only such simulations can accurately de-
In the earlier stage of plasma trail diffusion, the back-scribe the trail structure and accompanying electric fields.
ground plasma density is usually small compared to theHere we include no external electric fields or strong neutral
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winds which often exist in real E-region ionosphelrofk- racy,n. ~ n; = n, wheren,; are the electron and ion
ing, 2004], leaving these important effects to future papersdensities, respectively.
In this paper, we present results of numerical simulations |n the lower E/upper D region, the charged particles col-
and their comparison with our analytical theory and discussjde predominantly with neutral particles rather than between
some physical implications. We present details of the anathemselves. The following inequalities hol®; < ;.
lytical theory in a companion paper imant and Oppen-  and v, < Q. [Farley, 1985; Dimant and Oppenheim
heim([this issue]. The combined work provides an accuratep004], whereQ, ; = eB/m.,; are the electron and ion gy-
quantitative description of meteor trail evolution and the po-rofrequenciesy.,, andv;, are the electron-neutral and ion-
larization electric field associated with trail ambipolar diffu- neutral collision frequencies respectivelyis the elemen-
sion. Results of simulations and our analytical model GQYEQary Charge,nle,i are the electron and ion masses, respec-
remarkably well. We expect that applying our theoreticaltively, and B = |B| whereB is the geomagnetic flux den-
model to radar echoes from trails should help researchers olgity. The above inequalities express the fact that electrons
tain useful information about meteoroids and the surroundare Strong|y magnetized, while ions are demagnetized due
ing atmosphere. to frequent collisions with neutrals. In the equatorial re-
This paper is organized as follows. In Section 2, wegion, B ~ 0.25 x 10~T, while at mid- and high latitudes
describe the fundamental assumptions used to describe thg ~ 0.5 x 10~*T. In the E-region ionosphere ;0and NO"
ambipolar diffusion of meteor trails in the E-region iono- ions dominatem; ~ 30 m,, wherem,, is the proton mass,
sphere, introduce the concept of the residual potential, ando thatm; /m,. ~ 5.5 x 10*. Throughout the upper E/lower
present the governing equations for meteor fields and diffuD regions,v.,, ~ 10v;, [Gurevich 1978;Kelley, 1989;Di-
sion based on a simple two-fluid model model of a highly mant and Milikh 2003].
collisional isothermal plasma. In Section 3 we discuss re-
sults of our 2D finite-element simulations. In Section 4, we
summarize the analytical results from the companion paperz.

In Section 5, we compare these with simulation results. In At the earliest stage of trail plasma formation, kinetic pro-
Section 6, we discuss some caveats and implications of OWesses associated with ionization of ablated material domi-
theory. In Section 7, we give a summary of the paper. AP-nate. After a short time, however, the newly formed plasma
pendix A lists major variables used in the paper. AppendiXcools down, typical transport velocities become much smaller
B gives the explicit expressions for the self-similar solution, than the ion-acoustic speed, and the trail spreads over dis-
some of which we used in our simulations as the initial con-tances at least several times the characteristic mean free path

.2. Ambipolar diffusion of plasma columns

ditions. [Jones 1995]. This can be considered as the beginning of
the diffusion stage. In this paper, we restrict our treatment to
2. Fundamentals of Meteor Trail Diffusion this stage.

The meteoroid velocity is usually much higher than typ-
ical diffusion velocities. This means that the trail diffusion
starts roughly simultaneously over a sufficiently long dis-
tance along the trail. Considering a part of the trail which
is smaller than the typical variation scale of ionospheric and
neutral atmospheric parameters, we will neglect the spatial
inhomogeneity and assume approximate translational sym-

The majority of specu|ar and non-specu|ar radar echoemetry along the trail aXiS, making all variations occur in the
are observed in the lower E/upper D regions at altitudeg’lane perpendicular to this axis.

80-120 km, where the neutral atmosphere is many orders We will consider the diffusion of a 2D plasma trail where
of magnitudes denser than the ionospheric plasma. Whil¢he density varies with: andy and remains invariant along
the plasma left behind a fast meteoroid in the form of a dif-z (see Fig. 2). The homogeneous magnetic fBldies in
fusing trail can be several orders of magnitude denser thathe y, z-plane. In this geometry, the plasma density gra-
the background ionospheric plasma, it is usually much lesslient, Vn, and the electrostatic polarization electric field,
dense than the neutral atmosphere. E = —V®, have onlyz andy components, while the elec-

All characteristic spatial scales of the diffusion state aretron drift velocity may have all three vector components.
much larger than the Debye length. The typical diffusion When the trail axis lies parallel tB, the ambipolar dif-
time scale is much longer that the electron plasma periodfusion is axially symmetric around and its rate roughly
Due to these facts, the quasi-neutrality holds to good accufollows the lowest mobility Dppenheim et al2000]. When

In this section, we discuss qualitative aspects of the me
teor trail diffusion and present the governing diffusion equa-
tions.

2.1. Plasma physics conditions in lower E/upper
D-region ionosphere



where for unmagnetized ions and strongly magnetized elec-
trons the diffusion flux densitie§,. ;, are given by

V [e® + T; In(n/ng)]

I'y=nV,=-—n , (3a)
_ L _|__Trailaxis _ _ _ _Lz MiVin
Vile®—-T.1
T, =nV, =n- [e n(n/no)}’ (3b)
MelVen
I, =0V, =n Ven V1 [e® — Te In(n/ngp)]
meQ2
| | B n bx Vy[e®—T,In(n/ng)] . (30)
Figure 2. Geometry of the trail and magnetic field. meSle

Here the subscript$ and L pertain to the directions paral-
the trail is not aligned alon@, the ambipolar diffusion is lel and perpendicu|ar to the magnetic fidh respective]y,
more complicated because all components of the polarizagnds is the unit vector in thd direction. The first term in
tion electric field are determined by the scalar electric po-+the right-hand side (RHS) of Eq. (3c) describes the electron
tential®. This means that the diffusion in one direction nec- Pedersen flux, while the second term describes the electron
essarily affects the diffusion in other directions. QuasineuHa|| flux. Here we assume the isothermal approximation
trality requires the divergences of the electron and ion fluxesyhich is justified by frequent collisions with the huge ther-
to be equal, while the fluxes themselves may differ. Themal reservoir of neutral atmosphere (in a more general adia-

combined force acting on electrons, which includes both theyatic process, we would have additional facters in front
electric field and the pressure gradient can be represented g7, , In(n/ng).). ’

a gradient of a new scalar potentiRldzhansky and Tsenglin
2001],—eE — VP./n = (T, + T;) Vs, SO that

e® — T, In(n/ngp)

Passing from® to the residual potential, Eqg. (1), we
rewrite Egs. (2) in the;, y coordinates as

Ores = T, , ) On— D [Vn+V - (nVres)| =0, (4a)
wheren, is the undisturbed ionospheric background density (1 4 %)9; (ROz¢res) + (1 + Q)0y (ndy¢res) + V1
assumed constant and uniform. We will refer to the dimen- + 1 (DsBres Dyn — Dpn Oybres) = 0, (4b)

sionless quantity,..s as the residual potential. The concept ] ) o o
of the residual potential is crucial for our treatment. Further-Where we introduced the ambipolar diffusion coefficient for

more, the macroscopic force that drives plasma instabilitie&i¥in > MeVen [Bittencourt 2004,

is the total force acting on electrons, which is proportional T.+T; (T.+T)6,
t0 Vres. b= miVin B EB\/;[} 7 (5)
2.3. Diffusion Equations and dimensionless parameters

If there is no significant ionization and recombination P v
during the diffusion stage then the plasma trail line density ¥ = i - 0.9, (6)
remains nearly constant. The diffusion stage is adequately in2 0
described by fluid equations which include two inertialess Q = tcos’O+ %, (7)
momentum equations for electrons and ions, two continuity ©%
equations, and quasineutrality, ~ n; = n, V-j = 0 _ Vincost VY 0 ®)
[Rozhansky and Tsendi@001; Bittencourt 2004], where re= QG O o8
j = en(V; — V,) is the current density an¥ . ; are the gi 1/2 mov. \ /2
electron and ion fluid velocities. This set of equations can By = (g:) = (ﬁ) 9)

be readily reduced to two coupled nonlinear partial differ-
ential equations (PDEs) for the common plasma density andhe paramete®, represents a small critical angle (in ra-
the electric potential, dians) which remains nearly constant throughout the upper
D/lower E-region ionosphere&, ~ 1.35 x 102 (in de-
-T; = s 2a .
on+V 0 (23) greesO, ~ 0.8°), while the parametep [Farley, 1985] ex-
V- Ii-Vv.-Ie=0, (2b) ponentially decreases as altitude increases with-fioéding



length-scale- (2.5-3) km, see Fig. 2 iDimant and Oppen-
heim[2004]. In our simulations, we normalized plasma to
the undisturbed background density = 1, n/ng — n.

3. Simulations of Trail Diffusion and Fields

In this section, we discuss general results of our numer-
ical solution of Eq. (4) using a finite-element PDE solver
FlexPDE FlexPDE 2006]. The challenge of these simula-
tions is to simultaneously resolve both the relatively small
scale of the trail density variations and the large scale of
the residual potential variations parallel to the magnetic field
(alongy). This requires the box size alongto be at least
several times the effective trail size in that direction,,
while the box size along should be at least several times the
product@glo—y, more than two orders of magnitude larger
than the box size along. FlexPDE uses an adaptive finite Figure 5. Typical variation parallel to the magnetic field
element mesh to solve this highly inhomogeneous problemsalongy) at 2 = 0 of residual potential (solid curve, left
In regions with rapidly changing field or density gradients it scale) and trail density (dashed curve, right scale) §for
uses a high density mesh while it maintains a coarse meshif2 Ap, = 104, ¢ = 3]. In the near-trail region, the density
regions with modest or uniform gradients. has exponentially strong variation alopgwhile the residual

In order to evaluate the effects of boundary condition onpotential varies only within several percent of its maximum
the solution, we varied the simulation box size. We alsoabsolute value. At some point beyond the trail (here about
varied boundary conditions, setting either the density disturyy = —10), the potential acquires a noticeahlederivative
bancesAn(t) = n(t) — 1, and¢,.s, or the corresponding (electric field parallel to the magnetic fiel8). This deriva-
flux densities, Eq. (3), to zero on the boundaries. These testdve is always much less than the typieatierivative (elec-
demonstrated that, for sufficiently large box sizes, the soluitric field perpendicular td3).
tion in the inner region remained essentially unaffected by
the choice of boundary conditions.

In our simulations, we solved Eq. (4) with;/m,. =
5.5 x 10° andv,,, /v;, = 10. As the initial condition at time
t = tg, we chose a narrow and dense column of plasma, de-
scribed by the self-similar solution (SSS), see Appendix B.

Residual potential

We used normalized units where the diffusion coefficient 1.2

D = 1 and the initial timet, = 1, so that the initial spatial on |

distribution of the total plasma density was given by Eq. (B1) 0.8

with C' = An(tg) = Ang. Forsin? 6 > Ven /e, the char- 0.6

acteristic sizes of the initial Gaussian density distribution of 04 4

the trail, see Egs. (B5) and (B7), in theandy directions 024

are given byo,o = (2Dto/Az.)"/? ~ [24/(sin® 6 4 )] /2 : 1 [ —— ‘
ando,o = (2Dto/A,,)"? ~ \/2. They are nearly equal for 30 =20 -0} [] R 30
1 > 1 (lower altitudes), but differ significantly fop < 1 E

(higher altitudes). To check the effect of the initial condi- 06V 1

tions, we tried different initial Gaussian density distributions
corresponding to the same trail line density. We have found

that, after the time needed for the trail to diffuse over a diS'Figure 6. Disturbances of background density beyond the
tance several times the original size of the trail, the solution ;| perpendicular to the magnetic field (along[for v —

becomes virtually the same. 0.2, Ang = 104, t = 3.5 at the coordinatéy| = 20 located
Equation (4b) involves no time derivatives, so that for- well beyond the trail].

mally ¢,.s needs no initial condition. However, the FlexPDE
application requires setting initial conditions for all vari-
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Figure 3. Typical structure of plasma density (a) and residual potential (b). kete0.05, § = 45°, Ang = 1000, and
t = 2.3 (the background density corresponds:ite- 1 and the initial time for the self-similar solutiag = 1).
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Figure 4. Contours of trail density in the, y-plane fory) = 0.05, Ang = 50, t = 6: (a): self-similar solution, (b): simulation.
Maximum densities in the trail centet,,,, are shown.
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Figure 8. Plasma density (a) and residual potential (by at 0 for ¢) = 0.05, 8 = 1°, Any = 1000, andt = 20 (b). The
solid curves show simulation results, while dashed curves show the exact solutions for the field-alignéd=césegiven
by Eg. (10) for the samény. The SSS for the density distribution given by Eq. (B1) is also shown in (a) by a dot-dashed

curve, but is undistinguishable from simulations.
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Figure 7. Contours of residual potential for a small but finite
angle between the trail axis and magnetic fiéld: 5° (¢ =
0.05, Ang = 1000). Left panel:t = 14.5, full box. Right
panel:t = 2.5, only central region shown.

ables. In our simulations, we usually set &ips(to) = 0.

We tested that after a rather short time, the solver automat-
ically sets up a time-dependent spatial distributionypf;
which proves to be independent of the initial condition for
(bres-

While we have simulated trail evolution for different an-
glesd betweern° and90°, we have focused on the strictly
perpendicular cas#, = 90°, 1 = 0, because our analyti-
cal theory applies best to this case. Boe= 90°, there is
a mirror symmetry along both theandy axis allowing us
to only simulate a half-box alonB (y < 0) with boundary
conditions aty = 0 given by zero derivatives of both and
(bI‘ES'

In order to model different stages of trail diffusion, for
each set of parametefisand, we performed overlapping
runs by varying the initial peak densities fram, = 10* to
Ang = 10. We finished each run at= 40 — 500, so that the
box size along: (|zmax| = 30-60) remained at least several
timeso,(t) and the half-box size along |ymax| = 1000—
3000, was always at least two orders of magnitude larger
thano,(t). This is necessary because electric fields prop-
agate enormous distances aldBg The smally cases re-
quired much more time and resources than thosg of 1
because higher anisotropies and stronger gradients develop.
On a 3GHz Pentium 4 Windows-based PC, our runs lasted
from several hours (fof = 90°, ¢ = 10, Ang = 10) to
more than two weeks (fat = 45°, ¢ = 0.05, Ang = 10%,
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full box). FlexPDE intrinsic restrictions have not allowed us gradual isotropization and acceleration of diffusion to the
to simulatey) < 0.05. unmagnetized ambipolar rate result from the sharp decrease

Our simulations with different ang|es have shown that forWlth time of the residual electric field (Feature 2) This re-
sufficiently large angles) > 15°, the simulated density and duction is because currents from the background plasma pro-
residual potential look very similarly to the casefof 90°. vide quasineutrality, instead of requiring trail electrons to
Figure 3 shows typical plasma density and residual potentiafollow the ions as assumed by the SSS. The resulting diffu-
plotted over the small fraction of the simulation box near-sion is mainly determined by the pressure gradient acting on
est the trail a short time after the simulation begins. Fig-the ions which are unaffected by the magnetic field.
ure 4 compares an example of the trail density contours in Feature 2 The extension of the residual potential along
the z, y-plane corresponding to the SSS (a) and to the fullB, due to high parallel electron mobility, and the deep po-
simulation (b) after the trail has diffused to several times itstential minimum in the trail center formed by anisotropic
initial radius. Our simulations have revealed the following ambipolar trail diffusion are independent of the existence
major features of large-angle trail diffusion: of background plasma and appear in the SSS. However,

1 Initially, the plasma density distribution within the the two maxima seen in the residual potential distribution

trail closely follows the anisotropic (fop < 1) SSS. At alongz, see Fig. 3(b), result from particle fluxes originat-
a later stage, the trail remains roughly Gaussian in each ding in the trail and extending into the background iono-
rection but becomes more isotropic and diffuses faster thagPhere. The electron and ions fluxes have different and
does the SSS as shown in Fig. 4. The transition to nearhpighly anisotropic patterns, though the divergences of the
isotropic diffusion usually takes place while the peak den-two fluxes remain equal. Well beyond the trail, these patterns

sity remains much larger than the background density. have a quadrupole-like structures providing current closure.
2 The residual electric potential spreads alangell To drive the return currents, the background ionosphere de-

beyond the trail, see Fig. 5, with spatial gradients alongveIOps potential gradients which oppose those within the

y much less than those along Along z it has a non- trail, i.e., those responsiplefor thgz trail diffusion. This gives
monotonic symmetric structure with a deep minimum at the!1S€ © the two symmetric potential bumps around the deep
trail center and two symmetric maxima around it, as showrPOtential minimum and draws background plasma into the
in Fig. 3(b). At the later stage, when the trail diffusion be- il €dges.

comes nearly isotropic, the residual electric field becomes Simulations of trails with smaller angle,< 15°, shows

much smaller than if the density had followed the SSS.  the density closely follows the SSS for a rather long time.
3 Beyond the trail, where the trail density becomes Within the trail area, the contours of constant density and

much less than the background density, the residual electripotential are rotated in the, y-plane due to the electron
field extending alondd may substantially disturb the den- Hall drift as seen in the right panel of Fig. 7. This feature is
sity as shown in Fig. 6. The field evacuates plasma fronsimilar to that found earlier in simulations with a small box
the region that maps alorB back to the trail's potential LLyatskaya and Klimqvl988]. Beyond the trail, however,
maxima. As a result, the disturbance of background plasmghe potential is extend_ed alongas in the large-angle case,
evolves in antiphase to the potential distribution with a max-S€€ the left panel of Fig. 7. A& decreases, the two-bump
imum atz = 0 and two symmetric minima roughly where structure of the residual potential becomes less pronounced,

the residual potential has the two maxima, as visible on thélthough itis still visible even &t = 1° as shown in Fig. 8.
edge of Fig. 3(a). In our simulations, the maximum cen-As? decreases furtheft,— 0, the two-bump structure grad-

tral density compression more than doubled the undisturbed2!ly disappears, and the residual potential and trail density
background density, while the depletions reached about goggPProach the exact analytical solution for the purely field-

of that. These strong disturbances were reached near tfigned casef = 0°,
trail when the peak trail density was at least several orders In(1 + An)
of magnitude larger than the background density as shown Pres = — ——>, (10a)
in Fig. 6 1+9

g. 6.

We will discuss these features in the companion paper ) 2

. . .. L. Nhn (]- +1/))T

by Dimant and Oppenbheitithis issue], when describing our An = —— | (10b)
. - . . 4mngDt 4Dt

analytical theory. Here we only give brief explanations of
some features. wherer? = z2 + y2. The residual potential given by

Feature 1 In the later stage, when the peak exceeds thé=g. (10a) has one deep minimum and no bumps, as seen
background density by less than a few hundred times, théh Fig. 8(b). Note that for) < 1 andf > 1°, the trail re-
mains nearly isotropic but with a significantly broader spa-
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tial distribution of the density and residual potential thandiffusion whenp(t) ~ ¥~t/(1 + ¢) < 1, the near-zone

those given by Eq. (10). potential can be approximated by the piece-wise function,
4. Summary of Analytical Results 60 (o)~ — T FHE i In( O] <o,
2(1+4) & i (b)) > o,
In this section, we summarize our major analytical results (16)

from the companion paper lyimant and Oppenheitfthis wherer(z,t) = z[y/Dp(t)]*/? andnq ~ 2 [ln(l/p(t))]1/2.
issue]. The analytical theory has been developed for suffiat the |ater diffusion stages(t) > 1, the near-zone potential
ciently larged whenQ ~ sin® 0/©3 > 1, with the electron g approximately given by

Hall term neglected. The trail density maintains an approxi-

mately anisotropic Gaussian form throughout its evolution, 0 (zt) = 1
T 21+ w)p(t)
top(t 1 2 g2
Anrvai(z,y,t) = Ang (;ZE;;) exp [— L (Zé) n ytﬂ . § { — 2A<p)A<f>) L 42(52 a
V1+4X(p +4A(p
(11)
To account for the time-dependant and anisotropic diffusion + (3=2X(p)n*) S(nv/1+ 4)\(p))} },
rates, we use a time-varying parametét) that is deter-
mined by solving where
1 14 _ [@\/? w4 (m) }
= S(n)=—|— ! fl—)+1], 18
vt p+1+¢1n<1+ 7 p), (12) (1) 5 e erf | 3 (18)
or given explicitly by s
p+ecp’
W (he(I+d)vt+vy _ Ap) = () , (19a)
p(t) = (e )= (13) =07 bp + dp?

1+ ’

0+ N )1/2 (19b)

where Alp) = (9,0 +Gp? + Np?

2mng(Te + T;) sin 6 (14)
! V(1 +9) NineB andb ~ 122.7, ¢ ~ 1.52, d ~ 54.74, N =~ 14:67, G =~
29.7. For largep(t), in Egs. (17) to (19) [but not in Egs. (11)
andW (z) is the Lambert W-functionQorless et al.1996].  and (15)!], one should replageby 5 andn by 7j(z,t) =
The time-dependent parametewhich represents amas- z[y/Dj(t)]'/?, where
ter parameter of our analytical theory, is discussed in detail
in the companion paper. Here we note that it is proportional _ 1 14+ P 1/2
to the square of the trail effective size in the perpendicu- P= p{ [1 + 1+ v)p In <1 + ") )} 14+ ¢}
lar to B direction ). It characterizes a transition from an
anisotropic diffusion of the trail at early timp,< 1, where  For g > 1, the second term in the braces of Eq. (17) with
p(t) = ~t /(1 + 1), to a nearly isotropic diffusion at late p,n — p, 7, is small compared t§(7;) and can be neglected.
time, p(t) > 1, wherep(t) ~ ~t.
By eliminating the time dependence from Egs. (12) and5. Comparison of Theory and Simulations

(11), one can express the peak Gaussian dewSity,., =
Anrean(0,0,1), in terms ofp(t), In this Section, we compare our simulations with the an-

alytical theory summarized above. We will focus on trails at
-1 altitudes corresponding t6 = 0.05-0.2 and wherf = 90°.
1+ o .
ANpeax = {2@0 \/p [(1 + ) p+1n (1 S pﬂ } . Inthe early stage of dense-trail diffusign 1, the analytic
¥ solution given by Eq. (11) is close to the self-similar solution
(15)  (SSS) given by Eq. (B1). The density distribution from the
The residual potentiabres(,y,t) defined in Eq. (1) is simulations shows a nearly Gaussian peak similar to both,
also determined in terms @f(¢). In the near zone, where as seen in Fig. 9(a). However, a&) increases with time
ly| < (QDt)'/?, the potential is practically-independent, and becomes of order unity, the analytic solution given by
bres(,y,t) ~ ¢2 (z,t). In the earlier stage of dense-trail Eq. (11) starts deviating from the SSS and becomes closer to
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Figure 9. Trail density distribution along for ¢ = 0.2. (a): Ang = 10*,¢ = 10, p ~ 1.4 x 1073. (b): Ang = 1000, t = 20,
p =~ 0.5. (C): Ang = 100, t = 10, p = 5.38. (d): Ang = 10, t = 20, p ~ 160. Solid curves: the numerical solution; dotted
curves: the self-similar solution, Eq. (B1); dashed curves: the analytical solution, Eq. (11).
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Figure 11. Residual potentials at = 0, ¢°..(x,

numerical solutions, while dashed and dot-dashed curves show the analytical solutions according to different equations. (a
Ang = 10%,t = 10, p ~ 1.4 x 103, dashed curve corresponds to Eq. (16). (b}, = 1000, t = 20, p ~ 0.5, dashed curve
corresponds to Eq. (17) with — p. (c): Ang = 100, t = 10, p =~ 5.38, dashed curve corresponds to Eq. (17) with- p,

dot-dashed curve corresponds to Eq. (17) with 3. (d): Ang = 10, t = 20, p =~ 160, dashed curve corresponds to Eq. (17)

with 5 — p, dot-dashed curve corresponds to Eq. (17) ith 68.
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Figure 10. Peak trail density vs. parametgr Eq. (13),
for v = 0.05. Points shown as alternating crosses, dia-
monds, boxes, and circles represent the numerical solutio
from several runs:Ang = 10%,103,100, 50, 30,10. For
each run, the consecutive points (from left to right) corre-
spond tot/to = 1,2, 3. ... Solid curve shows the analytical

ure 11 shows the residual potential alanfpr the same con-
ditions as in Fig. 9. Because the parametepans a broad
range of values from small to large ones we will apply ei-
ther Eq. (16) or Eq. (17). Figure 11(a) shows thatdex 1

the simple piece-wise approximation agrees reasonably with
simulations in all areas not too close to the two positive
bumps of the potential. Indeed, while there is a significant
difference between the values of the potential minimum at
x = 0, the potential derivative (the residual electric field) is
the same in the inner region characterized by the parabolic
dependence and occupied by the trail, see Fig. 9(a). On the
other hand, a good agreement also exists well beyond the
trail, where the residual potential decreases with increasing
|«| and the corresponding electric field changes its sign. The
zero-order piece-wise approximation is rough in the transi-
tional zone near the two potential maxima, where it has a dis-
continuity in the electric field. The maximum electric fields
in the piece-wise formula are reached near the discontinuity
Boints, approaching them from inside. The maximum elec-
tric fields in simulations are reached at some locations in
the inner region closer to the center and hence have smaller
values. Thus the simple analytical formula yields nearly cor-

solution given by Eq. (15). Dashed curve shows the SSSq glectric fields everywhere except the transitional zones

given by Eq. (B1).

the numerical solution, as illustrated in Fig. 9(b). Whet)
becomes largep > 1, the analytical theory shows an ex-

between the inner and outer regions, where it overestimates
the electric field magnitude. We have attempted modeling
the transitional electric field with higher-order interpolations
to provide a smooth transition, but this underestimated the
field. The error for the maximum electric field, however, re-

cellent agreement with simulations, while the SSS predicts #nains within less than forty percent for all our simulations.

noticeably slower diffusion, as shown in Figs. 9(c) and (d).
Figure 10 shows the peak trail densities ysaken from
the simulations, analytical theory, and self-similar solutio
The numerical solution is shown by separate groups o
points taken from several different runs. Each run started

n.

For p ~ 1, the theoretical expression given by Eq. (17)
agrees well with simulations practically in all locations, as

ustedp shows a significant discrepancy, as seenin Fig. 11(c)
nd (d), while Eq. (17) with the adjusted parameter p

geen in Fig. 11(b). As becomes large, Eq. (17) with unad-

to = 1 with different values of the initial peak trail density. according to Eq. (20) shows an excellent agreement. We em-

In each group, fcqnsecu_tw;z 2pomts co_lr_rhesr;_ond to_ equ“d'SiJhasize that the adjusted paramgtés only needed for the
tant moments of ime? = 1,2,3,.... e first point o residual potential and not for the trail density.

the group always lies on the dashed curve corresponding to ) . .
Eq. (B1) because the SSS was the initial condition for each . In th!s Sec“oﬁ' we showed the comparison of theory and
run. However, starting fromt = 2, the numerical points 5|mulat|ops mglnly for smalfw. .For larger values ofp,
closely approach the theoretical curve given by Eqg. (15),w % 1, simulations of tra_|l diffusion h"?“’e always shown a
while the SSS solution given by Eq. (B1) remains notice-remarkable agreement with the analytical theory.
ably offset. The theoretical curve overlays the numerical
points forp > 1, while for p < 1 it shows a slight devi-
ation from the numerical points (see the beginning of this
Section). The transition from an anisotropic diffusion to  |n this section, we will briefly discuss the limitations of
a more isotropic one occurs near the inflection point abouthe theory and simulations, then we will examine the im-
p = 1. Notice that this takes place when the trail peak den-pjications of our results for plasma instabilities. One limi-
sity remains well above the background plasma density, .gtation results from our assumption of constant electron and
Afiax ~ (Q0v/4) ™' = 80 for ¢ = 0.05. ion temperatures. However, the initially hot temperatures
Now we compare our simulations with the theoretical ex-of the newly produced meteor trail plasma require time to
pressions for the residual potential in the near zone. Figeool. The ions cool in only a few collisions but the electrons

6. Discussion



13

take much longer. This will impact the early stage diffusion. region conditions with lown, for a givenNy;,, are equiva-
We also assumed single species plasma dominated by NOlent to daytime conditions with a much larges requires a
and O] ions. However, meteor plasma includes multiple ion proportionally increasedV;;,, as illustrated in Fig. 12.

species Jones and Joned990; Chilson et al, 1996]. For- The strongest electric field occurs in the early diffusion

tunately, for the singly charged ions only the mass of speciestage, p <« 1, at the edge of the nearly parabolic re-

is important and the mass of Sis similar to NO" and . gion of the potential, Eq. (16). According to the definition

Even Fe is Only twice as heaVy, so the impaCt of haVing this of ¢resv Eq (:]_)7 the maximum value of the residual elec-

range of species should be limited. We assumed homogengc field (in real units) in this case is roughlE™x| ~

ity of the trail and background atmosphere along its path,[Dv In(1/p)/p]"?*mivin Je(1 + 1), where the diffusion co-

allowing us to model only a 2D cross-section of the trail. efficientD is defined by Eq. (5). In the later stage of trail dif-

This appears reasonable since trails typically extend kilomefysion wherp > 1, Eq. (17), withp — 5 ~ [1/(1+1)]*/2p

ters in this direction while they are only a few 10s of metersand neg|ected small second term in braces, gi\/es for the

wide in the perpendicular direction. However, the effects of 5 vimum field| Emax| ~ 0.37[(1+ ¢)/¢]3/4 (Dv/p)!/?

trail or atmospheric density irregularities, E-region fields, OF i Je(1 + 1)p. Simple analytic interpolation between

neutral winds could add inhomogeneitigsocking 2004].  ihe two limits yields a formula

Also, our analytical model approximates meteor trail diffu-

sion where the angle between the trail dads larger than - Dy 0.27 (140 3/21 /2

a few tens of degrees, i.e., for the great majority of mete] E5'**| ~ % {2 In [1 +— <) ] }

ors. For smaller angles, the neglected electron Hall terms e(1+v) P p ¥

become important. _ - . . (23)

. L _ . . which is roughly valid in the entire domain pf

The ambipolar electric field associated with trail diffu- . . .

sion may drive plasma instabilities responsible for observ- .NO.W we estimate the Farley-Buneman (FB) instability

able non-specular radar echoes. Now we estimate the drivingrlterlon [Farley, 1963; Buneman 1963]. For a homo-

field and instability threshold (for simplicity, for te— 90> 9eneous plasma, the simplest FB instability criterion, ob-

case). The driving field is determined by the total force act_tamed using the two-ﬂwd plasma model for sufficiently
ing on electronsEye. = — (T, + T))Vére.. Equations (16) long-wavelength waves, is given lbY0|2>_ (14)C; [Far-

to (20) give approximate analytical expressions for the resid—leY’ 1985]3 whereVy = E. x B/B 1'/52 the Eres Xlg
ual potential. These expressions depend ygongiven by drift velocity andCs = [(Te + Ti)/mi} /> = (Dvin)

Eq. (13) in terms ofy, Eq.(14), proportional to an effective is th_e ion—apoustic speed. Applying this criterion to the
trail-background interaction cross-sectiogy = Ny, /n0- maximum field given by Eq. (23), expressing the corre-

After a critical time,t = t.,, whenp(t.,) = 1, the residual sponding drift speed a|§f_0| - 6|E;‘na%|/m7"§.2?’ an(_d using
potential decreases drastically and the diffusion starts chan _CI;;X(G) and (9), we th/% the FB instability 9”‘91‘12 as
ing its character from the self-similar, sharply anisotropic,Er | > (1 +4)(Dvin) : (mig?/e)' . Ex.pressngz
diffusion to the nearly isotropic one. The critical time is in Ny, we reduce the FB instability criterion to

given by 3/2
L NueBK() o e[ ST e e
T B (T T Lo
where where
" 1420 p_ Qo (1+ )" (eB)* N (25)
K(y) = \/E [1+w+ln( m )} (22) B m(Te + T;) ming '

If this criterion is satisfied when the trail initially forms,

The critical transition time from anisotropic to isotropic then the instability starts generating plasma irregularities. If
diffusion is mostly relevant for high altitudes with < 1, the instability persists for the sufficient time, then turbulence
where the anisotropy of diffusion is clearly pronounced. Inwill develop and partially saturate through nonlinear pro-
this case, the functiokl () ~ /4 < N,,/B, whereN,, is  cesses. Becaugét) monotonically increases with time then
the neutral density. From Eq. (21) we see thatis prac- at some moment,= trg, the two sides of Eq. (24) become
tically independent of the magnetic field, making the high-equal. At this moment, the linear growth of the FB instabil-
and low-latitude diffusion evolve similarly. The altitudinal ity starts being replaced by linear damping and irregularities
dependence of.,, however, results from it variability with ~ will diffuse away. Att < tgp, the linear FB instability sus-
N,, and the background plasma density, Nighttime E-  tain plasma turbulence at a certain level, while at trg
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Figure 12. Altitudinal dependence of FB instability duratigpg for the equatorial E region during (a) daytimey(=
10"'m—?), where curve 1 is foV;;, = 10"*m~! and curve 2 is folV;;, = 10"°m~!, and (b) nighttime, = 10°m—3),
where curve 3 is forVy, = 10m~! and curve 4 is forVy,, = 10®>m~!. Curves 1, 2, 3, and 4 corresponddgr =
103, 10*,10°, and10%m?, respectively.

there is no more free energy to sustain the turbulence, sg. Summary
that irregularities will quickly disappear.

The instability duratiortyp depends critically upon the ~In this paper, we have described finite-element simula-
altitudinal parameter) and the effective trail-background tions of meteor trail diffusion and fields and compared these
interaction cross-sectiom.g = Ny, /no. Due to this, the results with an analytical theory developed in the companion
nighttime conditions with lows, will produce longer lived ~ Paper byDimant and Oppenheirfthis issue]. Unlike previ-
meteor trail than will the daytime conditions. Figure 12 0Us models, our simulations and theory applies to trails not
shows the altitude dependence of the instability duratipn  aligned with the geomagnetic field and includes both the trail
for several constant.s during daytime and nighttime con- and the background plasma in a region large enough to incor-
ditions. Notice clear peaks Gﬁ:B at some intermediate porate the current-closure area well beyond the trail. In our
altitudes which increase with.z. The non-specular echo Simulations, we have overcome the computational difficul-
boundary for a given trail, like that in Fig. 1, should roughly ties by employing FlexPDE, a finite-element PDE solver that
follow the altitude dependence of. However, because Uses adaptive cell structure. This has led to a better under-
column plasma density varies along the meteor trail and duétanding of meteor diffusion which should lead to improved
to other inhomogeneities, we expect more variability thanMethods of analyzing radar data in order to remotely retrieve
this model predicts. Measurements of the evolution of thénformation about meteors and the surrounding atmosphere.
trail echoes, in combination with other observations, should Our simulations and theory predict strong fields in the
enable us to retrieve useful information about meteors, ionodirection perpendicular t@B. These fields reverse direc-
sphere and atmosphere. Implementation of this procedurton just outside the trail, propagate a long distance along
requires better models of instability generation than thafB, modify diffusion rates, and can generate deep depletions
used above, as well as models of ablation and ionization tin the background plasma considerable distances aing
give improved estimates @¥;, [Dyrud et al, 2002, 2005].  Comparing the simulation results with those from our ana-

lytical theory described in the companion paper demonstrate
good quantitative agreement.

We also see a transition from a sharply anisotropic (for
1 < 1) diffusion to a nearly isotropic one as the effects of
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currents in the background plasma become important. WAppendix B: Self-Similar Solution of Meteor

predict that this transition time is proportional to the ratio of Diffusion

the meteor plasma density to the background density and de-

pends on the altitude (see Eq. 21). During the day, when the In this Appendix, we obtain explicit expressions for the
background ionospheric density is highy(~ 10° cm™3), meteor trail diffusion in the absence of ionospheric plasma.
this transition will occur in less than a second for most mete-This self-similar solution (SSS) was proposed in the general
ors, but at nighti¢y ~ 103 cm™3), it can take many seconds form by Jones[1991], but not found explicitly. We use the

to 10s of seconds. This is important for plasma instabilitiesSSS as initial conditions for our simulations and for compar-
responsible for non-specular radar echoes and for interpretson purposes. In our notations, the SSS density and residual

ing specular radar echoes as diffusion rates.
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Appendix A: List of Major Variables

potential take the form

Apa® + Ayyy® + Ayzy
4Dt ’

(B1)

Bew2? + Byyy? + B,
T Sy ¥ yxy—&—const, (B2)

SS t —
res (x7 y7 ) 4Dt
with positive diagonal coefficientd;;, B;; and

2 2

A2, B2,
Awcfyy > =%, BuByy > =%,

This form provides a unique and self-consistent solution to

(B3)

Below, in the tabular form, we list major non-standard no- Eg. (4) in an infinite and homogeneous neutral atmosphere

tations used in the text and figures. If the variable definition,iin 1o background plasma, provided the diffusion starts
is compact then we reproduce it in the left column. If the no-from an infinitely thin and dense plasma column with a

tation is cumbersome, we only cite in the right column thegiven |ine density. The electron Hall velocities give rise

original equation for the definition. In the right colume,

to the non-diagonal coefficientsi,, = B,,. Inequali-

i, andn stand for ‘electron’, ‘ion’, and ‘neutral’, respectively. iag given by Eq. (B3) mean that the contours of the con-

0 angle betweei and trail axis  stant density and the residual potential form ellipses in the

Qe,i = eB/me,i eandi gyrofrequencies _xy-plane, whose major axes are rotated with respect to the

Ven Vin e-nandi-n collision frequencies ;"5 axes through a common angje determined by

n=mn; ~ N quasineutral plasma densﬁy tan2y = Auy/(Ave — Ayy) = Buy/(Bew — Byy). By

ng background plasma density  555ming conserved total line densit,, the constant’

An=n/ng—1 relative density disturbance (B1) becomes

Ang initial trail density

Niin plasma trail line density (4450 Ayy — Aiy)l/z Niin

D= (T, +T;)/mivin diffusion coefficient, Eq. (5) = 81D ng B4

i, T, Tey : aqgefllux densltlles, Ba- () por arbitrary anisotropic particle mobilities, it is hard to ob-

‘bges(xv y) residual potential, Eq. @) tain explicit analytical expressions for the coefficierts
0.(x) ¢res iN NEAT ZONEY| < /QDI

w = VenVin/QeQi

Q = cos®  + S0
0

= /1 cosf/Og

Oy = (meVen/miVin)l/Q

2

altitude parameter, Eq. (6) and B;; [Jones 1991]. However, under lower E/upper D-

- o region conditions, when electrons are strongly magnetized,
e-mobility parameter, Eq. (7)  hile jons are unmagnetized, one can obtain such expres-
electron Hall parameter, Eq. (8)sions. After cumbersome but straightforward algebra we ob-
critical angle (in radians), Eq. (3pin
trail density parameter, Eq. (14) A

p(t) trail diffusion parameter, Eq. (13) “* U+ Boay Ay =14 By, Awy = Bay, (B9)
p(t) adjustedo(t), Eq. (20) 9 29,2

n(x,t) = [v/Dp(t)]*/?x | renormalized:-coordinate vz = Q 2+ Q+¢) 2+ /LQ @ w)Q,

e, t) = [v/Dp()] V2 | adjusted;(z, 1) Qv2+Q+v) +u* (@ +9)

no ~ 2[In(1/p(t))]*/2 auxiliary parameter, Eq. (16) _ Y2+ Q+Y) +24°(Q+ ) (B6)
S(n), A(p), A(p) auxiliary functions, Eq. (18). QR+ Q+ ) + 2 (Q+v)

B o 22+ Q+Y)(Y-Q)
QU2+ Q+ )2+ u2(Q+ )P
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The rotational anglg is determined byan 2y = 2+/4 cos 6/[(2-Bronshten, V. A. (1983),Physics of Meteoric Phenom-
Q +1)Oy]. These general expressions cover all angles from eng Reidel Publishing Company, Dordrecht-Boston-

6 = 0° (field-aligned trail), wher) = ¢, By, = By, = Lancaster.

1/, Byy = 0, 1060 = 90° wheny = 0. Buneman, O. (1963), Excitation of field aligned sound
Assumingsin® 6 > v.,, /Q. = ©9+/4), we obtain much waves by electron streani@hys. Rev. Lett10, 285-288.
simpler expressions for the coefficieris, : Ceplecha, Z., J. Borovicka, W. G. Elford, D. O. Revelle,

. R. L. Hawkes, V. Porubcan, and M. Simek (1998), Me-
B - o 4 teor phenomena and bodi&pace Science Revigvid,
oy 327-471.
p 1+ cos’f (1 + 00529> (B7) Chapin, E., and E. Kudeki (1994), Plasma-wave excitation
vy Q o sin2 6 ’ on meteor trails in the equatorial electrojggophys. Res.
9, sin2 0 20 Lett, 21, 2433-2436.
p sin i ) .
Byy = — 0 v - cos 6. Chilson, P. B., P. Czechowsky, and G. Schmidt (1996), A
o comparison of ambipolar diffusion coefficients in meteor
The non-diagonal coefficientsl,, = B,,, are small com- trains using VHF radar and UV lidaGeophys. Res. Lett.
pared toA,, (but not necessarily td&,,!), A,, ~ 1 and 23, 8937-8949.
By, < 1. The rotation angley is small, [tan2x| ~  Close, S., S. M. Hunt, M. J. Minardi, and F. M. McK-
2Wen, cos /(€ sin® §). Becaused?, < 4A,,A,, we have een (2000), Analysis of Perseid meteor head echo data
12 collected using the Advanced Research Projects Agency
DN <1 sin29> 88) Long-Range Tracking and Instrumentation Radar (AL-
~ 47 Dng W ) TAIR), Radio Science35, 1233-1240.
) o o Corless, R. M., G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey,
The res@ual potenugl is strgtched_alopg the coordipate and D. E. Knuth (1996), On the Lambert W Function,
accord with the qualitative discussion in Sect. 2. Adv. Comput. Math5, 329-359.

To the same accuracy, the particle fluxes are given by  pimant, Y. S., and G. M. Milikh (2003), Model of anoma-

T Yo lous electron heating in the E region: 1. Basic the-
Pew =Tz = %" (@, 9,1), ey =Tiy = %" (x,9,1), ory, J. Geophys. Res108, CitelD 1350, doi: 10.1029/
. 2002JA009524.
T, =0, r,, = — {le (“m0> n(z,y,t). (B9) Dimant, Y. S., and M. M. Oppenheim (2004), lon thermal
Ven 2t effects on E-region instabilities: linear theody,Atmos.

The flux components in both andy directions are equal Terr. Phys, 66, 1639-1654.

for electrons and ions. The only disparity is in the flux com- Dyrud, L. P., M. M. Oppenheim, and A. F. vom Endt (2001),
ponent along the-axis due to electron Hall velocity. The The anomalous diffusion of meteor traitSgophys. Res.
net electric current is directed along the trail axis with the Lett, 28, 2775-2778.

current density Dyrud, L. P., M. M. Oppenheim, S. Close, and S. Hunt
Q. [ 2sind (2002), Interpretation of non-specular radar meteor
J, = — ( )nss(x7y7t)_ (B10) trails, Geophys. Res. Lett29, 2012, doi: 10.1029/
Ven \ 2t 2002GL015953.

This simple expression allows one to estimate the magneti®yrud, L. P,, L. Ray, M. Oppenheim, S. Close, and K. Den-
field perturbations caused by the trail and the contribution ney (2005), Modelling high-power large-aperture radar
of the induction field to the electric field. For the trail peak ~ Meteor trails,). Atmos. Solar-Terr. Phy$67, 1171-1177,

densitynmax < 1017 m~!, the induction electric field will doi: 10.1016/}.jastp.2005.06.016.

be negligible. Elford, W. G., and M. T. Elford (2001), The effective dif-
fusion coefficient of meteor trails above 100 kmBS8A
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