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Abstract. Multivariate Cryptography is one of the main candidates for
creating post-quantum cryptosystems. Especially in the area of digital
signatures, there exist many practical and secure multivariate schemes.
However, there is a lack of more advanced schemes, such as schemes for
oblivious transfer and signature schemes with special properties. While,
in the last years, a number of multivariate ring signature schemes have
been proposed, all of these have weaknesses in terms of security or effi-
ciency. In this paper we propose a simple and efficient technique to extend
arbitrary multivariate signature schemes to ring signature schemes and
illustrate it using the example of Rainbow. The resulting scheme pro-
vides perfect anonymity for the signer (as member of a group), as well as
shorter ring signatures than all previously proposed post-quantum ring
signature schemes.
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1 Introduction

Cryptographic techniques are an essential tool to guarantee the security of com-
munication in modern society. Today, the security of nearly all of the crypto-
graphic schemes used in practice is based on number theoretic problems such as
factoring large integers and solving discrete logarithms. The best known schemes
in this area are RSA [22], DSA [13] and ECC. However, schemes like these will
become insecure as soon as large enough quantum computers are built. The rea-
son for this is Shor’s algorithm [24], which solves number theoretic problems like
integer factorization and discrete logarithms in polynomial time on a quantum
computer. Therefore, one needs alternatives to those classical public key schemes
which are based on hard mathematical problems not affected by quantum com-
puter attacks (so called post-quantum cryptosystems).
Besides lattice, code and hash based cryptosystems, multivariate cryptography is
one of the main candidates for this [4]. Multivariate schemes are in general very
fast and require only modest computational resources, which makes them attrac-
tive for the use on low cost devices like smart cards and RFID chips [5,6]. How-
ever, while there exist many practical multivariate standard signature schemes



such as UOV [14], Rainbow [9] and Gui [21], there is a lack of more advanced mul-
tivariate schemes such as schemes for oblivious transfer and signature schemes
with special properties.
Ring signature schemes allow a user to sign messages anonymously as a member
of a group R. The verifier can check, if the message was indeed signed by a mem-
ber of the group, but has no means to reveal the concrete identity of the signer.
Therefore, ring signature schemes are an important tool to secure the privacy
of the users. In the last years, a number of multivariate ring signature schemes
have been proposed [19,31,28,27]. However, as we find, all of these schemes share
certain weaknesses with regard to efficiency or security.
In this paper, we present a new general technique to extend multivariate signa-
ture schemes to ring signature schemes. By doing so, we obtain a much simpler
construction for multivariate ring signature schemes, which is therefore much
easier to understand and analyze than previous constructions. By applying our
technique to Rainbow, we obtain a ring signature scheme whose ring signatures
are not longer than standard signatures of many other post-quantum signature
(e.g. lattice, hash based) schemes. Furthermore, due to the efficiency of the Rain-
bow scheme, our scheme is very fast.
The rest of this paper is organized as follows. Section 2 reviews the concept of
ring signatures and discusses the basic security notions. In Section 3 we give
an overview of multivariate cryptography and introduce the Rainbow signature
scheme, which is one of the best studied and most efficient multivariate signature
schemes. Furthermore, in this section, we consider the existing multivariate ring
signature schemes and analyze them with regard to security and performance.
Section 4 presents our technique to extend multivariate signature schemes such
as Rainbow to ring signature schemes and discusses the security of our con-
struction. In Section 5 we give concrete parameter sets for our scheme based
on Rainbow, while Section 6 presents an alternative construction of multivari-
ate ring signatures reducing key and signature sizes. In Section 7 we describe
a technique to reduce the public key size further. Section 8 deals with the im-
plementation of our scheme and presents performance results, whereas Section
9 compares our construction with other existing ring signature schemes (both
from the classical and the post-quantum world). Finally, Section 10 concludes
the paper.

2 Ring Signatures

Ring signature schemes as proposed by Rivest, Shamir and Tauman in [23] allow
a signer to sign a message anonymously on behalf of a group R = {u1, . . . , uk}
of possible signers. The receiver of a signed message can check, if the message
was indeed signed by a member of the group, but can not reveal the concrete
identity of the signer. For example, the group of signers could be the set of em-
ployees of a company. By verifying the ring signature of a signed document (e.g.
a bill), the receiver can ensure that it really was signed by an employee of the
given company. By hiding the identity of the actual signer, ring signatures make



therefore an important contribution to secure the privacy of the signer.
The concept of ring signatures is closely related to group signatures. However,
while, in a group signature scheme, there exists a group manager who can, in
the case of a controversy, connect a group signature to the actual signer, such a
function does not exist in a ring signature scheme. Therefore, a ring signature
scheme provides full anonymity to the signers (as members of the group).
Another related notion is that of threshold ring signatures. A threshold ring
signature allows a verifier to check if, for any given number s ∈ {1, . . . , k}, at
least s members of the group R contributed to a signature. A basic ring signa-
ture scheme is therefore a special case of a threshold ring signature scheme with
s = 1. Threshold ring signature schemes on the basis of multivariate polyno-
mials have been proposed in [19,31]. However, by restricting to the case of ring
signatures, we can reduce the key and signature sizes of the scheme drastically.

Formally, we can define a ring signature scheme RS as follows [3].
Let R = {u1, u2, . . . , uk} be a group (called ring) of users. A ring signature
scheme consists of the three algorithms KeyGen, RingSign and Verify.

– KeyGen(1λ): The probabilistic algorithm KeyGen takes as input a security
parameter λ and outputs a key pair (sk, pk). In a ring signature scheme, this
algorithm is performed by every user ui ∈ R.

– RingSign(d, ski, {pk1, . . . , pkk}): The (probabilistic) algorithm RingSign

takes as input the message d to be signed, the secret key ski of one user ui
and a list of the public keys {pk1, . . . , pkk} of all users uj ∈ R. The algorithm
outputs a ring signature σ for the message d on behalf of the ring R.

– Verify((d, σ), {pk1, . . . , pkk}): The deterministic algorithm Verify takes as
input a message/signature pair (d, σ) and a list of public keys {pk1, . . . , pkk}.
It outputs TRUE, if σ is a valid ring signature for the message d on behalf
of the ring R, and FALSE otherwise.

We assume that the ring signature scheme RS is correct, i.e.

Pr[Verify((d, RingSign(d, ski, {pk1, . . . , pkk}), {pk1, . . . , pkk}) = 1

for all i ∈ {1, . . . , k}.

The basic security criteria of a ring signature scheme are anonymity and un-
forgeability.

– Anonymity: The receiver of a signed message should not be able to detect
the concrete identity of the signer. More formally, anonymity can be defined
using the following security game.

Game[Anonymity]:

1. The algorithm KeyGen is used to generate k key pairs ((sk1, pk1), . . . , (skk, pkk)).
The set of public keys {pk1, . . . , pkk} is given to the adversary A.



2. The adversary A is given access to a signing oracle OS(i, d), which, on
input of an index i ∈ {1, . . . , k} and a message d returns a valid ring
signature σ for the message d on behalf of the ring R = {u1, . . . , uk}.
Hereby, in order to create the signature σ, the signing oracle OS uses
the secret key ski of the user ui.

3. A outputs a message d? as well as two indices i0 and i1 ∈ {1, . . . , k}. He
is given a signature σ ← RingSign(d?, skib , {pk1, . . . , pkk}), where b is
randomly chosen from {0, 1}.

4. The adversary A outputs a bit b′. He wins the game, if and only if b′ = b
holds.

The ring signature schemeRS is said to provide anonymity, if the advantage

AdvA = 2 · Pr[b′ = b]− 1

is, for every PPT adversary A, negligible.

– Unforgeability: Given a message d, an adversary A not belonging to the
ring R of legitimate signers is not able to forge a valid ring signature σ for
the message d on behalf of the ring R.
More formally, we can define unforgeability using the following game

Game[Unforgeability]:

1. The algorithm KeyGen is used to generate k key pairs ((sk1, pk1), . . . , (skk, pkk)).
The set of public keys {pk1, . . . , pkk} is given to the adversary A.

2. The adversary A is given access to a signing oracle OS(d), which, on the
input of a message d, returns a valid ring signature σ for the message d
on behalf of the ring R = {u1, . . . , uk}.

3. A is given a challenge message d?. He wins the game, if he is able to
produce a valid ring signature σ? for d? on behalf of the ring R.

The ring signature scheme RS is said to provide unforgeability, if the success
probability

PrA[success] = Pr[Verify((d?, σ?), {pk1, . . . , pkk}) = TRUE]

is, for any PPT adversary A, negligible.



3 Multivariate Cryptography

The basic objects of multivariate cryptography are systems of multivariate quadratic
polynomials (see equation (1)).
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The security of multivariate schemes is based on the

MQ Problem: Givenmmultivariate quadratic polynomials p(1)(x), . . . , p(m)(x)
in n variables x1, . . . , xn as shown in equation (1), find a vector x̄ = (x̄1, . . . , x̄n)
such that p(1)(x̄) = . . . = p(m)(x̄) = 0.

The MQ problem (for m ≈ n) is proven to be NP-hard even for quadratic
polynomials over the field GF(2) [12].

To build a public key cryptosystem on the basis of the MQ problem, one starts
with an easily invertible quadratic map F : Fn → Fm (central map). To hide
the structure of F in the public key, one composes it with two invertible affine
(or linear) maps S : Fm → Fm and T : Fn → Fn. The public key of the scheme
is therefore given by P = S ◦F ◦ T : Fn → Fm. The private key consists of S, F
and T and therefore allows to invert the public key.

Note: Due to the above construction, the security of multivariate public key
schemes is not only based on the MQ-Problem, but also on the EIP-Problem
(“Extended Isomorphism of Polynomials”) of finding the composition of P.

In this paper we concentrate on multivariate signature schemes. The standard
signature generation and verification process of a multivariate signature scheme
works as shown in Figure 1.

Signature generation: To generate a signature for a message d, the signer uses a
hash function H : {0, 1}? → Fm to compute the hash value w = H(d) ∈ Fm and
computes recursively x = S−1(w) ∈ Fm, y = F−1(x) ∈ Fn and z = T −1(y).
The signature of the message w is z ∈ Fn. Here, F−1(x) means finding one (of
possibly many) pre-image of x under the central map F .
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w ∈ Fm -S−1

x ∈ Fm -F−1

y ∈ Fn -T −1

z ∈ Fn
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P

Signature Verification

Fig. 1. General workflow of multivariate signature schemes

Verification: To check, if z ∈ Fn is indeed a valid signature for a message d,
one computes w = H(d) and w′ = P(z) ∈ Fm. If w′ = w holds, the signature is
accepted, otherwise rejected.

A good overview of existing multivariate schemes can be found in [8].

3.1 The Rainbow Signature Scheme

The Rainbow signature scheme [9] is one of the most promising and best studied
multivariate signature schemes. The scheme can be described as follows:
Let F = Fq be a finite field with q elements, n ∈ N and 0 < v1 < v2 < . . . < v` <
v`+1 = n be a sequence of integers. We set m = n− v1, Oi = {vi + 1, . . . , vi+1}
and Vi = {1, . . . , vi} (i = 1, . . . `).

Key Generation: The private key of the scheme consists of two invertible affine
maps S : Fm → Fm and T : Fn → Fn and a quadratic map F(x) = (f (v1+1)(x),
. . . , f (n)(x)) : Fn → Fm. The polynomials f (i) (i = v1 + 1, . . . , n) are of the form

f (i) =
∑
k,l∈Vj

α
(i)
k,l · xk · xl +

∑
k∈Vj ,l∈Oj

β
(i)
k,l · xk · xl +

∑
k∈Vj∪Oj

γ
(i)
k · xk + η(i) (2)

with coefficients randomly chosen from F. Here, j is the only integer such that
i ∈ Oj . The public key is the composed map P = S ◦ F ◦ T : Fn → Fm.

Signature Generation To generate a signature for a document d, one uses a
hash function H : {0, 1}? → Fm to compute the hash value w = H(d) ∈ Fm and
computes recursively x = S−1(w) ∈ Fm, y = F−1(x) ∈ Fn and z = T −1(y).
Here, F−1(x) means finding one (of approximately qv1) pre-image of x under
the central map F . This is done as shown in Algorithm 1.
It might happen that one of the linear systems in step 3 of the algorithm does



Algorithm 1 Inversion of the Rainbow central map

Input: Rainbow central map F , vector x ∈ Fm

Output: vector y ∈ Fn such that F(y) = x
1: Choose random values for the variables y1, . . . , yv1 and substitute these values into

the polynomials f (i) (i = v1 + 1, . . . , n).
2: for k = 1 to ` do
3: Perform Gaussian Elimination on the polynomials f (i) (i ∈ Ok) to get the values

of the variables yi (i ∈ Ok).
4: Substitute the values of yi (i ∈ Ok) into the polynomials f (i)

(i ∈ {vk+1 + 1, . . . , n}).
5: end for

not have a solution. In this case one has to choose other values for y1, . . . , yv1
and start again.
The signature of the document d is z ∈ Fn.

Signature Verification To check, if z ∈ Fn is indeed a valid signature for a
document d, one computes w = H(d) and w′ = P(z) ∈ Fm. If w′ = w holds,
the signature is accepted, otherwise rejected.

3.2 Multivariate Ring Signature Schemes

In the last years, a number of multivariate ring signature schemes have been pro-
posed [19,31,28,27]. In this section, we give an overview of the main constructions
and analyze them with regard to security and performance.

The schemes of Petzoldt et al. [19] and Zhang et al. [31]
These two schemes are threshold ring signature schemes, i.e. they allow the
verifier to check if a minimal number s of users contributed to the signature (1 ≤
s ≤ k). Both of the schemes are based on the multivariate identification scheme
of Sakumoto et al. [25], but use different techniques to extend the identification
into a signature scheme: In the case of [19] this is the Fiat-Shamir protocol, the
authors of [31] use the Γ -transformation. By both techniques it is possible to
obtain a threshold ring signature scheme whose security is only based on the MQ
Problem of solving a system of multivariate quadratic equations, which makes
the schemes provable secure. However, due to the additional functionality of a
threshold ring signature scheme, both schemes produce very long signatures. By
restricting to a simple ring signature scheme (i.e. s = 1), we can reduce the
signature length and improve the performance of the scheme drastically.

The scheme of L.L. Wang [27]
The ring signature scheme proposed by L.L. Wang in [27] is also based on the
multivariate identification scheme of Sakumoto et al. [25]. Each user ui (u =
1, . . . , k) chooses a vector si ∈ Fn as his private key and a multivariate quadratic



system Pi : Fn → Fm with Pi(si) = 0 as his public key. In order to generate a ring
signature for a message d, the signer produces for each user a transcript of the
identification scheme (using the ”secret” 0 for the non signers). Unfortunately,
the verifier has no means to check how many zero vectors were used during the
signature generation. Therefore it is possible for an adversary which is no member
of the ring and therefore does not know any of the private keys si to forge a valid
ring signature (using 0 for all the secret vectors si (i = 1, . . . , k)). Furthermore,
the scheme proposed in [27] contains only one round of the identification scheme,
enabling an adversary to forge a signature with probability 2

3 . Therefore, the
scheme of [27] does not provide any security at all.

The scheme of S. Wang et al. [28]
The scheme of S. Wang et al. is similar to our construction in the sense that
it provides a general technique to extend an arbitrary multivariate signature
scheme to a ring signature scheme. Therefore, as it is in the case of our con-
struction, the security of the resulting ring signature scheme is based on the
security of the underlying multivariate signature scheme. However, in our con-
struction, the ring signatures are generated in a much simpler and faster way.
To generate a ring signature with the scheme of [28], one needs k hash function
evaluations, 2k+1 evaluations of public keys and one signature generation of the
underlying signature scheme, while our scheme requires only k − 1 evaluations
of multivariate systems and one signature generation. During verification, [28]
requires k − 1 hash function evaluations and 2k − 2 evaluations of a multivari-
ate quadratic system, while our scheme needs only k evaluations of the public
key. Furthermore, these simple signature generation and verification algorithms
make our scheme much easier to understand and to analyze and lead to (slightly)
shorter ring signatures. Moreover, with regard to security, the paper [28] does
not take attacks against underdetermined multivariate systems (see Section 4.1
and 5 of this paper) into consideration. Therefore, especially for large sizes of
the group R, the authors of [28] overestimate the security of their scheme sig-
nificantly (or propose too small parameters).

4 Our Ring Signature Scheme

In this section we present our technique to extend arbitrary multivariate sig-
nature schemes such as UOV [14], Rainbow [9] and Gui [21] to ring signature
schemes. Whereas, in this section, we present our technique in a very general way,
we concentrate in the following sections on ring signatures based on the Rain-
bow signature scheme (see Section 3.1), which offers both good performance and
short signatures. Furthermore, the key sizes of Rainbow are acceptable and can
be further reduced by the technique of [18] (see Section 7).
Let R = {u1, . . . , uk} be a ring of users.

Key Generation: Each user ui generates a key pair ((Si,Fi, Ti),Pi) of the un-
derlying multivariate signature scheme. The public key P of the group is the



concatenation of all individual public keys, i.e. P = P1||P2|| . . . ||Pk, while each
user ui keeps Si,Fi and Ti as his private key ski.

Signature Generation: In order to sign a message d on behalf of the ring R,
a user ui uses a hash function H to compute the hash value w = H(d) ∈ Fm
of the message. He then chooses random vectors z1, . . . , zi−1, zi+1, . . . , zk ∈ Fn.
He computes

w̃ = w −
k∑

j=1

j 6=i

Pj(zj) ∈ Fm (3)

and uses his private key to compute a vector zi ∈ Fn such that P(zi) = w̃.
The ring signature for the message d is (z1, z2, . . . , zk) ∈ Fk·n.

Signature Verification: In order to check if (z1, z2, . . . , zk) ∈ Fk·n is indeed a
valid ring signature for the message d, the receiver computes the hash value
w = H(d) ∈ Fm of the message d and uses the public keys P1, . . . ,Pk to com-
pute

ŵ =

k∑
j=1

Pj(zj). (4)

If ŵ = w holds, the signature is accepted, otherwise it is rejected.

Remark: In case of an honestly computed ring signature (z1, z2, . . . , zk) ∈ Fkn
we have

ŵ =

k∑
j=1

Pj(zj) =

k∑
j=1

j 6=i

Pj(zj) + Pi(zi) = w − w̃ + w̃ = w. (5)

Therefore, an honestly generated ring signature is always accepted.

4.1 Security

In this section we analyze the security of our construction. We do not consider the
security of the underlying multivariate signature schemes in this paper and refer
to the original papers [14,21,17] for a security analysis of the different schemes.
Here, we concentrate on our construction of a ring signature scheme. For this,
we have to show the anonymity and unforgeability of the resulting scheme.

Anonymity

Theorem 1. Our construction provides perfect anonymity for the actual signer
as a member of the group, i.e. the final ring signature contains no information,
which member of the group generated the signature and even a computationally
unrestricted adversary can not reveal the identity of the signer.



Proof (sketch): We assume that R = {u1, u2} and perform Game[Anonymity]
(see Section 2) for this situation. Then we show that, independently of the fact
which secret key is used during the generation of the ring signature, the signing
oracle OS outputs each of the qn+v1 possible ring signatures of the message d?

with probability ≈ q−n−v1 . For each possible ring signature σ? of d? we therefore
have

Pr[σ?generated using sk1] = Pr[σ? generated using sk2] ≈ 1/2.

Therefore, an adversary can only guess whether σ? was computed with sk1 or
sk2 and his advantage is exactly 0 (independent from his resources).

Unforgeability To forge a ring signature with respect to a ring of signers
R = {u1, . . . , uk}, an attacker has to find a solution z1, . . . , zk of the equation

P1(z1) + P2(z2) + · · ·+ Pk(zk) = w. (6)

Basically, there are two possibilities to do this.

1. The adversary could proceed similar to a legitimate user of the ring signature
scheme and choose k − 1 random vectors z1, . . . , zk−1 ∈ Fn, compute w̃ =

w −
∑k−1
i=1 Pi(zi) and try to find a solution to the system Pk(zk) = w̃.

2. The adversary could try to solve the system (6) directly as an underdeter-
mined system of multivariate quadratic equations.

Note that the first case is equivalent to breaking an instance of the underlying
multivariate signature scheme. We do not consider this case here and refer to the
papers [14,21,17] for a security analysis of the various schemes, We assume that,
if we choose the parameters of our scheme according to the recommendations
given in these papers, our scheme is secure against attacks of this kind. Hence,
we concentrate in the following on the second case.
Unfortunately, solving equation (6) directly is not as hard as breaking the under-
lying scheme, where the attacker has to find a solution zk ∈ Fn of P‖(zk) = w̃.
The reason for this is that the system (6) is a highly underdetermined multivari-
ate quadratic system. For systems of this type we have to consider the following
two important results.

1. If the number of variables n in an underdetermined multivariate quadratic
system P of m equations is given by n = ω ·m, then a solution of the system
P can be found in the same time as finding a solution of a determined system
of m− bωc+ 1 equations [26].

2. If the number of variables n in the multivariate quadratic system P exceeds

n ≥ m(m+3)
2 , P can be solved in polynomial time [15].

In our parameter choice (see next section), we have to consider these two results.
Therefore, the parameters of our scheme depend not only on the required level of
security, but, since the number of variables in the public system P (6) depends
on k, also on the size of the ring R.



5 Parameters

In this section we give concrete parameter proposals for our ring signature
scheme. We define our scheme over the field GF(256) and instantiate it on the
basis of the Rainbow signature scheme of Section 3.1, which offers both good
performance and short signatures. The proposed parameter sets are obtained as
follows.

1. Direct attacks against the scheme should be infeasible, i.e. the parameters of
the scheme have to be chosen in such a way that the two attacks against un-
derdetermined quadratic systems mentioned in the previous section become
infeasible.

2. Attacks of the Rainbow type against the single systems P(zi) = wi (i =
1, . . . k) must be infeasible. With regard to this, we follow the results of [17].

As we find, for small numbers of k (e.g. k = 5), the parameters of our scheme
are very similar to the parameters recommended for Rainbow in [17]. For larger
values of k, attacks against underdetermined systems play an increasing role.
The resulting parameter sets and key sizes can be found in Table 1.

security level (bit) 5 users 10 users 20 users 50 users

80
parameters (16,17,15) (15,20,18) (14,26,24) (13,56,53)

public key size (kB) 191 551 2,095 40,588
signature size (bit) 1,920 4,240 10,240 48,800

100
parameters (25,21,19) (24,25,22) (22,31,28) (20,60,55)

public key size (kB) 432 1,206 3,921 52,312
signature size (bit) 2,600 5,680 12,960 54,000

128
parameters (36,23,20) (34,26,23) (32,33,29) (30,64,58)

public key size (kB) 680 1,708 5,522 70,180
signature size (bit) 3,160 6,640 15,040 60,800

Table 1. Proposed Parameters for our Ring Signature Scheme (F = GF(256); Rainbow)

As the table shows, especially for small values of k, the signature sizes of our
scheme are quite small. The size of a ring signature is of range several kbit and
therefore not longer than standard signatures of many other post-quantum (e.g.
lattice, hash based) signature schemes. However, for larger values of k, key and
signature sizes of our scheme increase significantly.

6 Alternative Construction of a Multivariate Ring
Signature Scheme

As can be seen from Table 1, the key sizes (especially the size of the public key)
increase drastically if the number of users in the ring gets larger. To avoid this,



we present in this section an alternative way to construct a ring signature scheme
on the basis of multivariate signature schemes such as Rainbow. In particular, we
use here instead of component wise addition of the single signatures component
wise multiplication. By doing so, we can prevent attacks against highly underde-
termined multivariate quadratic systems, since the degree of the corresponding
system becomes very large. Our alternative construction can be described as
follows.

Key Generation: The key generation of our alternative construction works just
as presented in Section 4. Each user ui generates a key pair ((Si,Fi, Ti),Pi) of
the underlying multivariate signature scheme. The public key P of the group is
the set of all individual public keys, i.e. P = {P1,P2, . . . ,Pk}, while each user
ui keeps Si,Fi and Ti as his private key ski.

Signature Generation: In order to sign a message d on behalf of the ring R, a
user ui uses a hash function H : {0, 1}? → {0, . . . , q − 1}m to compute the hash
value w = H(d) + 1m ∈ Fm of the message, where 1m is a vector with all entries
equal to one. He then chooses random vectors z1, . . . , zi−1, zi+1, . . . , zk ∈ Fn
satisfying

(Pj(zj))s 6= 0, j ∈ {1, . . . , k} \ {i}, s ∈ {1, . . . ,m}.

He computes

w̃ = w · (
k∏

j=1

j 6=i

Pj(zj))−1 ∈ Fm (7)

and uses his private key to compute a vector zi ∈ Fn such that Pi(zi) = w̃.
The ring signature for the message d is (z1, z2, . . . , zk) ∈ Fkn. Note that in equa-
tion (7) multiplication and inversion work component wise on the elements of
the corresponding vectors.

Remark: The reason of constructing the hash value of the document d in the
way shown above is to generate a hash value without zero elements. By doing
so we can ensure that all vectors wi have the same structure. This guarantees
the anonymity of the actual signer.

Signature Verification: In order to check if (z1, z2, . . . , zk) ∈ Fkn is indeed a
valid ring signature for the message d, the receiver computes the hash value
w = H(d) ∈ Fm of the message d and uses the public keys P1, . . . ,Pk to com-
pute

ŵ =

k∏
j=1

Pj(zj). (8)

If ŵ = w holds, the signature is accepted, otherwise it is rejected. Again note
that the multiplication works component wise.



Remark: In the case of an honestly computed ring signature (z1, z2, . . . , zk) ∈
Fkn we have

ŵ =

k∏
j=1

Pj(zj) =

k∏
j=1

j 6=i

Pj(zj) · Pi(zi) = w · (w̃)−1 · w̃ = w. (9)

Therefore, an honestly generated ring signature is always accepted.

6.1 Unforgeability

While the anonymity of our ring signature scheme can be shown exactly as in
Section 4.1., we here concentrate on the unforgeability. Similar to Section 4.1,
an attacker can try to forge a ring signature in two different ways:

1. The adversary could proceed similar to a legitimate user of the ring signature
scheme and choose k − 1 random vectors z1, . . . , zk−1 ∈ Fn, compute w̃ =

w · (
∏k−1
j=1 Pj(zj))−1 and try to find a solution of the system Pk(zk) = w̃.

2. The adversary could try to solve the system

P1(z1) · . . . · Pk(zk) = w

directly as an underdetermined system of multivariate equations.

Again, forging a ring signature by the first method is equivalent to breaking an
instance of the underlying multivariate scheme, which is, by our assumption,
infeasible.
When attacking our scheme in the second way, the attacker is faced with an
underdetermined system of multivariate polynomial equations. But, in contrast
to Section 4.1, this system is no longer quadratic, but the polynomials are, for a
ring of k users, of degree 2k. The methods to solve underdetermined quadratic
systems mentioned in Section 4.1 do not work in this case3. It is therefore infea-
sible for the attacker to forge a ring signature using this strategy. This means
that we do not have to increase the parameters of our scheme when the number
of users in the ring gets large. Beyond the significant reduction of key size this
also makes it much easier to add additional users to the ring.
Table 2 shows our parameter recommendations and resulting key and signature
sizes for our alternative construction of a multivariate ring signature scheme.

3 Of course, the attacker could try to transform the given system of high degree into
a quadratic one. However, even if the given system is very sparse, this increases the
number of equations and variables in the quadratic system drastically. Furthermore,
the ratio between the number of variables and the number of equations gets close to
1.



security level (bit) 5 users 10 users 20 users 50 users

80
parameters (v1, o1, o2) (17,13,13) (17,13,13) (17,13,13) (17,13,13)
public key size (kB) 125.7 251.4 502.7 1,257
signature size (bit) 1,720 3,440 6,880 17,200

100
parameters (v1, o1, o2) (26,16,17) (26,16,17) (26,16,17) (26,16,17)
public key size (kB) 294.9 589.7 1,179 2,949
signature size (bit) 2,6360 4,720 9,440 23,600

128
parameters (v1, o1, o2) (36,21,22) (36,21,22) (36,21,22) (36,21,22)
public key size (kB) 680.3 1,361 2,721 6,803
signature size (bit) 3,160 6,320 12,640 31,600

Table 2. Proposed Parameters for our alternative Construction of a multivariate Ring
Signature Scheme (F = GF(256); Rainbow)

7 Reduction of Public Key Size

In [18], Petzoldt et al. proposed a technique to reduce the public key size of the
UOV and Rainbow signature schemes. In particular, they were able to construct
a Rainbow key pair ((S,F , T ),P), where the coefficient matrix P of the public
key has the form (for Rainbow schemes with two layers)

D︷ ︸︸ ︷
B1

B2

C

︸ ︷︷ ︸
D1

Fig. 2. Structure of the public key P

Here we have D = (n+1)·(n+2)
2 and D1 = D − (o2+1)·(o2+2)−2

2 . The matrices

B1 ∈ Fm×D1 and B2 ∈ Fo2×(D−D1) can be arbitrarily set by the user. In partic-
ular, B1 and B2 can be chosen in a structured way which reduces the public key
size of the Rainbow scheme significantly.
Note that, when applying this technique to our ring signature scheme, we can
choose the same matrices B1 and B2 for all users u1, . . . , uk. By doing so, we
can reduce the public key size of our scheme by up to 68 % (see Table 3).

Furthermore, when choosing the matrices B1 and B2 in a cyclic way, we can
speed up the evaluation of the Rainbow public key by up to 60 % [20]. Since this
step is used both in the signature generation and verification processes of our
scheme, both processes can be sped up drastically (see Table 4).



security level (bit) 5 users 10 users 20 users 50 users

80

parameters (17,13,13) (17,13,13) (17,13,13) (17,13,13)
public key size (standard) (kB) 125.7 251.4 502.7 1,257
public key size (reduced) (kB) 47.3 93.8 186.7 465.5

reduction (% ) 62.4 62.7 62.9 63.0

100

parameters (26,16,17) (26,16,17) (26,16,17) (26,16,17)
public key size (standard) (kB) 294.9 589.7 1,179 2,949
public key size (reduced) (kB) 99.5 197.3 393.0 980.2

reduction (%) 66.3 66.5 66.7 66.8

128

parameters (36,21,22) (36,21,22) (36,21,22) (36,21,22)
public key size (standard) (kB) 680.3 1,361 2,721 6,803
public key size (reduced) (kB) 219.4 435.9 868.8 2,168

reduction (%) 67.7 68.0 68.1 68.1

Table 3. Possible Reduction of Public Key Size

8 Implementation and Efficiency Results

In this section we present our results regarding the efficiency of our construction.
To generate a ring signature on behalf of a ring R = {u1, . . . , uk} of k members,
a user ui has to perform

– k − 1 evaluations of public systems Pi and
– 1 Rainbow signature generation.

The verification process of our scheme consists of k evaluations of the Rainbow
public keys P1, . . . ,Pk.
Since both the evaluation and inversion of Rainbow systems are very efficient,
our scheme offers good performance. By using structured public keys (see last
section), we can speed up our scheme further (see Table 4).
To study the efficiency of our construction in practice, we created a straight-
forward C implementation of Rainbow and our ring signature scheme and ran
it for the parameter sets proposed in Section 5. Table 4 shows the results. In
each cell, the first number shows the running time of the signature generation /
verification process of the standard scheme, while the second number shows the
corresponding timings for the structured scheme.

9 Discussion

Especially for small values of k, our ring signature scheme is very efficient. In
this case, the resulting ring signatures are not larger than standard signatures of
other post-quantum signature schemes such as lattice and hash based construc-
tions.
However, when the number of users in the ring R increases, key sizes and signa-
ture sizes of our scheme increase significantly.



security level (bit) 5 users 10 users 20 users 50 users

80
parameters (16,17,15) (15,20,18) (14,26,24) (13,56,53)

sign. generation (ms) 13.31 / 9.15 28.73 / 17.31 58.98 / 37.04 1225 / 738.0
sign. verification (ms) 10.81 / 5.08 26.23 / 13.54 50.51 / 27.42 1200 / 703.0

100
parameters (25,21,19) (24,25,22) (22,31,28) (20,60,55)

sign. generation (ms) 16.04 / 10.30 41.07 / 23.81 123.80 / 68.10 1580.32 / 905.4
sign. verification (ms) 12.75 / 5.57 35.55 / 16.38 115.97 / 57.35 1547.69 / 859.0

128

parameters (36,23,20) (34,26,23) (32,33,29) (30,64,58)
sign. generation (ms) 27.56 / 17.54 58.97 / 32.00 175.37 / 88.94 3177.13 / 1706
sign. verification (ms) 20.03 / 7.70 50.43 / 20.45 163.22 / 72.24 3110.79 / 1610

Table 4. Running Times of Signature Generation and Verification

Another disadvantage of the first version of our scheme is that it is very difficult
to add additional users to the ring R, since this might made it necessary to
change the parameters. One therefore has to fix the maximal number kmax of
users in the ring R a priori and choose the parameters of the scheme according to
kmax. This problem can be solved by switching from addition to componentwise
multiplication (see Section 6). Table 5 shows a comparison of our scheme with
other (post-quantum and classical) ring signature schemes.

scheme our [29] [16] [7] [1] [2] [10]

5 users
pk size (kB) 47.3 1.3 179 147 751 1.0 1.0

sign. size (bit) 1,720 26,000 301,546 659,632 6,973,251 7,810 15,820

50 users
pk size (kB) 465.5 12.5 1,785 7,513 15,020 9.8 9.8

sign. size (bit) 17,200 260,000 3,015,462 6,596,320 69,732,510 78,100 158,200

mult. lattice mult. lattice code RSA DL
Threshold Ring Signatures

Table 5. Comparison of our scheme with other ring signature schemes (80 bit security)

As the Table shows, our scheme outperforms the other post-quantum ring
signature schemes in terms of signature size. In this sense, it can also compete
with the RSA and DL based constructions of [2] and [10]. On the other hand,
the key sizes of our scheme are much larger than those of the classical and the
lattice based construction of [29].
Furthermore, there exist some pairing based constructions of ring signature
schemes, which offer a sublinear signature size [11]. For large values of k, the ring
signatures of these schemes are significantly smaller than those of the above con-
structions. However, these schemes can be easily broken by quantum computers.
Therefore, our scheme offers the shortest ring signatures of all post-quantum
constructions.



10 Conclusion

In this paper we proposed a new multivariate ring signature scheme on the basis
of the Rainbow signature scheme [9]. However, we can construct our scheme
on the basis of every other multivariate signature scheme such as UOV and
HVEv-, too. Our scheme is one of the first multivariate signature schemes with
special properties and one of few candidates for post-quantum ring signatures.
The scheme is very efficient, especially when the number of users in the ring
is small, and produces the shortest ring signatures of all existing post-quantum
constructions.
Future work includes the development of other multivariate signature schemes
with special properties such as blind and group signatures.
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