
Multi-level Access in Searchable Symmetric
Encryption

James Alderman∗, Keith M. Martin,
and Sarah Louise Renwick†

Information Security Group, Royal Holloway, University of London
Egham, Surrey, TW20 0EX, United Kingdom

{James.Alderman, Keith.Martin}@.rhul.ac.uk
{SarahLouise.Renwick.2012}@live.rhul.ac.uk

Abstract. Remote storage delivers a cost effective solution for data storage.
If data is of a sensitive nature, it should be encrypted prior to outsourcing to
ensure confidentiality; however, searching then becomes challenging. Search-
able encryption is a well-studied solution to this problem. Many schemes only
consider the scenario where users can search over the entirety of the encrypted
data. In practice, sensitive data is likely to be classified according to an ac-
cess control policy and different users should have different access rights. It is
unlikely that all users have unrestricted access to the entire data set. Current
schemes that consider multi-level access to searchable encryption are predom-
inantly based on asymmetric primitives. We investigate symmetric solutions
to multi-level access in searchable encryption where users have different access
privileges to portions of the encrypted data and are not permitted to search
over, or learn information about, data for which they are not authorised.

1 Introduction

Searchable encryption (SE) enables a user to search over encrypted data that has been
outsourced to a remote server. In some schemes [3, 4, 8, 17–19], the data owner may
authorise multiple users to make search queries — in such cases, a querier is either
authorised to search over the entirety of the data or not at all, in which case (ideally)
no information about the outsourced data should be revealed. In practice, the access
control requirements of outsourced data sets are likely to be more fine-grained than
this binary ‘all or nothing’ approach; hence existing schemes do not suffice.

We study the problem of enforcing a multi-level access control policy (MLA) in
the context of searchable symmetric encryption (SSE). As a notable example of this
form of data classification, the UK government uses three levels of data classification:
official, secret and top secret [15]. In our model, a user with ‘secret’ clearance should
be unable to learn any information about data items classified as ‘top secret’, such as
whether they contain searched keywords or not. This is an example of an information
flow policy with a total order of security labels [1].

More precisely, consider a (possibly large) data set which is to be outsourced to
an external storage provider, which could be outside of the data owner’s trusted zone.

∗ Supported by the European Commission under project H2020-644024 “CLARUS" and
acknowledges support from BAE Systems Advanced Technology Centre.
† Supported by Thales UK and EPSRC under a CASE Award.

Although the provider has a business incentive to provide a storage and search service
to the client (and to any other users authorised by the data owner), the provider may
attempt to learn information about the sensitive data stored; in short, the storage
provider may be honest-but-curious. Hence, the data must be encrypted prior to
outsourcing, and the search procedure should not reveal unintended information to
the storage provider or to other unauthorised entities. Each data item within the data
set may be associated with some keywords, over which searches may be performed.
Furthermore, each data item may differ in sensitivity and have different access control
requirements. The data owner may authorise additional users to search the data set
and, again, each user may have different access control clearance and therefore be able
to access or search different sets of data items. Let us define a set of security labels
L, which forms a totally ordered set (L,6) to reflect the inheritance of access rights.
Each user u and data item d is assigned one of these labels, denoted λ(u) and λ(d)
respectively. A user u may search a data item d if and only if λ(u) > λ(d).

Public-key encryption (PKE), especially functional encryption, has previously
been used to achieve MLA in SE [2, 10, 14, 20]. In general, PKE is computationally
more intensive than symmetric key encryption (SKE), perhaps making SKE more suit-
able for practical systems. The enforcement of MLA policies in symmetric SE has,
up to now, remained relatively unexplored. Kissel et al. [13] presented a SKE-based
scheme in which users are divided into groups that each have a specified dictionary
of keywords they may search over. These groups are arranged hierarchically so that
each group may also search for all keywords in dictionaries assigned to groups at lower
levels in the hierarchy. Although this scheme presents a form of hierarchical access in
SSE, users may still search over the entire data set. In most access control scenarios,
we are concerned with protecting a data item (i.e. the complete content of a data
item), not just a single keyword describing the data item. Furthermore, it may be
difficult to correctly administer an access control policy expressed only in terms of
authorised keywords; data items may gain their classification level due to semantic
meaning regarding their contents (for example, the subject to which they pertain),
which may not trivially be captured through the associated keywords. For example,
consider two data items containing information about company spending: one provid-
ing a public report of company-wide spending, whilst the other pertains specifically
to the research department. Whilst both items may be labelled by a keyword such
as ‘finance’, detailed knowledge of research spending may be deemed more sensitive
than a generalised report. Simply authorising users to search for keywords, such as
‘finance’, does not suffice in this instance as not all users that can search the public
report should also be able to view the specific report. The access control policy in this
case must be managed carefully — perhaps additional, more granular, keywords must
be defined e.g. ‘finance-public’ (leading to an increase in the size of the searchable en-
cryption index and a subsequent loss of efficiency) or a (less efficient) SE scheme that
supports ‘conjunctive keyword-only access control’ would be required such that one
can be authorised to search for (‘finance’ AND ‘public’) and only data items with both
keywords would be returned. In this work, we consider the problem of fine-grained
classification of data items directly and gain a more efficient solution.

In this work, we consider Multi-level Searchable Symmetric Encryption (MLSSE).
We begin in Section 2 by reviewing background material, before defining our system
and security models in Sections 3.1 and 3.2. In Section 3.3, we introduce our instantia-
tion based on the constructions of [8, 12], and then show, in Section 3.5, how to extend
our construction to support a dynamic data set using techniques from [12]. Section 3.6

discusses the efficiency of our scheme. The full security proofs of our constructions
are omitted but will be available in the full online version of our paper.

2 Background

We aim to enforce information flow policies within searchable encryption, which en-
compass a wide range of access control policies that are of practical interest, including
the Bell-LaPadula model, temporal, role-based and attribute-based access control [7].

Definition 1. An information flow policy is a tuple P = ((L,≤),U ,D, λ), where
(L,≤) is a partially ordered set (poset) 1 of security labels, U is a set of users, D is
a set of objects (data items), and λ : U ∪ D → L is a function mapping users and
objects to security labels in L. We say that u ∈ U is authorised to read (search) an
object d ∈ D if λ(d) 6 λ(u).

In this paper, we will focus on the case where (L,≤) is a total order (chain) giving
a simple hierarchy of security levels and, without loss of generality, we assume that
each user and object is assigned to at most one security label Given a set X, we
denote the power set of X, comprising all combinations of elements in X, by 2X .

Definition 2. A Multi-User Searchable Symmetric Encryption (MSSE) scheme is a
set of six polynomial time algorithms defined as follows:

– KO
$← MSSE.KeyGen(1κ): A probabilistic algorithm run by the data owner that

takes a security parameter κ ∈ N and outputs a secret key KO.

– (ID, stO, stS)
$← MSSE.BuildIndex(D,G,KO): A probabilistic algorithm run by the

data owner that takes a set of data items D, a set of authorized users G and the
secret key KO. It outputs an index ID, and server and owner states stS and stO.

– Ku
$← MSSE.AddUser(u,KO, stO) : A probabilistic algorithm run by the data

owner that takes the identity, u, of a user to be enrolled in the system along
with the owner’s secret key and state. It outputs a secret key for the new user Ku.

– tω ← MSSE.Query(ω,Ku)
2: A deterministic algorithm run by a user that takes a

keyword ω and the user’s secret key, and outputs a search token.

– Rω ← MSSE.Search(tω, ID, stS): A deterministic algorithm run by the server that
takes as input a search token, an encrypted index and the server state, and outputs
a set Rω of identifiers of data items containing ω.

– (stO, stS)
$← MSSE.Revoke(u,KO, stO): A probabilistic algorithm run by the data

owner that takes a user identity of a user to be revoked along with the data owner’s
secret key and state. It outputs new server and owner states.
For a data setD and keyword ω ∈ ∆ (where∆ is a dictionary of possible keywords),

let us denote by Dω the expected results of searching for ω in D (in the plain);
informally we say that an MSSE scheme is correct if it also produces the output Dω.
More formally, a MSSE scheme MSSE is correct if for all k ∈ N, for all KO output
1 A poset is a set of labels L and a binary order relation 6 on L such that for all x, y and
z ∈ L, x 6 x (reflexivity), if x 6 y and y 6 x then x = y (antisymmetry), and if x 6 y
and y 6 z then x 6 z (transitivity). If x 6 y then we may write y > x.

2 This algorithm is sometimes referred to as MSSE.Trapdoor in the literature, however to
maintain consistent notation throughout this paper we refer to it as MSSE.Query

by MSSE.KeyGen(1k), for all D ∈ 2∆, for all G ∈ 2U , for all (ID, stO, stS) output
by MSSE.BuildIndex(KO,G,D), for all ω in ∆: Search(MSSE.Query(Ku, ω), ID, stS) =
Dω.

Definition 3. A Broadcast encryption (BE) scheme is a set of four polynomial time
algorithms as follows, where U is the user space of all possible user identities:

– (PP,KBE)
$←BE.Keygen(1k): A probabilistic algorithm that takes a security pa-

rameter k outputs public parameters PP and a master secret key KBE.

– C
$←BE.Enc(M,G): A probabilistic algorithm that takes a plaintext M , a set of

users G ∈ U authorized to decrypt and produces a ciphertext C.

– Ku
$← BE.Add(KBE, u): A probabilistic algorithm that takes as input the master

secret key KBE and a user identifier u ∈ U , and outputs a user key Ku.

– (M or ⊥)←BE.Dec(C,Ku): A deterministic algorithm that takes a ciphertext C
and a secret key Ku and outputs either a plaintext M or a failure symbol ⊥.

BE is correct if ∀k ∈ N, for all PP and KBE output by BE.KeyGen(1k,m), for all M
in the plaintext space, all sets of users G ∈ U , every KU output by BE.Add(u,KBE)
and all C output by BE.Enc(M,G) where u ∈ G we have: M ← BE.Dec(C,Ku).

3 Multi-level Access in Searchable Symmetric Encrytion

A MLSSE scheme permits searching over encrypted data in the symmetric key setting
for multiple users that have varying access rights to the set of data items. The access
levels are hierarchical (totally ordered), meaning a user may search all data items at
their own access level as well as all data items that are classified at lower access levels.

3.1 System Model

Consider a data owner O, a server S, and a set of m data users U={u1, ..., um}. The
data owner possesses a set of data items D={d1, ..., dn} which they wish to encrypt
and outsource to S whilst authorising other users to search over some data items
within D. Each data item di ∈ D is associated with an identifier iddi .

To enable searching over the encrypted data, O must upload some encrypted meta-
data to the server. It first defines a dictionary of keywords, denoted∆ = {ω1, ..., ω|∆|},
and assigns a set δdi ⊆ ∆ of keywords to each data item di ∈ D. We refer to the set
of keywords for all data items as δD = (δd1 , ..., δdn). The data owner then produces
an encrypted index ID based on δD, over which searches will be performed.

O also defines an information flow policy P with a labelling function λ mapping
each user ui ∈ U and data item dj ∈ D to an access level, denoted λ(ui) and λ(dj)
respectively, in the totally ordered set L = {a1, ..., al}. Access control in our model
is enforced at data item level — users are restricted in the data items that they may
search, not the keywords they may search for [13]. A user with clearance λ(ui) is
authorised to search a data item with classification λ(dj) if and only if λ(dj) ≤ λ(ui).
To search for a keyword ω ∈ ∆, a user ui (with clearance λ(ui)) generates a search
query Tω,λ(ui). Let Dω be the set of identifiers of all data items assigned the keyword
ω, and denote by Dω,λ(ui) ⊆ Dω the search results that user ui is authorised to
view; in other words, the set of identifiers of all data items iddj assigned ω where
λ(dj) ≤ λ(ui).

To add and revoke users, we use broadcast encryption (BE) (Definition 3) as per [8];
a user may only produce a valid search query if they are authorized in the BE scheme.

To ease notation, we define the tuple diaug = (di, idi, δdi , λ(di)) to completely
describe a data item di ∈ D (being the data itself, the identifier, the associated
keywords and the security classification). We denote the information regarding all
data items by Daug = {d1aug, ..., dnaug}.

We present a structure only MLSSE system — we only consider the data structure
(index) and do not encrypt the data items themselves; data items may be encrypted
separately and retrieved based on the search results, which comprise a set of data item
identifiers that fulfil the query. We permit data items to be of any format and the sets
of keywords can be arbitrarily chosen from the dictionary — they may not necessarily
correspond to the actual content of the data, but could be descriptive attributes of
the data item. This may help minimise the risk of a statistical attack on the index as
the frequency of a certain word in a document is not necessarily reflected in the set
of keywords chosen to index the data item.

Definition 4. A Multi-level Searchable Symmetric Encryption Scheme (MLSSE) scheme
consists of six algorithms defined as follows:

– (KO, kS , PP)
$← KeyGen(1κ,P, S): A probabilistic algorithm run by the data owner

O that takes the security parameter κ, policy P and the server identity S, and out-
puts O’s secret key KO, a server key KS and public parameters PP .

– ID
$← BuildIndex(Daug,KO, PP): A probabilistic algorithm run by O. It takes the

description of the data set Daug and O’s secret key, and outputs the index ID.

– Ku
$← AddUser(u, λ(u),KO, PP): A probabilistic algorithm run by O to enrol a

new user into the system. It takes the new user’s identity and access level, and
O’s key, and outputs a secret key for the new user.

– Tω,λ(u) ← Query(ω,Ku): A deterministic algorithm run by a user with clearance
λ(u) to generate a search query. It takes as input a keyword ω ∈ ∆ and the user’s
secret key and outputs a query token Tω,λ(u).

– Rω,λ(u) ← Search(Tω,λ(u), ID, kS): A deterministic algorithm run by S to search
the index for data items containing a keyword ω. It takes a search query and the
index, and returns the search results Rω,λ(ui), comprising either a set of identifiers
of data items dj Dω,λ(u) containing ω such that λ(dj) ≤ λ(u) (where λ(ui) is the
access level of the user that submitted the search query), or a failure symbol ⊥.

– (KO)
$← RevokeUser(u,KO, PP): A probabilistic algorithm run by O to revoke a

user from the system. It takes the user’s id, the data owner’s and server’s secret
keys, and outputs updated owner and server keys.

An MLSSE scheme is correct if for all k ∈ N, for all KO,KS output by KeyGen(1k,P),
for all Daug, for all ID output by Buildindex(Daug,KO), for all ω ∈ ∆, for all u ∈ U ,
for all Ku output by AddUser(KO, u, λ(u), PP), Search(ID, Tω,λ(u)) = Dω,λ(u).

3.2 Security model

A secure MLSSE scheme would, ideally, reveal no information regarding the data
set D to the server (i.e. a curious server cannot learn information about the data
it stores) and reveal no information to users regarding data items that they are not

authorised to search. However, most SSE schemes leak additional information to gain
efficiency. For example, the search results {Rω1,λ(u), ...,Rωp,λ(u)} for a set of queries
{Tω1,λ(u), ..., Tωp,λ(u)} could be revealed. This is referred to as the access pattern (Def-
inition 5) and defines the link between a search query and the search results it pro-
duces; it may be thought of as a database where each row stores a search query and
a corresponding data item identifier of a data item that satisfies the search query.

Most efficient SSE schemes also leak the search pattern (Definition 6), which reveals
the set of search queries made to the server. In most single-user SSE schemes [5, 6, 8, 9,
11, 12], search queries are formed deterministically; the server can therefore ascertain
whether a search query has been made previously.

Definition 5. For a sequence of q search queries Ω = {Tω1,λ(u1), ..., Tωq,λ(uq)} where
for 1 ≤ i, j ≤ q: ωi and ωj or λ(ui) and λ(uj) are not necessarily distinct for i 6= j,
the access pattern is AP (ID, Ω) = {Rω1,λ(u1), ...,Rωq,λ(uq)}.

Definition 6. For a sequence of q search queries Ω = {Tω1,λ(u1), ..., Tωq,λ(uq)} where
for 1 ≤ i, j ≤ q: ωi and ωj or λ(ui) and λ(uj) are not necessarily distinct for i 6= j,
the search pattern is defined as a q×q symmetric binary matrix SP (ID, Ω) such that
for 1 ≤ i, j ≤ q: SP (ID, Ω)i,j = 1 ⇐⇒ Tωi,λ(ui) = Tωj ,λ(uj). Intuitively, the search
pattern reveals when the ith and jth queries are the same, which happens when queries
are issued for the same keyword by users with the same access level.

Definition 7. For an index ID we define the setup leakage LSetup(ID) to be all the
information that is leaked by the index ID.

Definition 8. For an index ID and set of q search queries Ω = (Tω1,λ(u), ..., Tωq,λ(u))
we define the query leakage LQuery(ID, Ω) to be all the information leaked by evalu-
ating the queries in Ω on the index ID,

We now formalise the notions of security we require in MLSSE. We use crypto-
graphic games to formalize our notions of security. For each game, a challenger C
instantiates a probabilistic polynomial time (PPT) adversary A whose inputs are
chosen to reflect the information available to a realistic adversary.

Multi-level Access Our first security notion, in Figure 1.1, is that of multi-level
access which requires that a user, u, cannot receive search results or learn information
relating to data items di such that λ(u) < λ(di). More specifically, a server colluding
with several users cannot learn anything about the index beyond the specified leakage
according to the corrupt users’ access rights.

We define a maximal query leakage with access level λ(ui)? on ID to be
Lλ(ui)

?

Query(ID, {Tωi,λ(ui)?}ωi∈∆) — this is the leakage resulting from every possible key-
word search with the maximal security level available.

The challenger sets up the system, including instantiating several global variables
(which the challenger can use in the main game and in oracle functions, but which
the adversary cannot see): L is a list of users that have been corrupted, λmax is the
maximal security label of any corrupted user, and chall is a Boolean flag to show
whether the challenge parameters have been generated yet. The adversary is given
the security parameter, access control policy, server key and the public parameters,
as well as providing access to the following oracles.

The AddUser oracle allows the adversary to enrol a user into the system, and the
adversary corrupts this user by receiving the user key. If the challenge has not yet
been generated, then the challenger adds the requested user to the list L of corrupted
users, checks if the maximal security label of corrupted users needs updating, and
runs the AddUser algorithm. Otherwise, if the challenge has been generated, the above
procedure is carried out only if the maximal query leakage for the new user’s security
label is equal on both challenge data sets — that is, providing the user key for the
queried user cannot allow the adversary to trivially distinguish the two data sets.

The RevokeUser oracle first checks that the requested user has indeed been added
previously. If so, it removes the user identity from L and checks whether the maximal
security label needs changing. It returns the server key resulting from running the
RevokeUser algorithm.

The BuildIndex oracle simply runs BuildIndex and returns the output to the adver-
sary.

After a polynomial number of queries, the adversary outputs two data sets which
must have identical maximal query leakages for the maximal security label of any cor-
rupted user. The adversary cannot choose data sets where a user that it has corrupted
could make any query that legitimately distinguishes the data sets since this would
count as a trivial win. Whilst this may appear to be a strong assumption, we believe
it to be the minimal assumption necessary to avoid trivial wins in the multi-user set-
ting. The main issue is that in the multi-user setting it is necessary to consider the
server colluding with a set of users (but not the data owner); as such, the adversary
is able to perform the roles of the server and of an authorised user, and therefore may
produce arbitrary queries and perform searches themselves. Thus, the challenger in
the game is unable to monitor which searches have been performed and hence cannot
determine whether the query leakages of the actual queries on both data sets are
equal, and instead must rely on the stronger assumption that no possible authorised
query can distinguish the data sets. Note that Van Rompay et al. [16] deal with the
multi-user case without this assumption since they deal with single word indexes and
have a proxy through which all queries are made.

The challenger sets the challenge flag to true and chooses a random bit b which
determines the data set used to form an index. The adversary is given the index and
oracle access as above and must determine which data set was used.

Definition 9. (Multi-level Access) Let ML be a multi-level searchable symmetric
encryption scheme where k ∈ N is the security parameter, P is an information flow
policy, and A a PPT adversary. The advantage of A is:

AdvMLA
A (ML, 1κ,P) = |Pr[ExpMLA

A [ML, 1κ,P] = 1]− 1

2
|.

We say thatML is (LSetup,LQuery)-secure against adaptive chosen keyword attacks in
the sense of Game 1.1 if for all A, all k ∈ N and all P, AdvMLA

A (ML, 1κ,P) ≤ negl(k)
for a negligible function negl.

Revocation Security In MLSSE, as with other multi-user SSE schemes, we need
to consider user revocation to remove a user’s ability to submit valid search queries
to the server, and hence receive search results. We capture this in Game 1.2. The
adversary is given the public parameters and selects a data set (along with associated

ExpMLA
A [ML, 1κ, S,P]:

L = ∅, λmax =⊥
chall = false

(KO, kS , PP)←$KeyGen(1k, S,P)
(Daug0 ,Daug1 , st)←$AO(1k,P, kS , PP)

if τmaxλmax(Daug0) 6= τmaxλmax(Daug1)

return ⊥
chall = true

b←$ {0, 1}
ID ←$BuildIndex(Daugb ,KO, PP)

b′ ←$AO(ID, st)
if b′ = b return 1

else return 0

Oracle AddUser(u, λ(u),KO, PP)

if chall = false

L← L ∪ {u}
if λ(u) > λmax

λmax ← λ(u)

return AddUser(u, λ(u),KO, PP)

else if τmaxλ(u) (Daug0) = τmaxλ(u) (Daug1)

L← L ∪ {u}
if λ(u) > λmax

λmax ← λ(u)

return AddUser(u, λ(u),KO, PP)

else return ⊥

Oracle RevokeUser(u,KO, PP)

if u /∈ Lreturn ⊥
L = L \ {u}
if λ(u) = λmax

for u′ ∈ L
if λ(u′) > λmax

λmax ← λ(u′)

(KO, PP)←$RevokeUser(u,KO, PP)

return PP

Game 1.1: The Multi-level Access game
access levels, keywords and identifiers). The challenger then creates the index. The
adversary is given access to a set of oracles that perform the AddUser(·, λ(·),KO, PP),
Search(·, ·, ID,KS) and RevokeUser(ui,KO,KS , PP) functions, where the parameters
represented by · are provided by the adversary, and the adversary is given the re-
sulting user keys and search results. Once the adversary has completed his queries,
the challenger revokes all users that were queried to the AddUser oracle but were not
subsequently queried to the RevokeUser oracle (i.e. all users for which the adversary
holds a valid user key). The adversary must then produce a query token T which,
when used as input to the Search algorithm, does not produce ⊥ i.e. the adversary
must produce a valid search query even though it does not hold a non-revoked key.

Definition 10. (Revocation) Let ML be a multi-level searchable symmetric encryp-
tion scheme where k ∈ N is the security parameter, P is an information flow policy
and A a PPT adversary. We define the advantage of A in Game 1.2 as:

AdvRevoke
A (ML, 1κ,P) = |P[ExpRevoke

A [ML, 1κ,P] = 1]− 1

2
|.

We say thatML achieves revocation if for all A, all k ∈ N and all P,

AdvRevoke
A (ML, 1κ,P) ≤ negl(k).

3.3 Construction

Our construction is an adaptation of the scheme of Kamara et al. [12], which is an
adaptation of the influential inverted index scheme SSE-1 by Curtmola et al. [8]. Our
notion of adaptive security is based on that of IND-CKA2 presented in [8].

ExpRevoke
A [ML, 1κ, S,P]:

(KO, kS , PP)←$KeyGen(1k, S,P)
(Daug, st)← A(1k,P, PP)

ID ←$BuildIndex(Daug,KO, PP)

st←$AO(st)

for all non-revoked u queried to O(AddUser)
(KO, PP)←$RevokeUser(u,KO, PP)

T ←$A(PP, st)

R← Search(T, ID, kS)

if R 6=⊥ return 1

else return 0

Game 1.2: The Revocation game
Informally, our MLSSE scheme uses an array A of linked lists, along with a look-

up table T to index the encrypted data. This produces a sequential search that lends
itself well to the hierarchical access rights on the data items that we require. For
each keyword ωi, we define a list Lωi which contains the identifiers for all data items
containing that keyword ordered according to the access level of the data items — data
items with the highest classification are placed at the beginning of the list, and those
with the lowest classification at the end. Each list Lωi

is encrypted and stored in A as
a linked list. During the search phase the look-up table T is used to point the server
to the correct node in the array depending on the information in the search query i.e.
which keyword was searched for and what access rights the user that submitted the
search query has. This node is decrypted using information in the search query and
the node itself, revealing the address of the next node in the linked list and the server
may continue to decrypt all other relevant nodes in the linked list, obtaining the set
of search results relevant to the user’s searched keyword and access level.

The key difference between our scheme and that of [12] is that, rather than pointing
to the beginning of each linked list, the entry in T will point to the appropriate position
within the linked list according to the access rights of the querier (recall that the list
is ordered by access levels). Since it is not possible to move backwards through the
encrypted lists, the only search results available are those contained beyond this point
in this list — that is, identifiers for those documents containing the keyword and whose
classification is at most that of the querier, as required by the information flow policy.

Let BE be an IND-CPA secure broadcast encryption scheme. We define the fol-
lowing pseudorandom functions (PRFs):

F : {0, 1}k × {0, 1}∗ → {0, 1}k,

G : {0, 1}k × {0, 1}∗ → {0, 1}∗,

P : {0, 1}k × {0, 1}∗ → {0, 1}k,

H : {0, 1}∗ × {0, 1}k → {0, 1}∗,

and a pseudorandom permutation (PRP):

φ : {0, 1}k × {0, 1}∗ × {0, 1}k × {0, 1}k → {0, 1}k × {0, 1}∗ × {0, 1}k,

A is a |∆| × |L| array and T is a dictionary of size |∆| · |L|. We denote the address of
a node N in A as addrA(N).

Let λ map users and data items to their relevant access levels as described in
Section 3.1. We define a function γ which outputs three ordered lists Lωi

,Xωi
and Nωi

given the set of identifiers Daug. We refer to the nth item in a list Lωi
as Li[n]. The

list Lωi
contains identifiers of data items in Dωi

ordered from the identifiers with the
highest to the lowest access levels, the list Nωi

contains |Lωi
| nodes chosen randomly

from A and the list Xωi contains the indices of the identifiers in Lωi where each access
level starts i.e. if we have an ordered list of identifiers Lωi = (id1, id2, id3, id4, id5)
where:

a1 = λ(id1) = λ(id2) = λ(id3) < λ(id4) = λ(id5) = a3.

We have that Xωi [3] = 4, which says that the list of nodes with access level at most
a3 starts at the fourth entry in Lωi

. There is an entry per each access level in Xωi
,

even if two access levels have the same starting point in Lωi
; from the example above

we can see that Xωi
[2] = Xωi

[3] = 4. If an access level is not authorised to view any
data items in Dωi

then the entry corresponding to that access level (as well as the
entries corresponding to all access levels below it) in Xωi is set to ⊥. An identifier of
a data item di ∈ Dωi will inherit the access level label of the respective data item, i.e.
λ(iddi) = λ(di).

(KO, kS , PP)←$KeyGen(1k, S,P)

for i ∈ |L|
kai,1, kai,2, kai,3 ←$ {0, 1}k

(PPBE, kBE)←$BE.KeyGen(1k, |U|)
stO ←$ {0, 1}k

G ← {S}
stS ←$BE.Enc(stO,G, kBE)
return

KO ← ({kai,1}i∈[|L|], {kai,2}i∈[|L|], {kai,3}i∈[|L|], kBE, stO)
PP = (P,G, stS , PPBE)

kS ←$BE.Add(kBE, S)

ID ←$BuildIndex(Daug ,KO, PP)

free← {addr(Ni)}[i∈|A|]
for 1 ≤ i ≤ |W|

(Lωi ,Xωi ,Nωi)← γ(Dωi)
free← free \ Nωi
for 1 ≤ j ≤ |Nωi | − 1

rj ←$ {0, 1}k

A[Nωi [j]]←
((

Lωi [j],Nωi [j + 1], Pkλ(Lωi [j+1]),3
(ωi)

)
⊕H

(
Pkλ(Lωi [j]),3

(ωi), rj
)
, rj

)

r|Nωi | ←$ {0, 1}k

A[Nωi [|Nωi |]]←
((

Lωi [|Nωi |], 0, 0)⊕H
(
Pkλ(Lωi [|Nωi |]),3

(ωi), r|Nωi |
)
, r|Nωi |

)

for 1 6 ` 6 |L|
if Xωi [a`] 6=⊥

T[Fka`,1(ωi)]←
(
Nωi

[
Xωi [a`]

]
⊕Gka`,2(ωi)

)

else

T[Fka`,1(ωi)]←⊥
return

ID ← (A,T)

(Ku, PP)←$AddUser(u, λ(u),KO, PP)

G ← G ∪ {u}
ku ←$BE.Add(kBE, u)

stS ←$BE.Enc(stO,G, kBE)
return

PP ← (P,G, stS , PPBE)

Ku ← (ku, kλ(u),1, kλ(u),2, kλ(u),3)

(KO, PP)←$RevokeUser(u,KO, PP)

stO ←$ {0, 1}k

G ← G \ {u}
return

KO ← ({kai,1}i∈[|L|], {kai,2}i∈[|L|], {kai,3}i∈[|L|], kBE, stO)
PP ← (P,G, stS , PPBE)

Tω,λ(u) ← Query(ω,Ku)

st′O ← BE.Dec(ku, stS)

if st′O =⊥
return ⊥

tω,λ(u) ← (Fkλ(u),1(ω), Gkλ(u),2(ω), Pkλ(u),3(ω))

return

Tω,λ(u) ← φst′
O
(tω,λ(u))

Rω,λ(u) ← Search(Tω,λ(u), ID, kS)

st′O ← BE.Dec(ks, stS)

Parse φ−1
st′
O
(Tω,λ(u)) as (τ1, τ2, τ3)

Rω,λ(u) ← ∅
if T[τ1] = ⊥

return ⊥
v2 ← 1

while v2 6= 0

Parse T[τ1]⊕ τ2 as y

Parse A[y] as (z1, z2)
Parse z1 ⊕H(τ3, z2) as (v1, v2)

Rω,λ(u) ←Rω,λ(u) ∪ {v1}
return Rω,λ(u)

Fig. 1: MLSSE construction
The KeyGen algorithm initialises the system and generates the keys KO, kS , along

with the public parameters, PP. The key KO includes the secret key for the BE and

the sets of |L| keys for each pseudo-random function: F,G and P and the key for the
pseudo-random permutation φ (referred to as the data owner’s state, stO). The server
is enrolled as user and its secret key is also generated (although it does not receive
the necessary keys to form search queries). PP includes the information flow policy
P, the authorized user group G, the server state stS (which is an encryption of the
owner state generated using BE) and the public parameters for BE, PPBE.

The BuildIndex algorithm initializes a set free which consists of all nodes in the
array A. BuildIndex considers each keyword contained in the dataset in turn. For each
keyword ωi, the function γ generates Lωi

,Xωi
and Nωi

. The node at addrA(|Lωi
|+ 1)

is set to 0 to mark the end of each linked list in the array. The nodes in the array that
form the linked lists consist of the identifier from Lωi

of a data item containing ωi,
the address in the array of the next node in the linked list and a random bit string
ri ∈ {0, 1}k. The identifier and address of the next node are XORed with the output
of a random oracle H in order to encrypt this information. The input of the random
oracle is generated using the secret key corresponding to an access level and keyword
(along with ri), hence the information stored in the node can only be decrypted by
the server if the server has a search query generated by a user who is authorized to
view the data item whose identifier is stored at that node. Once all the nodes for
a particular list Lωi have been created, the free list is updated by removing all the
nodes from it that have just been used to store Lωi

. BuildIndex then proceeds to create
the look-up table T. Unlike prior schemes [8], each user may have a different level of
access and thus the starting points for search results within the linked lists may vary;
a query made by a user with a higher access level should traverse more of the list
than that of a user with low access rights (the user is authorised to search more data
items). Table T has an entry for each access level/keyword pair containing the address
of a node in A, which is the node in the linked list Lωi

from which the user with a
specified access level is authorised to decrypt. If an access level is not authorised to
view any part of the linked list then the value in T is set to ⊥. Finally the index
ID = (A,T) is returned.

The AddUser algorithm grants a user ui the ability to search the index at a specific
access level. The user is added to the set G of authorized users and a BE key, kui , is
derived for the new user. The new user is given kui

and the secret keys associated
with their access level kλ(ui),1, kλ(ui),2 and kλ(ui),3.

The RevokeUser algorithm revokes a user’s search privileges. The user is removed
from G and a new value for stO is selected. This value is encrypted using BE to form
the new server state stS .

The Query algorithm generates a search query for a user ui to search for a keyword
wi. The user first attempts to decrypt the current server state stS using their secret
key kui

; we denote the output of a successful decryption by θ. Note that if ui is not
authorised then decryption will return ⊥. The query itself comprises three parts. The
first is the output of the PRF F applied to the keyword ωi, keyed with the secret key
for F associated with the user’s access level kλ(ui),1. This part of the query is used to
locate the relevant entry in T. The second part is the output of the PRF G applied
to the keyword ωi and is used to mask the entry in T in order to locate the relevant
the starting position in the linked list corresponding to ωi in A. The third part is the
output of the PRF P applied to the keyword ωi, which is used to decrypt the relevant
nodes in A according to the user’s access level.

The Search algorithm finds data item identifiers associated with the searched key-
word from the subset of data item identifiers the user is authorized to search. The

server decrypts stS and applies the inverse of the PRP φ to the query it received; it
parses the result as (τ1, τ2, τ3). The server then looks up entry T[τ1] and if that entry
is not equal to ⊥, the server XORs the value with τ2 and parses the resulting value
as y. The server looks up the node at A[y] and decrypts it using the output of the
random oracle (which takes as input τ3 along with ri).

The server is able to sequentially decrypt the rest of the list stored in A until they
reach a node where the address stored in that node for the next item in the linked
list is 0.

3.4 Security

In our MLSSE scheme, the search queries are indistinguishable across access levels: a
search query for a keyword ω from a user ui with access level λ(ui) is indistinguishable
from a search query for ω from a user uj with access level λ(uj) for λ(ui) 6= λ(uj).
This means that from the queries alone, an adversary is unable to deduce how many
times a certain keyword has been searched for overall, it can only deduce how many
times the same keyword has been searched for within each access level. However this
only holds in the absence of search results. An adversary who is able to see the search
results generated by a particular search query (access pattern) will be able to correlate
which search queries are for the same keyword and eventually build up a complete set
of search results for a particular keyword. As a search query for a keyword and access
level pair is created deterministically we can think of the search query as a codeword
for the combination of that keyword and access level. The index usually reveals these
codewords as a search is carried out by matching search queries to relevant codewords
in the index, we use a different notation in our leakage functions to distinguish when
we are referring to the presence of a search query or a codeword in the index; a
codeword for keyword ω at access level ai is denoted id(ω, ai).

This also leaks the hierarchical relationships between the data items i.e. which
data items are encrypted at a higher access level than others. The adversary can do
this by observing which sets are contained within other sets and which parts of the
index are accessed. It is not always the case that access levels are considered private
in access control systems so we do not view this as an issue.

In terms of access pattern, we reduce the amount of information leakage compared
with standard single-user or multi-user SSE schemes such as [5, 6, 8, 9, 11, 12]. In par-
ticular we do not reveal whether a data item contains the keyword ωi associated with
a search query unless the access level of that data item is less than or equal to that
of the user ui who generated the search query, meaning that an adversary cannot see
a full set of search results. However if the server receives more search queries for the
same keyword from users at different access levels then over time the server will be
able to view a full set of search results. We note that unless the search results are
padded in some way, this leakage is inevitable. Padding search results is not standard
in SSE schemes as it requires post-processing of the search results by the user. Like-
wise, we do not pad the search results in our system model in order to maintain an
efficient scheme.

We give the specific leakage functions to precisely capture the leakage in MLSSE,
where Ω is a set of queries from users in the system that have been evaluated on the
encrypted index by the server:

1. LSetup(ID) = (|A|, |T|, [id(ω, ai)]ω∈∆,i∈[|L|])

2. LQuery(ID, Ω) = (AP (ID, Ω), SP (ID, Ω), [id(ω, a)]∀Tω,a∈Ω , Ω)

Theorem 1. Given an IND-CPA secure broadcast encryption scheme BE, a pseudo-
random permutation φ, and pseudorandom functions F,G, P,H. Let MLSSE be the
searchable symmetric encryption scheme with multi-level access defined in Figure 1.
Then MLSSE is (LSetup,LQuery)-secure in the sense of multi-level access and revo-
cation.

We provide the intuitions of our security proofs here and refer the reader to the
full online version of the paper for the full security proofs.

Multi-level access: To show multi-level access we reduce the security to that
of the indistinguishability of the output of a PRF being indistinguishable from the
output of a truly random function. We assume the possibility of a adversary A that
is able to break the multi-level security of our scheme then we build a distinguisher
D that is able to use A as a subroutine in order to distinguish between the output of
a PRF and a truly random function with non-negligible probability.

Revocation: In this proof we show that if we assume an adversary A with non-
negligible advantage δ in Game 1.2 thenA can be used as a subroutine by an adversary
ABE to break the security of an IND-CPA secure broadcast encryption scheme BE.

3.5 Achieving dynamicity

The scheme of [12] achieves dynamicity by adding two new data structures to the
index: a deletion table (Td) and a deletion array (Ad). There are also four additional
algorithms: AddToken,Add,DeleteToken,Delete. Array Ad stores a list of nodes for
each data item which point to nodes in A that would need to be removed if the
corresponding data item was deleted. This means that every node in A will have a
corresponding node in Ad, which is called its dual node. Td is a table with an entry for
each data item which points to the start of the corresponding linked list in Ad, given a
valid delete token for that data item. In addition to these two new structures the index
consists of a search array As and a search table Ts (as in the original construction)
and a free list that keeps track of all the unused space in As.

In this scheme searching for a keyword is done similarly to our construction in
Section 3.3 and follows the concept of linked lists presented by [8]. As it does not
support multi-level access it is simpler than our construction and the look-up table
only has one entry per keyword and directs the server to the starting node in each
linked list during a search instead of having different starting points in the list for
each access level.

To add a data item to the index, changes need to be made to Td,As and Ad. The
data owner creates an add token using AddToken and sends this to the server. The
server then determines the free space available in As using the free list and adds the
relevant information to the free nodes and updates the free list. These new nodes now
need to be added to the appropriate linked lists in As according to the keywords the
new data item contains; the new nodes will be the last nodes in the respective lists
and the current last nodes in the linked list are modified to point towards the new
node instead of terminating the search.

In order to remove a data item, a deletion token is created which allows the server
to locate and delete the correct entries in Td. This, in turn, allows the server to locate
and delete the correct entries in As. Some nodes will need to be updated in As (as

some of the linked lists will have nodes which point to nodes that have been deleted)
and this is done using homomorphic encryption.

As our multi-level access construction is based on a modified version of this dy-
namic construction, we can easily apply our method for achieving multi-level access
to this construction in order to achieve a dynamic SE scheme with multi-level access.
We sketch the adaptations here and give a full construction in the the full online
version of our paper.

Carrying out a search query is done analogously to our construction in Section 3.3.
When adding a new data item the relevant nodes cannot be added to the end of

each linked list; instead we have to insert in the appropriate place in the linked list
according to the access level of the new data item. Information in the add token will
allow the server to locate the correct point at which to insert the nodes in each linked
list, so instead of the entry in Ts just pointing to the end node of each linked list this
is altered so that it points to the correct node in the linked list according to the access
level of the new data item. The respective predecessor of each new node is modified to
point to the new node instead of its previous ancestor. The free list is then updated.

The removal of a data item is done analogously to that of the original construction.
We see that using the techniques from our construction only the AddToken and

Add algorithms need to be changed in order to support a dynamic multi-level access
SE scheme.

3.6 Efficiency

In this section we discuss the efficiency of our multi-user construction compared with
the single-user construction of [12]. As our scheme is static and the scheme of [12] is
dynamic, we ignore the structures and algorithms in [12] that apply to the dynam-
icity, such as the deletion table, the deletion array and algorithms AddToken,Add,
DeleteToken,Delete.

The index is composed of a look-up table and a search array. No changes are made
to the search array that effect the time needed to generate it or the search time, but
the look-up table needs to be augmented by a factor of |L|; this will require more
space on the server but does not effect the search time.

We note that in terms of efficiency our construction is very similar to that of [12].
This is also true for the dynamic version of our construction.

4 Conclusion

We have defined a new system, security models and a construction for symmetric
solutions to searching on encrypted data in the multi-level setting. Users may search
for keywords within a set of encrypted data items, restricting the search to data items
they are authorised to view only. Future work will focus on increasing the range of
query types beyond that of single keyword equality search and to expand the access
control policies to arbitrary information flow policies.

References
1. E. Bell and L. La Padula. Secure computer system: Unified exposition and multics

interpretation. Technical report, Mitre Corporation, 1976.

2. J. Benaloh, M. Chase, E. Horvitz, and K. E. Lauter. Patient controlled encryption:
ensuring privacy of electronic medical records. In Proceedings of the first ACM Cloud
Computing Security Workshop, CCSW 2009, pages 103–114. ACM, 2009.

3. D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption
with keyword search. In Advances in Cryptology - EUROCRYPT 2004, International
Conference on the Theory and Applications of Cryptographic Techniques, volume 3027
of Lecture Notes in Computer Science, pages 506–522. Springer, 2004.

4. J. W. Byun, H. S. Rhee, H. Park, and D. H. Lee. Off-line keyword guessing attacks on
recent keyword search schemes over encrypted data. In Secure Data Management, Third
VLDB Workshop, SDM 2006, volume 4165 of Lecture Notes in Computer Science, pages
75–83. Springer, 2006.

5. Y. Chang and M. Mitzenmacher. Privacy preserving keyword searches on remote en-
crypted data. In Applied Cryptography and Network Security, Third International Con-
ference, ACNS 2005, volume 3531 of Lecture Notes in Computer Science, pages 442–455.
Springer, 2005.

6. M. Chase and S. Kamara. Structured encryption and controlled disclosure. In Advances
in Cryptology - ASIACRYPT 2010 - 16th International Conference on the Theory and
Application of Cryptology and Information Security, volume 6477 of Lecture Notes in
Computer Science, pages 577–594. Springer, 2010.

7. J. Crampton. Cryptographic enforcement of role-based access control. In Formal Aspects
in Security and Trust, volume 6561 of Lecture Notes in Computer Science, pages 191–205.
Springer, 2010.

8. R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryp-
tion: improved definitions and efficient constructions. In Proceedings of the 13th ACM
Conference on Computer and Communications Security, CCS 2006, pages 79–88. ACM,
2006.

9. E.-J. Goh. Secure indexes. IACR Cryptology ePrint Archive, Report 2003/216, 2003.
10. A. Kaci, T. Bouabana-Tebibel, and Z. Challal. Access control aware search on the cloud

computing. In 2014 International Conference on Advances in Computing, Communica-
tions and Informatics, ICACCI 2014, pages 1258–1264. IEEE, 2014.

11. S. Kamara and C. Papamonthou. Parallel and dynamic searchable symmetric encryption.
In Financial Cryptography and Data Security - 17th International Conference, FC 2013,
volume 7859 of Lecture Notes in Computer Science, pages 258–274. Springer, 2013.

12. S. Kamara, C. Papamonthou, and T. Roeder. Dynamic searchable symmetric encryption.
In The ACM Conference on Computer and Communications Security, CCS’12, pages
965–976. ACM, 2012.

13. Z. A. Kissel and J. Wang. Verifiable symmetric searchable encryption for multiple groups
of users. In Proceedings of the 2013 International Conference on Security and Manage-
ment, pages 179–185. CSREA Press, 2013.

14. M. Li, S. Yu, N. Cao, and W. Lou. Authorized private keyword search over encrypted
data in cloud computing. In 2011 International Conference on Distributed Computing
Systems, ICDCS, pages 383–392. IEEE Computer Society, 2011.

15. C. Office. Goverment security classifications. Technical report, 2013.
16. M. Onen, R. Molva, and C. Van Rompay. Multi-user searchable encryption in the

cloud. In Information Security - 18th International Conference, ISC 2015, volume 9290
of Lecture Notes in Computer Science, pages 299–316. Springer, 2015.

17. D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted
data. In 2000 IEEE Symposium on Security and Privacy, pages 44–55. IEEE, 2000.

18. W. Sun, S. Yu, and W. Lou. Protecting your right: Attribute-based keyword search with
fine-grained owner-enforced search authorization in the cloud. In 2014 IEEE Conference
on Computer Communications, INFOCOM 2014, pages 226–234. IEEE, 2014.

19. W. Sun, S. Yu, W. Lou, T. Hou, and H. Li. Protecting your right: Verifiable attribute-
based keyword search with fine-grainedowner-enforced search authorization in the cloud.
IEEE Transactions on Parallel Distributed Systems, 27(4):1187–1198, 2016.

20. Y. Yang. Attribute-based data retrieval with semantic keyword search for e-health cloud.
Journal of Cloud Computing: Advances, Systems and Applications, 4, 2015.

