Section 2 Eigenvalues and Eigenvectors of Square Matrices

1. The concept of eigenvalues and eigenvectors

Definition 1. Let A be a square matrix of order n. If there exist a number λ and a non-zero vector x such that $Ax = \lambda x$, then the number λ is called an eigenvalue of A, and the vector x an eigenvector of A corresponding to the eigenvalue λ .

For example,
$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
; hence,

2 is an eigenvalue of $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, and $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is an eigenvector

of
$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 corresponding to 2.

2. How to Find Eigenvalues and Eigenvectors

Since $Ax = \lambda x (x \neq 0)$, $(A - \lambda E)x = 0$.

Hence the system of homogeneous linear equations $(A - \lambda E)x = 0$ in λ has a non-zero solution.

In other words, values of λ should satisfy $|A - \lambda E| = 0$.

$$|A - \lambda E| = 0$$

$$\Rightarrow \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \end{vmatrix} = 0$$

$$a_{n1} \quad a_{n2} \quad \cdots \quad a_{nn} - \lambda$$

This is an n - th degree equation in λ , which will be called the characteristic equation of A.

Write $f(\lambda) = |A - \lambda E|$, which is a polynomial of degree n. $f(\lambda)$ will be referred to as the characteristic polynomial of A. It follows that there are n eigenvalues in the field of real numbers (repeated eigenvalue is counted as the multiplicty of the root).

Assume $\lambda_1, \lambda_2, \dots, \lambda_n$ are all the chracteristic roots. Then

$$|\lambda E - A| = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n)$$

On the other hand, by properties of determinants,

$$|\lambda E - A| = \lambda^n - (a_{11} + a_{22} + \dots + a_{nn})\lambda^{n-1} + \dots + (-1)^n |A|$$

Therefore, the following conclusions can be drawn:

(1)
$$\lambda_1 + \lambda_2 + \cdots + \lambda_n = a_{11} + a_{22} + \cdots + a_{nn};$$

(2)
$$\lambda_1 \lambda_2 \cdots \lambda_n = |A|$$
.

It follows that |A| = 0 iff $\lambda = 0$ is an eigenvalue iff Ax = 0 has a non - zero solution.

Find eigenvalues and eigenvectors of $A = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}$.

Solution. The characteristic polynomial of A is

$$\begin{vmatrix} 3-\lambda & -1 \\ -1 & 3-\lambda \end{vmatrix} = (3-\lambda)^2 - 1$$
$$= 8 - 6\lambda + \lambda^2 = (4-\lambda)(2-\lambda)$$

Hence the eigenvalues of A are $\lambda_1 = 2$, $\lambda_2 = 4$.

For $\lambda_1 = 2$, the corresponding eigenvectors should

satisfy that
$$\begin{pmatrix} 3-2 & -1 \\ -1 & 3-2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
,

or equivalently $\begin{cases} x_1 - x_2 = 0, \\ -x_1 + x_2 = 0. \end{cases}$

Solving the equations, we have $x_1 = x_2$.

For instance, $p_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is an eigenvector.

For $\lambda_2 = 4$,

$$\begin{pmatrix} 3-4 & -1 \\ -1 & 3-4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, i.e. \begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

We obtain $x_1 = -x_2$, and thus $p_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ is an eigenvector.

Example 2.

Example 2. Find eigenvalues and eigenvectors of $A = \begin{bmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{bmatrix}$. Solution.

The characteristic polynomial of A is

$$|A - \lambda E| = \begin{vmatrix} -1 - \lambda & 1 & 0 \\ -4 & 3 - \lambda & 0 \\ 1 & 0 & 2 - \lambda \end{vmatrix} = (2 - \lambda)(1 - \lambda)^{2},$$

and thus the eigenvalues of A are $\lambda_1 = 2$, $\lambda_2 = \lambda_3 = 1$.

For $\lambda_1 = 2$, solve the linear system (A - 2E)x = 0.

$$A - 2E = \begin{pmatrix} -3 & 1 & 0 \\ -4 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

A system of fundamental solutions is $p_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

Hence $k p_1(k \neq 0)$ are all the eigenvectors corresponding to the eigenvalue $\lambda_1 = 2$.

For $\lambda_2 = \lambda_3 = 1$, solve the system (A - E)x = 0.

$$A - E = \begin{pmatrix} -2 & 1 & 0 \\ -4 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix},$$

A system of fundamental solutions is $p_1 = \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}$.

 $k \ p_2(k \neq 0)$ are all the eigenvectors corresponding to the eigenvalue $\lambda_2 = \lambda_3 = 1$.

Example 3. Let
$$A = \begin{pmatrix} -2 & 1 & 1 \\ 0 & 2 & 0 \\ -4 & 1 & 3 \end{pmatrix}$$
.

Find the eigenvalues and eigenvectors of A.

Solution.
$$|A - \lambda E| = \begin{vmatrix} -2 - \lambda & 1 & 1 \\ 0 & 2 - \lambda & 0 \\ -4 & 1 & 3 - \lambda \end{vmatrix}$$
$$= -(\lambda + 1)(\lambda - 2)^{2}.$$

From
$$-(\lambda + 1)(\lambda - 2)^2 = 0$$
,
it follows that $\lambda_1 = -1$, $\lambda_2 = \lambda_3 = 2$.

For $\lambda_1 = -1$, solve (A + E)x = 0.

$$A + E = \begin{pmatrix} -1 & 1 & 1 \\ 0 & 3 & 0 \\ -4 & 1 & 4 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

We have a system of fundamental solutions

$$p_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

The eigenvectors corresponding to $\lambda_1 = -1$ are

$$k p_1 \qquad (k \neq 0).$$

For $\lambda_2 = \lambda_3 = 2$, solve (A - 2E)x = 0.

$$A-2E = \begin{pmatrix} -4 & 1 & 1 \\ 0 & 0 & 0 \\ -4 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} -4 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

A system of fundamental solutions is

$$p_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \qquad p_3 = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix},$$

The eigenvectors corresponding to $\lambda_2 = \lambda_3 = 2$ are

$$k_2 p_2 + k_3 p_3 \quad (k_2 k_3 \neq 0).$$

2. Properties of eigenvalues and eigenvectors

Theorem 1. If $\lambda_1, \lambda_2, \dots, \lambda_m$ are m distinct eigenvalues of A with corresponding eigenvectors p_1, p_2, \dots, p_m res., then p_1, p_2, \dots, p_m are linearly independent.

Proof. Let
$$x_1, x_2, \dots, x_m$$
 be such that $x_1 p_1 + x_2 p_2 + \dots + x_m p_m = 0$.
Then $A(x_1 p_1 + x_2 p_2 + \dots + x_m p_m) = 0$, and thus $\lambda_1 x_1 p_1 + \lambda_2 x_2 p_2 + \dots + \lambda_m x_m p_m = 0$.

Following the same reasoning, we have

$$\lambda_1^k x_1 p_1 + \lambda_2^k x_2 p_2 + \cdots + \lambda_m^k x_m p_m = 0. (k = 1, 2, \dots, m-1)$$

Merge them to write in the form of matrix.

$$(x_1 p_1, x_2 p_2, \dots, x_m p_m) \begin{pmatrix} 1 & \lambda_1 & \cdots & \lambda_1^{m-1} \\ 1 & \lambda_2 & \cdots & \lambda_2^{m-1} \\ \vdots & \vdots & & \vdots \\ 1 & \lambda_m & \cdots & \lambda_m^{m-1} \end{pmatrix} = (0, 0, \dots, 0)$$

The determinant of the second matrix on the left - hand side is the Vandemonde determinant whose value is non-zero for $\lambda_1, \lambda_2, \dots, \lambda_n$ are distinct.

Hence the matrix is invertible. As a result,

$$(x_1 p_1, x_2 p_2, \dots, x_m p_m) = (0, 0, \dots, 0),$$

i.e. $x_i p_i = 0 (j = 1, 2, \dots, m).$

From $p_j \neq 0$, it follows that $x_j = 0 (j = 1, 2, \dots, m)$. Thus p_1, p_2, \dots, p_m are linearly independent. Remarks.

- 1. The eigenvectors corresponding to distinct eigenvalues are linearly independent.
- 2. Every non-zero linear combination of eigenvectors corresponding to the same eigenvalue is still an eigenvector corresponding to the eigenvalue.
- 3. An eigenvector corresponds to a unique eigenvalue.

Otherwise, suppose that x is an eigenvector of A corresponding to two distinct eigenvalues λ_1, λ_2 then we have successively the following

$$Ax = \lambda_1 x, \quad Ax = \lambda_2 x$$

 $\Rightarrow \lambda_1 x = \lambda_2 x$
 $\Rightarrow (\lambda_1 - \lambda_2) x = 0,$

Hence x = 0 due to $\lambda_1 \neq \lambda_2$, which contradicts the definition of eigenvector.

Theorem 2. Let λ be an eigenvalue of A. Then

- (1) A^T and A have the same chracteristic polynomial, and thus the same chracteristic values.
- (2) $k\lambda$ is an eigenvalue of kA.
- (3) λ^m is an eigenvalue of A^m (*m* is an arbitrary positive integer).
- (4) $\varphi(\lambda)$ is an eigenvalue of $\varphi(A)$, where $\varphi(\lambda)$ is a polynomial in λ .
- (5) If A is invertible, then λ^{-1} is an eigenvalue of A^{-1} .
- (6) If $\lambda \neq 0$, then $\frac{|A|}{\lambda}$ is an eigenvalue of A^* .

Proof.

(1)
$$f_{A^T}(\lambda) = |\lambda E - A^T| = |(\lambda E - A)^T| = |\lambda E - A| = f_A(\lambda)$$
.

- (2) Let $Ax = \lambda x$. Then $(kA)x = k(Ax) = (k\lambda)x$, i.e. $k\lambda$ is an eigenvalue of kA.
- (3) From $Ax = \lambda x$ it follows that $A^2x = A(Ax) = A(\lambda x) = \lambda Ax = \lambda^2 x$.

Repeat this procedure by another m-2 times, we have $A^m x = \lambda^m x$, i.e. λ^m is an eigenvalue of A^m .

(4) Let
$$\varphi(y) = b_k y^k + b_{k-1} y^{k-1} + \dots + b_1 y + b_0$$
. Then

$$\varphi(A)x = (b_{k}A^{k} + b_{k-1}A^{k-1} + \dots + b_{1}A + b_{0}E)x
= b_{k}A^{k}x + b_{k-1}A^{k-1}x + \dots + b_{1}Ax + b_{0}x
= b_{k}\lambda^{k}x + b_{k-1}\lambda^{k-1}x + \dots + b_{1}\lambda x + b_{0}x
= (b_{k}\lambda^{k} + b_{k-1}\lambda^{k-1} + \dots + b_{1}\lambda + b_{0})x = \varphi(\lambda)x$$

(5) If A is invertible, then it is clear that $\lambda \neq 0$.

From $Ax = \lambda x$, it follows that $A^{-1}(Ax) = A^{-1}(\lambda x) = \lambda A^{-1}x$ and thus $A^{-1}x = \lambda^{-1}x$.

In other words, λ^{-1} is an eigenvalue of A^{-1} .

(6) Since $Ax = \lambda x$ and $A^*A = |A|E$,

$$A^*Ax = A^*\lambda x = \lambda A^*x = Ax$$

Therefore,
$$A^*x = \frac{|A|}{\lambda}x$$
.

