Section 1 Inner Product of Vectors

1

1. Definition and properties

Definition 1. Given two *n*-dimensional vectors

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix},$$

then $[x, y] = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$

is called the inner product of x and y.

Remarks.

- (1) Although the inner product of two n-dimensional vectors for $n \ge 4$ is a generlization of the same notion in the 3-dimensional space, it is no longer intepreted in an intuitive way as in the 3-dimensional space.
- (2) Inner product is a kind of operations on vectors. If both x and y are column vectors, their inner product can be denoted by $[x, y] = x^T y$.

Properties of inner product.

Let x, y, z be vectors of the same size and λ a number.

(1)
$$[x,y] = [y,x];$$

(2)
$$[\lambda x, y] = \lambda [x, y];$$

(3)
$$[x + y, z] = [x, z] + [y, z];$$

$$(4)[x,x] \ge 0$$
, and $[x,x] > 0$ iff $x \ne 0$.

2. The magnitude of a vector and its properties

Definition 2. Let $x = (x_1, x_2, \dots, x_n)$.

Then
$$||x|| = \sqrt{[x,x]} = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2}$$
,

is called the magnitude of x, or the norm of x.

The magnitude is of the following properties:

1. Non - negativity:

If
$$x \neq 0$$
, then $|x| > 0$; if $x = 0$, then $|x| = 0$.

2. Homogeneity: $\|\lambda x\| = |\lambda| \|x\|$;

3. Triangle inequality: $||x + y|| \le ||x|| + ||y||$.

Unit vectors and angles between vectors.

(1) If ||x|| = 1, then x is called a unit vector.

(2) If
$$||x|| \neq 0, ||y|| \neq 0$$
, then $\theta = \arccos \frac{[x, y]}{||x|||||y||}$

is called the angle beteen x and y.

Example. Find the angle beteen $\alpha = (1,2,2,3)$ and

$$\beta = (3,1,5,1).$$

Solution. Since
$$\cos \theta = \frac{\alpha \cdot \beta}{\|\alpha\| \|\beta\|} = \frac{18}{3\sqrt{2} \cdot 6} = \frac{\sqrt{2}}{2}$$
,

$$\theta = \frac{\pi}{4}$$
.

3. Normal Orthogonal bases

(1) Orthogonality

If [x, y] = 0, then x and y is called orthogonal.

By definition, the vector 0 is orthogonal to any other vector.

(2) Orthogonal set of vectors

If each pair of vectors in a set of vectors is orthogonal, then the set of vectors is called orthogonal.

3. A property of orthogonal set of vectors Theorem 1. If the non-zero vectors $\alpha_1, \alpha_2, \dots, \alpha_r$ are mutually orthogonal then $\alpha_1, \alpha_2, \dots, \alpha_r$ are linearly independent.

Proof. Assume that there are $\lambda_1, \lambda_2, \dots, \lambda_r$ such that

$$\lambda_1 \alpha_1 + \lambda_2 \alpha_2 + \dots + \lambda_r \alpha_r = \mathbf{0}.$$

Multiplyin g it by a_1^T leads to $\lambda_1 \alpha_1^T \alpha_1 = 0$.

It follows from $\alpha_1 \neq 0$ that $\alpha_1^T \alpha_1 = \|\alpha_1\|^2 \neq 0$, and thus $\lambda_1 = 0$. Similarly, $\lambda_2 = \cdots = \lambda_r = 0$.

Therefore, $\alpha_1, \alpha_2, \dots, \alpha_r$ are linearly independent.

4. Orthogonal bases of a vector space

If $\alpha_1, \alpha_2, \dots, \alpha_r$ is a basis of the vector space V and if $\alpha_1, \alpha_2, \dots, \alpha_r$ are non-zero vectors, then $\alpha_1, \alpha_2, \dots, \alpha_r$ is called an orthogonal basis of V.

Example 1. Given two orthogonal vectors of the 3-dimensional space (1)

$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \qquad \alpha_2 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$
where α_1 is a form of

Find a vector α_3 such that $\alpha_1, \alpha_2, \alpha_3$ form an orthogonal base of the 3-dimensional space.

Solution.

Assume that $\alpha_3 = (x_1, x_2, x_3)^T \neq 0$ is orthogonal to α_1, α_2 .

Then $[\alpha_1, \alpha_3] = [\alpha_2, \alpha_3] = 0$, namely

$$\begin{cases} [\alpha_1, \alpha_3] = x_1 + x_2 + x_3 = 0 \\ [\alpha_2, \alpha_3] = x_1 - 2x_2 + x_3 = 0 \end{cases}$$

Therefore $x_1 = -x_3, x_2 = 0$.

By putting
$$x_3 = 1$$
, we have $\alpha_3 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

which can serve as the vector desired.

(5) Normal orthogonal bases

Definition 3. Let e_1, e_2, \dots, e_r be a base of the vector space $V \subset \mathbb{R}^n$). If all of them are unit vectors and if they are mutually orthogonal, then e_1, e_2, \dots, e_r is called a normal orthogonal (or shortly, orthonormal) basis of V.

For example,

$$e_1 = egin{pmatrix} 1/\sqrt{2} \ 1/\sqrt{2} \ 0 \ 0 \end{pmatrix}, e_2 = egin{pmatrix} 1/\sqrt{2} \ -1/\sqrt{2} \ 0 \ 0 \end{pmatrix}, e_3 = egin{pmatrix} 0 \ 0 \ 1/\sqrt{2} \ 1/\sqrt{2} \end{pmatrix}, e_4 = egin{pmatrix} 0 \ 0 \ 1/\sqrt{2} \ -1/\sqrt{2} \end{pmatrix}.$$

$$e_1 = egin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \\ 0 \end{pmatrix}, e_2 = egin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \\ 0 \end{pmatrix}, e_3 = egin{pmatrix} 0 \\ 0 \\ 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}, e_4 = egin{pmatrix} 0 \\ 0 \\ 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}.$$

Since
$$\begin{cases} [e_i, e_j] = 0, & i \neq j; \ i, j = 1, 2, 3, 4. \\ [e_i, e_j] = 1, & i = j; \ i, j = 1, 2, 3, 4. \end{cases}$$

 e_1, e_2, e_3, e_4 is an orthonorma I basis of R^4 .

Following the same reasoning,

$$\mathcal{E}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \mathcal{E}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \mathcal{E}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \mathcal{E}_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

is also an orthonormal basis of R^4 .

6. An approach to finding an orthonormal basis

Let $\alpha_1, \alpha_2, \dots, \alpha_r$ be a basis of V. Our aim is to find an orthonormal basis of V such that e_1, e_2, \dots, e_r and $\alpha_1, \alpha_2, \dots, \alpha_r$ are equivalent. This process is said to orthonormalize $\alpha_1, \alpha_2, \dots, \alpha_r$.

Assume that a_1, a_2, \dots, a_r is a basis of V.

(1) Orthogonalization.

Let
$$b_1 = a_1$$
, $b_2 = a_2 - \frac{[b_1, a_2]}{[b_1, b_1]} b_1$,

$$b_3 = a_3 - \frac{[b_1, a_3]}{[b_1, b_1]} b_1 - \frac{[b_2, a_3]}{[b_2, b_2]} b_2$$

.

$$b_r = a_r - \frac{[b_1, a_r]}{[b_1, b_1]} b_1 - \frac{[b_2, a_r]}{[b_2, b_2]} b_2 - \dots - \frac{[b_{r-1}, a_r]}{[b_{r-1}, b_{r-1}]} b_{r-1}$$

Thus b_1, \dots, b_r are mutually orthogonal, and b_1, \dots, b_r and $a_1, \dots a_r$ are equivalent.

(2) Normalization. Divide each vector by its norm.

$$e_1 = \frac{b_1}{\|b_1\|}, \quad e_2 = \frac{b_2}{\|b_2\|}, \quad \cdots, e_r = \frac{b_r}{\|b_r\|}.$$

Clearly, e_1, e_2, \dots, e_r is an orthogonal basis of V.

The above method to contruct an orthogonal set of vectors b_1, \dots, b_r by using linearly independent vectors a_1, \dots, a_r is called the Gram - Schmidt orthogonalization process. **Example 2. Apply the Gram-Schmidt orthogonalization** process to orthonormalize the following set of vectors.

 $a_1 = (1,1,1,1), a_2 = (1,-1,0,4), a_3 = (3,5,1,-1)$ Solution. Firstly, we orthogonalize them.

Let
$$b_1 = a_1 = (1,1,1,1)$$
. Then
$$b_2 = a_2 - \frac{[b_1, a_2]}{[b_1, b_1]} b_1$$

$$= (1,-1,0,4) - \frac{1-1+4}{1+1+1} (1,1,1,1) = (0,-2,-1,3)$$

$$b_3 = a_3 - \frac{[b_1, a_3]}{[b_1, b_1]} b_1 - \frac{[b_2, a_3]}{[b_2, b_2]} b_2$$

$$= (3,5,1,-1) - \frac{8}{4} (1,1,1,1) - \frac{-14}{14} (0,-2,-1,3) = (1,1,-2,0)$$

Then we normalize b_1, b_2, b_3 .

$$e_{1} = \frac{b_{1}}{\|b_{1}\|} = \frac{1}{2}(1,1,1,1) = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$$

$$e_{2} = \frac{b_{2}}{\|b_{2}\|} = \frac{1}{\sqrt{14}}(0,-2,-1,3) = \left(0, \frac{-2}{\sqrt{14}}, \frac{-1}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right)$$

$$e_{3} = \frac{b_{3}}{\|b_{3}\|} = \frac{1}{\sqrt{6}}(1,1,-2,0) = \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}, 0\right)$$

Example 3.
Let
$$a_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$
, $a_2 = \begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix}$, $a_3 = \begin{pmatrix} 4 \\ -1 \\ 0 \end{pmatrix}$. Apply the

Gram - schmidt orthogonalization process to get orthonormal vectors.

Solution. By letting $b_1 = a_1$, we have

$$b_2 = a_2 - \frac{[a_2, b_1]}{\|b_1\|^2} b_1 = \begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix} - \frac{4}{6} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = \frac{5}{3} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix};$$

$$b_3 = a_3 - \frac{[a_3, b_1]}{\|b_1\|^2} b_1 - \frac{[a_3, b_2]}{\|b_2\|^2} b_2$$

$$= \begin{pmatrix} 4 \\ -1 \\ 0 \end{pmatrix} - \frac{1}{3} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + \frac{5}{3} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

Dividing each vector by its norm, we have

$$e_1 = \frac{b_1}{\|b_1\|} = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \qquad e_2 = \frac{b_2}{\|b_2\|} = \frac{1}{\sqrt{3}} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix},$$

$$e_3 = \frac{b_3}{\|b_3\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

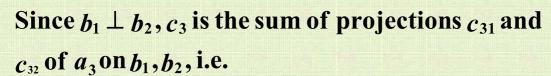
 e_1, e_2, e_3 is the vectors desired.

 $b_1 = a_1$; Geometric interpretation b_2

 c_2 is the projection of a_2 on b_1 , i.e.

$$c_2 = [a_2, \frac{b_1}{\|b_1\|}] \frac{b_1}{\|b_1\|} = \frac{[a_2, b_1]}{\|b_1\|^2} b_1,$$
 $b_2 = a_2 - c_2;$

 c_3 is the projection of a_3 on the plane spanned by b_1, b_2 .



$$c_3 = c_{31} + c_{32} = \frac{[a_3, b_1]}{\|b_1\|^2} b_1 + \frac{[a_3, b_2]}{\|b_2\|^2} b_2, \qquad b_3 = a_3 - c_3.$$

Example 4.

Given
$$a_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, find the non - zero vectors a_2, a_3 such that

 a_1, a_2, a_3 are mutually orthogonal.

Solution. a_2, a_3 should satisfy the equaion $a_1^T x = 0$, or

$$x_1 + x_2 + x_3 = 0.$$

Its one of systems of fundamental solutions is

$$\xi_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \xi_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}.$$

Orthogonalize vectors in the system of fundamental solutions in order to get the desired vectors.

Let
$$a_2 = \xi_1$$
, $a_3 = \xi_2 - \frac{[\xi_1, \xi_2]}{[\xi_1, \xi_1]} \xi_1$,

where $[\xi_1, \xi_2] = 1, [\xi_1, \xi_1] = 2$.

$$a_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \quad a_3 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}.$$

4 Orthogonal matrices and orthogonal transformations

Definition 4. If a square matrix A satisfies that $A^T A = E(\text{or } A^{-1} = A^T)$, then A is said to be an orthogonal matrix.

Theorem. A is an orthogonal matrix iff all of its column vectors are unit vectors and they are mutually orthogonal.

Proof.
$$AA^{T} = E \Leftrightarrow \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \cdots & \cdots & \cdots & \cdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{pmatrix} = E$$

$$\Leftrightarrow \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n} \end{pmatrix} (\alpha_{1}^{T}, \alpha_{2}^{T}, \dots, \alpha_{n}^{T}) = E$$

$$\Leftrightarrow \begin{pmatrix} \alpha_{1} \alpha_{1}^{T} & \alpha_{1} \alpha_{2}^{T} & \cdots & \alpha_{1} \alpha_{n}^{T} \\ \alpha_{2} \alpha_{1}^{T} & \alpha_{2} \alpha_{2}^{T} & \cdots & \alpha_{2} \alpha_{n}^{T} \\ \vdots & \vdots & \vdots & \vdots \\ \alpha_{n} \alpha_{1}^{T} & \alpha_{n} \alpha_{2}^{T} & \cdots & \alpha_{n} \alpha_{n}^{T} \end{pmatrix} = E$$

$$\Leftrightarrow \alpha_{i} \alpha_{j}^{T} = \delta_{ij} = \begin{cases} 1, & \text{if } i = j; \\ 0, & \text{otherwise} \end{cases} (i, j = 1, 2, \dots, n)$$

Remarks.

- 1. Since $A^{-1} = A^{T}$ for the orthogonal matrix A, $AA^{T} = E$. As a result, all row vectors of an orthogonal matrix are unit vectors and mutually orthogonal.
- 2. Since an orthogonal matrix satisfies $A^TA = E$, $|A^T||A| = 1$, i.e. $|A| = \pm 1$. Hence every orthogonal matrix is invertible.

Definition 5. If P is an orthogonal matrix, the linear transformation y=Px is called an orthogonal transformation.

Property. An orthogonal transformation does not change the magnitude of a vector.

Proof. Let y = Px be the orthogonal transformation.

Then
$$||y|| = \sqrt{y'y} = \sqrt{x'P'Px} = \sqrt{x'x} = ||x||$$
.

Example 5. Whether are the following matrices orthogonal or not?

$$(2) \begin{bmatrix} \frac{1}{9} & -\frac{3}{9} & -\frac{7}{9} \\ -\frac{8}{9} & \frac{1}{9} & -\frac{4}{9} \\ -\frac{4}{9} & -\frac{4}{9} & \frac{7}{9} \end{bmatrix}.$$

Solution.
$$(1) \begin{pmatrix} 1 & -1/2 & 1/3 \\ -1/2 & 1 & 1/2 \\ 1/3 & 1/2 & -1 \end{pmatrix}$$

Pay attention to the first and second column.

Since
$$1 \times \left(-\frac{1}{2}\right) + \left(-\frac{1}{2}\right) \times 1 + \frac{1}{3} \times \frac{1}{2} \neq 0$$
,

the matrix is not orthogonal.

$$(2) \begin{pmatrix} \frac{1}{9} & -\frac{8}{9} & -\frac{4}{9} \\ -\frac{8}{9} & \frac{1}{9} & -\frac{4}{9} \\ -\frac{4}{9} & -\frac{4}{9} & \frac{7}{9} \end{pmatrix}$$

Since

$$\begin{pmatrix}
\frac{1}{9} & -\frac{8}{9} & -\frac{4}{9} \\
-\frac{8}{9} & \frac{1}{9} & -\frac{4}{9} \\
-\frac{4}{9} & -\frac{4}{9} & \frac{7}{9}
\end{pmatrix}
\begin{pmatrix}
\frac{1}{9} & -\frac{8}{9} & -\frac{4}{9} \\
-\frac{8}{9} & \frac{1}{9} & -\frac{4}{9} \\
-\frac{4}{9} & -\frac{4}{9} & \frac{7}{9}
\end{pmatrix}^{T} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

the matrix is orthogonal.

Example 6. **Show that**

$$P = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{\sqrt{2}} & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$
 is an orthogonal matrix.

Proof.

Since all column vectors of P are unit vectors and the set of column vectors is orthogonal, P is orthogonal.

