Section 3. Basis Transformation and Coordinate Transformation

3

_0 75__0 44__0 75__

1.Basis transformation formula and transition matrix

As we know, any *n* linearly independent vectors can serve as a basis of an *n*-dimensional space *V*. So there are a number of bases in *V*. Clearly a vector has different coordinates in the distinct bases.

Question: What is the link between coordinates when a basis is transformed into another basis? In order to answer this question, let's begin with the basis transformation formula.

Let $\alpha_1, \alpha_2, \dots, \alpha_n$ and $\beta_1, \beta_2, \dots, \beta_n$ be two bases of V_n and

$$\begin{cases} \beta_{1} = p_{11}\alpha_{1} + p_{21}\alpha_{2} + \dots + p_{n1}\alpha_{n} \\ \beta_{2} = p_{12}\alpha_{1} + p_{22}\alpha_{2} + \dots + p_{n2}\alpha_{n} \\ \dots \\ \beta_{n} = p_{1n}\alpha_{1} + p_{2n}\alpha_{2} + \dots + p_{nn}\alpha_{n} \end{cases}$$
(1)

(1) is called the basis transformation formula between $\alpha_1, \alpha_2, \dots, \alpha_n$ and $\beta_1, \beta_2, \dots, \beta_n$.

Since
$$\begin{cases} \beta_1 = p_{11}\alpha_1 + p_{21}\alpha_2 + \dots + p_{n1}\alpha_n \\ \beta_2 = p_{12}\alpha_1 + p_{22}\alpha_2 + \dots + p_{n2}\alpha_n \\ \dots \\ \beta_n = p_{1n}\alpha_1 + p_{2n}\alpha_2 + \dots + p_{nn}\alpha_n \end{cases}$$

$$\begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix} = \begin{pmatrix} p_{11} & p_{21} & \cdots & p_{n1} \\ p_{12} & p_{22} & \cdots & p_{n2} \\ \vdots \\ p_{1n} & p_{2n} & \cdots & p_{nn} \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} = \mathbf{P}^T \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}.$$

or equivalently

$$(\beta_1, \beta_2, \dots, \beta_n) = (\alpha_1, \alpha_2, \dots, \alpha_n)P$$

The basis transformation formula

In this formula, P is called the transition matrix from $\alpha_1, \alpha_2, \dots, \alpha_n$ to $\beta_1, \beta_2, \dots, \beta_n$.

It can be checked that the transition matrix P is invertible

2. Coordinate transformation formula

Theorem 1. Let α be an element of V_n . If the coordinates of α under the bases $\alpha_1, \alpha_2, \cdots, \alpha_n$ and $\beta_1, \beta_2, \cdots, \beta_n$ are $(x'_1, x'_2, \cdots, x'_n)^T$ and $(x_1, x'_2, \cdots, x'_n)^T$ respectively, and the two bases satisfy

$$(\beta_1, \beta_2, \dots, \beta_n) = (\alpha_1, \alpha_2, \dots, \alpha_n)P$$

then we have

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = P \begin{pmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{pmatrix}, \quad \text{or} \quad \begin{pmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{pmatrix} = P^{-1} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Proof.

Since
$$\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = (\beta_1, \beta_2, \dots, \beta_n) \begin{pmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{pmatrix}$$

$$(\beta_1,\beta_2,\cdots,\beta_n)=(\alpha_1,\alpha_2,\cdots,\alpha_n)P,$$

$$(\alpha_{1},\alpha_{2},\cdots,\alpha_{n})\begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} = (\alpha_{1},\alpha_{2},\cdots,\alpha_{n})P\begin{pmatrix} x_{1}' \\ x_{2}' \\ \vdots \\ x_{n}' \end{pmatrix}.$$

namely,
$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = P \begin{pmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{pmatrix}.$$

Since P is invertible,

$$\begin{pmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{pmatrix} = P^{-1} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Example 1. In $P[x]_3$, let

$$\alpha_1 = x^3 + 2x^2 - x$$
, $\alpha_2 = x^3 - x^2 + x + 1$,
 $\alpha_3 = -x^3 + 2x^2 + x + 1$, $\alpha_4 = -x^3 - x^2 + 1$,
and $\beta_1 = 2x^3 + x^2 + 1$, $\beta_2 = x^2 + 2x + 2$,
 $\beta_3 = -2x^3 + x^2 + x + 2$, $\beta_4 = x^3 + 3x^2 + x + 2$.

Find the coordinte transformation formula.

Solution. First, use $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ to express $\beta_1, \beta_2, \beta_3, \beta_4$.

Since
$$(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = (x^3, x^2, x, 1)A$$
,
 $(\beta_1, \beta_2, \beta_3, \beta_4) = (x^3, x^2, x, 1)B$,

where
$$A = \begin{pmatrix} 1 & 1 & -1 & -1 \\ 2 & -1 & 2 & -1 \\ -1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 0 & -2 & 1 \\ 1 & 1 & 1 & 3 \\ 0 & 2 & 1 & 1 \\ 1 & 2 & 2 & 2 \end{pmatrix},$$

we have $(\beta_1, \beta_2, \beta_3, \beta_4) = (\alpha_1, \alpha_2, \alpha_3, \alpha_4) A^{-1} B$.

Hence the coordinate transformation formula is

$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \\ x_4' \end{pmatrix} = B^{-1}A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}.$$

What is left is the computation of $B^{-1}A$.

$$(B \mid A) = \begin{pmatrix} 2 & 0 & -2 & 1 & 1 & 1 & -1 & -1 \\ 1 & 1 & 1 & 3 & 2 & -1 & 2 & -1 \\ 0 & 2 & 1 & 1 & -1 & 1 & 1 & 0 \\ 1 & 2 & 2 & 2 & 0 & 1 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & -1 & 1 \\ 0 & 1 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & -1 & 1 & -1 \end{pmatrix} = (E \mid B^{-1}A)$$

Hence
$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \\ x_4' \end{pmatrix} = \begin{pmatrix} 0 & 1 & -1 & 1 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & -1 & 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}.$$

and

Example 2. Geometric explanation of coordinate transformation.

Let
$$\alpha_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
 $\beta_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\beta_2 = \begin{pmatrix} 1 \\ -1/2 \end{pmatrix}$

be two bases of $V = R^2$.

Then the coordinate of $\alpha = -\frac{1}{2}\alpha_1 + \alpha_2$ under α_1, α_2 is

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -1/2 \\ 1 \end{pmatrix}$$

By the coordinate transformation formula, the coordinate of α under β_1, β_2 is



