Section 2. Dimension, Bases and Coordinates

, o a fill and all a fill a sail a fill a fall a fill a

1. Dimension and bases of a linear space

As we know, there are at most n linearly independent vectors in \mathbb{R}^n . In a general linear space, there exits a similar conclusion. In this section, we shall investigate this topic. Let's begin with the dimension and bases of a linear space.

Definition 1. If $\alpha_1, \alpha_2, \dots, \alpha_n \in V$ satisfy the following conditions, then $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ is called a basis of V and n the dimension of V.

- (1) $\alpha_1, \alpha_2, \dots, \alpha_n$ are linearly independen t.
- (2) Any other element in V can be linearly expressed by $\alpha_1, \alpha_2, \dots, \alpha_n$.

A linear space V with dimension n is called an n-dimensional linear space, which is denoted by V_n .

If a linear space has infinite linearly independent Vectors, then this space is said to be infinitedimensional.

Clearly, if $\alpha_1, \alpha_2, \dots, \alpha_n$ is a basis of V_n then V_n can be written in the form

$$V_n = \{ \alpha = x_1 \alpha_1 + x_2 \alpha_2 + \dots + x_n \alpha_n | x_1, x_2, \dots, x_n \in R \}$$

2. Coordinate

Definition 2. Let $\{\alpha_1, \alpha_2, \cdots, \alpha_n\}$ be a basis of V_n , so for any $\alpha \in V$, there exist x_1, x_2, \cdots, x_n such that $\alpha = x_1\alpha_1 + x_2\alpha_2 + \cdots + x_n\alpha_n$. We shall say that $(x_1, x_2, \cdots, x_n)^T$ is the coordinate under the basis $\{\alpha_1, \alpha_2, \cdots, \alpha_n\}$.

It coordinate of a vector is unique if the basis is fixed.

Example 1. In $P[x]_5$, let $p_1 = 1$, $p_2 = x$, $p_3 = x^2$, $p_4 = x^3$ $p_5 = x^4$. Then $\{p_1, p_2, p_3, p_4, p_5\}$ is a basis of $P[x]_4$ since every polynomial p of degree less than 5 can be expressed as

$$p = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

which is

$$p = a_0 p_1 + a_1 p_2 + a_2 p_3 + a_3 p_4 + a_4 p_5$$

Hence, the coordinate of p under $\{p_1, p_2, p_3, p_4, p_5\}$ is $(a_0, a_1, a_2, a_3, a_4)^T$.

$$p = (a_0 - a_1)q_1 + a_1q_2 + \frac{1}{2}a_2q_3 + a_3q_4 + a_4q_5$$

The coordinate of p becomes

$$(a_0-a_1,a_1,1/2a_2,a_3,a_4)^T$$
.

Example 2. The set of all real matrix of order 2 is a linear space for the addition of matrices and Multiplication of matrix by a number. In this space

let
$$E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$

$$E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

we have

$$k_1 E_{11} + k_2 E_{12} + k_3 E_{21} + k_4 E_{22} = \begin{pmatrix} k_1 & k_2 \\ k_3 & k_4 \end{pmatrix},$$

Hence,

$$k_1 E_{11} + k_2 E_{12} + k_3 E_{21} + k_4 E_{22} = O = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

$$\Leftrightarrow k_1 = k_2 = k_3 = k_3 = 0,$$

namely E_{11} , E_{12} , E_{21} , E_{22} are linearly independent.

For an arbitrary real matrix

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in V,$$

we have

$$A = a_{11}E_{11} + a_{12}E_{12} + a_{21}E_{21} + a_{22}E_{22}$$

whence $\{E_{11}, E_{12}, E_{21}, E_{22}\}$ is a basis of V.

The coordinate of A under this basis is $(a_{11}, a_{12}, a_{21}, a_{22})$.

Example 3. In $R[x]_n$, let

$$\varepsilon_1 = 1, \varepsilon_2 = (x-a), \varepsilon_3 = (x-a)^2, \dots, \varepsilon_n = (x-a)^{n-1}$$

By Taylor Formula,

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2$$

$$+\cdots+\frac{f^{(n-1)}(a)}{(n-1)!}(x-a)^{n-1}$$

So the coordinate of f(x) under the basis

$$\{\varepsilon_1,\varepsilon_2,\varepsilon_3,\cdots,\varepsilon_n\}$$
 is

$$(f(a), f'(a), \frac{f''(a)}{2!}, \dots, \frac{f^{(n-1)}(a)}{(n-1)!})^{T}.$$

3. Isomorphism between linear spaces

Let $\alpha_1, \alpha_2, \dots, \alpha_n$ be a basis of n – dimensional space V_n . Under this basis, each vector of V_n has a uniquely determined coordinate which belongs to R^n . To each vector corresponds its coordinate so that we obtain a mapping from V_n to R^n .

It is worth noticing that this mapping demonstrates very good behaviors. First, the mapping is surjective and injective, or equivalently a one - one mapping.

Next, the mapping is operation - perserving. We shall discuss such mapping in the name of isomorphism.

Definition. Let U, V be two linear space. If there exists a one-one correspondence between them and the correspondence preserves the linear operations, then U and V are called isomorphic.

For example. An n – dimensional linear space V_n and R^n are isomorphic.

Indeed, let $\alpha_1, \alpha_2, \dots, \alpha_n$ be a basis of V_n . Then

$$V_n = \left\{ \alpha = x_1 \alpha_1 + x_2 \alpha_2 + \dots + x_n \alpha_n | x_1, x_2, \dots, x_n \in R \right\}$$

Let
$$\alpha = x_1 \alpha_1 + x_2 \alpha_2 + \dots + x_n \alpha_n$$

 $\leftrightarrow (x_1, x_2, \dots, x_n)^T$.

Clearly, this correspondence is one-one.

In addition, let

$$\alpha \leftrightarrow (x_1, x_2, \dots, x_n)^T \beta \leftrightarrow (y_1, y_2, \dots, y_n)^T$$

i.e.
$$\alpha = x_1 \alpha_1 + x_2 \alpha_2 + \cdots + x_n \alpha_n$$

$$\beta = y_1 \alpha_1 + y_2 \alpha_2 + \cdots + y_n \alpha_n$$

Then

$$\alpha + \beta = (x_1 + y_1)\alpha_1 + (x_2 + y_2)\alpha_2 + \dots + (x_n + y_n)\alpha_n$$

$$k\alpha = kx_1\alpha_1 + kx_2\alpha_2 + \dots + kx_n\alpha_n$$

That is to say,

$$\alpha + \beta \leftrightarrow (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)^T$$

$$= (x_1, x_2, \dots, x_n)^T + (y_1, y_2, \dots, y_n)^T$$

$$\alpha + \beta \leftrightarrow (kx_1, kx_2, \dots, kx_n)^T$$

$$= k(x_1, x_2, \dots, x_n)^T$$

Hence the correspondence preserves the linear operations, and thus U and V are isomorphic.

Properties of isomorphism

- 1. Isomorphism is reflexive, symmetric and transitive.
- 2. Any two *n*-dimensional linear spaces are isomorphic.

For a linear space, there are two essential elements, a set and two operations. If there is a one-one correspondence between sets and the two operations between the linear spaces are preserved. Then these two linear spaces are identical in essence. Therefore,

XY