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Abstract. A new template attack on the DES key scheduling is demon-
strated that allows recovery of a sufficiently large portion of the DES key
of a recent and widely deployed smart card chip with a single EM (elec-
tromagnetic) trace during the Exploitation Phase. Depending on the use
case, the remainder of the key may then be found with reasonable brute–
force effort on a PC. Remaining rest entropies as low as ≈ 19 bits have
been found for some single–trace attacks, meaning that effectively 37 bits
were recovered in a single trace. The nature of single–trace attacks has it
that conventional software countermeasures are rendered useless by this
attack, and thus the only remaining remedy is a hardware redesign.

1 Introduction

Side–channel attacks have by now a very long history [1–3], and also the par-
ticular variant of template attacks [4–7] has been studied for quite some years.
Most of the work has focussed on the data path in the de– or encryption en-
gine, whilst only a few have performed Simple Power Analysis (SPA) on the key
scheduling of the AES, Camelia, or Serpent[8–10]. To our knowledge, except for
[11], no work has been published yet on template attacks targeting the DES key
schedule.

Template attacks take place in two phases — a first Profiling Phase, where
templates are generated of the target function when all parameters and data are
known. These templates are stored in a data base and are used in the second
phase — the Exploitation Phase — to be matched against measurements of the
target system when not all data are known anymore. The target system may be a
physically different one than the one the templates were created with. The attack
is successful, when the patterns found in Exploitation Phase can be matched with
the correct templates generated during Profiling Phase. It often does not matter
how many measurements (traces) are used in the Profiling Phase, since there
it is assumed that the attacker has full control over the device and can take as
many measurements as are required. It is even conceivable that more than one
device is used in the Profiling Phase and this may in fact improve the robustness
of the attack when applied to many target devices, due to the averaging effect.
On the other hand, usually, the number of traces available for attacking the
target device in the Exploitation Phase may well be limited on account of the
countermeasures built into the target device, or the eco system it is operating
in.
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Table 1. Position of round key bits 0...23 in the original key 0...55 (horizontally) versus
rounds 1...16 (vertically). In bold is indicated ring RA

0 .

Position of round key bits 0...23 in the original key 0...55 (C–Register)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 8 44 29 52 42 14 28 49 1 7 16 36 2 30 22 21 38 50 51 0 31 23 15 35
2 1 37 22 45 35 7 21 42 51 0 9 29 52 23 15 14 31 43 44 50 49 16 8 28
3 44 23 8 31 21 50 7 28 37 43 52 15 38 9 1 0 42 29 30 36 35 2 51 14
4 30 9 51 42 7 36 50 14 23 29 38 1 49 52 44 43 28 15 16 22 21 45 37 0
5 16 52 37 28 50 22 36 0 9 15 49 44 35 38 30 29 14 1 2 8 7 31 23 43
6 2 38 23 14 36 8 22 43 52 1 35 30 21 49 16 15 0 44 45 51 50 42 9 29
7 45 49 9 0 22 51 8 29 38 44 21 16 7 35 2 1 43 30 31 37 36 28 52 15
8 31 35 52 43 8 37 51 15 49 30 7 2 50 21 45 44 29 16 42 23 22 14 38 1
9 49 28 45 36 1 30 44 8 42 23 0 52 43 14 38 37 22 9 35 16 15 7 31 51
10 35 14 31 22 44 16 30 51 28 9 43 38 29 0 49 23 8 52 21 2 1 50 42 37
11 21 0 42 8 30 2 16 37 14 52 29 49 15 43 35 9 51 38 7 45 44 36 28 23
12 7 43 28 51 16 45 2 23 0 38 15 35 1 29 21 52 37 49 50 31 30 22 14 9
13 50 29 14 37 2 31 45 9 43 49 1 21 44 15 7 38 23 35 36 42 16 8 0 52
14 36 15 0 23 45 42 31 52 29 35 44 7 30 1 50 49 9 21 22 28 2 51 43 38
15 22 1 43 9 31 28 42 38 15 21 30 50 16 44 36 35 52 7 8 14 45 37 29 49
16 15 51 36 2 49 21 35 31 8 14 23 43 9 37 29 28 45 0 1 7 38 30 22 42

Starting with a recent generalisation to template attacks put forward in [12],
we address in this paper a couple of improvements over what is currently state
of the art for template attacks.

In Sec. 2 a template attack on the round key of the DES algorithm is devel-
oped. The challenge here is that as the encryption / decryption key and hence
the round keys do not change during a cryptographic operation, one cannot rely
on the effect of averaging over many traces as much as would be the case for
a normal template or DPA attack — some effects simply will not average out,
even when taking “infinitely many” traces. We therefore try to be successful
with the extreme case of a single trace in the Exploitation Phase — thus likely
requiring a final brute–force step. To improve the attack, advantage is taken of
a ring structure found in the round keys across all 16 rounds of the DES algo-
rithm. Furthermore, the concept of highly overlapping templates is introduced
to reduce the effect of outliers and improve the strength of the attack. This is
supplemented with a simple key–search strategy tailored to these new concepts.

Finally, in Sec. 3 this technique is applied to a contemporary smart card with
a JAVA OS, where at least the underlying hardware IC has been CC certified at
EAL 5+, i.e., at a level with “High Attack Potential”. Although it is hard to say
whether the OS manufacturer has obeyed the so–called User Guidance Manual
normally issued with a CC–certified product, it can be argued that such a User
Guidance Manual would not help, anyway, since for a single–trace attack there
is very little that can be done in terms of software countermeasures.
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Table 2. Position of round key bits 24...47 in the original key 0...55 (horizontally)
versus rounds 1...16 (vertically). In bold is indicated ring RA

3 .

Position of round key bits 24...47 in the original key 0...55 (D–Register)

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

1 19 24 34 47 32 3 41 26 4 46 20 25 53 18 33 55 13 17 39 12 11 54 48 27
2 12 17 27 40 25 55 34 19 24 39 13 18 46 11 26 48 6 10 32 5 4 47 41 20
3 53 3 13 26 11 41 20 5 10 25 54 4 32 24 12 34 47 55 18 46 17 33 27 6
4 39 48 54 12 24 27 6 46 55 11 40 17 18 10 53 20 33 41 4 32 3 19 13 47
5 25 34 40 53 10 13 47 32 41 24 26 3 4 55 39 6 19 27 17 18 48 5 54 33
6 11 20 26 39 55 54 33 18 27 10 12 48 17 41 25 47 5 13 3 4 34 46 40 19
7 24 6 12 25 41 40 19 4 13 55 53 34 3 27 11 33 46 54 48 17 20 32 26 5
8 10 47 53 11 27 26 5 17 54 41 39 20 48 13 24 19 32 40 34 3 6 18 12 46
9 3 40 46 4 20 19 53 10 47 34 32 13 41 6 17 12 25 33 27 55 54 11 5 39
10 48 26 32 17 6 5 39 55 33 20 18 54 27 47 3 53 11 19 13 41 40 24 46 25
11 34 12 18 3 47 46 25 41 19 6 4 40 13 33 48 39 24 5 54 27 26 10 32 11
12 20 53 4 48 33 32 11 27 5 47 17 26 54 19 34 25 10 46 40 13 12 55 18 24
13 6 39 17 34 19 18 24 13 46 33 3 12 40 5 20 11 55 32 26 54 53 41 4 10
14 47 25 3 20 5 4 10 54 32 19 48 53 26 46 6 24 41 18 12 40 39 27 17 55
15 33 11 48 6 46 17 55 40 18 5 34 39 12 32 47 10 27 4 53 26 25 13 3 41
16 26 4 41 54 39 10 48 33 11 53 27 32 5 25 40 3 20 24 46 19 18 6 55 34

2 Template Attack on the DES Round Key

Clearly, when attacking the round key of the DES using a template attack, the
challenge is that in Exploitation Phase the round key will be constant from one
DES call to the next, yet with up to 48 bits simultaneously toggling in each of
the 16 rounds of the DES. Thus, pattern–template matching will tend to yield
poor results for typical template sizes of 6 to 15 bits, where a strong 48–bit
cross talk and many patterns accidentally locking into “wrong” templates is to
be expected. Consequently, there is little if any improvement expected due to
averaging, when increasing the number of traces in the Exploitation Phase.

However, the mathematical properties of the DES key schedule do help to
improve template attacks with reasonably small templates. Firstly, we notice
that in any given round a subset of 48 bits of the 56 key bits will be used. More
precisely, from one round to the next 8 bits get “swapped in”, and 8 bits get
“swapped out”.

Secondly, rather than targeting the round key directly, it may be more inter-
esting to target the ⊕ or Hamming distance between two successive DES rounds,
as this is the relevant information one would expect to leak when the 48–bit reg-
ister containing the round key of a given DES round gets overwritten by the next
round key without any protection built in. The drawback here is that because
of the ⊕ relation only 28 bits, so half of the key bits, appear to be recoverable
at first sight. This can be largely remedied, though, when taking advantage of
some properties of the DES key schedule and ordering the ⊕ operation in rings,
as will be described in detail in the following Subsection.
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Fig. 1. Correlation functions of the ⊕ between two successive rounds in the DES al-
gorithm for an artificial perfectly leaky set of traces. Correlation on the first (red) and
second (blue) round are representative of their respective classes. These target rounds
achieve a correlation amplitude of 100% since the simulated traces leak perfectly. All
satellite peaks are around 83%, which is in line with the fact that these peaks share
only 40 bits with the target rounds.

2.1 Exploiting Ring Structures

It turns out that this ⊕ select function has some interesting properties, where the
15 ⊕ “rounds” (so the 15 ⊕ of two successive real DES rounds) fall into one of
two classes: The Hamming distances R1⊕R2, R8⊕R9, and R15⊕R16 all have the
same characteristic correlation pattern with strong peaks in these 3 “⊕ rounds”,
whilst the Hamming distances R2⊕R3...R7⊕R8 and R9⊕R10...R14⊕R15 form
the second class, with 12 strong correlation peaks seen in those “⊕ rounds”.
See Fig. 1 as an illustration based on artificial, perfectly leaky traces generated
simply with printf statements in a DES C code using an appropriate leakage
model. Since these traces leak perfectly, the correlation function is expected
to hit 100% at the target “⊕ round”, whilst for the other satellite peaks one
expects their amplitudes at roughly 40/48 = 83%, given that all these satellite
peaks share only 40 ⊕ pairs with the original target “⊕ round”.

Let us start with the second class containing 12 peaks in the correlation
function. Upon closer inspection of the ⊕ between any two rounds (see Tables 1
and 2 for details on the round key bits1), one finds that the key bits that are
connected by ⊕ from one round to the next form 4 so–called A rings, each ring

1 In enumerating the DES keys we follow [13], except that we use base 0 and remove
all parity bits.
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being 14 bits long, thereby spanning all 56 bits as they should,

RA
0 :

0→ 14→28→42→31→45→2→16→30→44→1→15→29→43→0
RA

1 :
3→ 17→4→18→32→46→5→19→33→47→6→20→34→48→3
RA

2 :
7→ 21→35→49→38→52→9→23→37→51→8→22→36→50→7
RA

3 :
10→ 24→11→25→39→53→12→26→40→54→13→27→41→55→10 (1)

where ki → kj stands for ki ⊕ kj . Based on this, we construct now 8 sets of
templates — two sets for each ring to avoid templates having too many bits.
Although each ring is 14 bits long, we split every ring into 2 × (7 + 1) bits
— so 8 bits for each template — such that the templates overlap in each ring
on either side of the template. To be more precise, for ring RA0 the first set of
templates would comprise of bits {0, 14, 28, 42, 31, 45, 2, 16}, whilst the second
set of templates comprises of bits {16, 30, 44, 1, 15, 29, 43, 0}. Both halves of this
ring then overlap in the bits 0 and 16. This is how templates are constructed
when targeting the key bits themselves. When targeting the ⊕ between two
neighbouring key bits, the templates are constructed by taking all ⊕ between
the bits {0, 14, 28, 42, 31, 45, 2, 16, 30} for the first template, and between the bits
{16, 30, 44, 1, 15, 29, 43, 0, 14} for the second. This way, also for the case of⊕ there
are 8 bits per template and overlap between templates is again guaranteed.

The first advantage of doing so is that although there are 256 templates in
each set, because of the overlapping 2 bits, we can eliminate wrong pattern–
template matches that are not compatible with each other in the two sets be-
longing to the same ring, thereby effectively recovering up to roughly 2 bits in
the search space again. See Sec. 2.2 for more details. It would have been of course
also possible to go for 7–bit templates that do not overlap in the first place, but

Table 3. Ring A templates for the bits themselves, as well as the ⊕ Hamming distance
function between these bits.

RA
0 : bits {0, 14, 28, 42, 31, 45, 2, 16} {16, 30, 44, 1, 15, 29, 43, 0}

RA
1 : bits {3, 17, 4, 18, 32, 46, 5, 19} {19, 33, 47, 6, 20, 34, 48, 3}

RA
2 : bits {7, 21, 35, 49, 38, 52, 9, 23} {23, 37, 51, 8, 22, 36, 50, 7}

RA
3 : bits {10, 24, 11, 25, 39, 53, 12, 26} {26, 40, 54, 13, 27, 41, 55, 10}

RA
0 : ⊕ {0 ⊕ 14, 14 ⊕ 28, 28 ⊕ 42, 42 ⊕ 31, 31 ⊕ 45, 45 ⊕ 2, 2 ⊕ 16, 16 ⊕ 30}

{16 ⊕ 30, 30 ⊕ 44, 44 ⊕ 1, 1 ⊕ 15, 15 ⊕ 29, 29 ⊕ 43, 43 ⊕ 0, 0 ⊕ 14}

RA
1 : ⊕ {3 ⊕ 17, 17 ⊕ 4, 4 ⊕ 18, 18 ⊕ 32, 32 ⊕ 46, 46 ⊕ 5, 5 ⊕ 19, 19 ⊕ 33}

{19 ⊕ 33, 33 ⊕ 47, 47 ⊕ 6, 6 ⊕ 20, 20 ⊕ 34, 34 ⊕ 48, 48 ⊕ 3, 3 ⊕ 17}

RA
2 : ⊕ {7 ⊕ 21, 21 ⊕ 35, 35 ⊕ 49, 49 ⊕ 38, 38 ⊕ 52, 52 ⊕ 9, 9 ⊕ 23, 23 ⊕ 37}

{23 ⊕ 37, 37 ⊕ 51, 51 ⊕ 8, 8 ⊕ 22, 22 ⊕ 36, 36 ⊕ 50, 50 ⊕ 7, 7 ⊕ 21}

RA
3 : ⊕ {10 ⊕ 24, 24 ⊕ 11, 11 ⊕ 25, 25 ⊕ 39, 39 ⊕ 53, 53 ⊕ 12, 12 ⊕ 26, 26 ⊕ 40}

{26 ⊕ 40, 40 ⊕ 54, 54 ⊕ 13, 13 ⊕ 27, 27 ⊕ 41, 41 ⊕ 55, 55 ⊕ 10, 10 ⊕ 24}
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Table 4. Ring B templates for the bits themselves, as well as the ⊕ Hamming distance
function between these bits.

RB
0 : bits

{0, 7, 14, 21, 28, 35, 42, 49} {49, 31, 38, 45, 52, 2, 9, 16}
{16, 23, 30, 37, 44, 51, 1, 8} {8, 15, 22, 29, 36, 43, 50, 0}

RB
1 : bits

{3, 10, 17, 24, 4, 11, 18, 25} {25, 32, 39, 46, 53, 5, 12, 19}
{19, 26, 33, 40, 47, 54, 6, 13} {13, 20, 27, 34, 41, 48, 55, 3}

RB
0 : ⊕

{0 ⊕ 7, 7 ⊕ 14, 14 ⊕ 21, 21 ⊕ 28, 28 ⊕ 35, 35 ⊕ 42, 42 ⊕ 49, 49 ⊕ 31}
{49 ⊕ 31, 31 ⊕ 38, 38 ⊕ 45, 45 ⊕ 52, 52 ⊕ 2, 2 ⊕ 9, 9 ⊕ 16, 16 ⊕ 23}
{16 ⊕ 23, 23 ⊕ 30, 30 ⊕ 37, 37 ⊕ 44, 44 ⊕ 51, 51 ⊕ 1, 1 ⊕ 8, 8 ⊕ 15}
{8 ⊕ 15, 15 ⊕ 22, 22 ⊕ 29, 29 ⊕ 36, 36 ⊕ 43, 43 ⊕ 50, 50 ⊕ 0, 0 ⊕ 7}

RB
1 : ⊕

{3 ⊕ 10, 10 ⊕ 17, 17 ⊕ 24, 24 ⊕ 4, 4 ⊕ 11, 11 ⊕ 18, 18 ⊕ 25, 25 ⊕ 32}
{25 ⊕ 32, 32 ⊕ 39, 39 ⊕ 46, 46 ⊕ 53, 53 ⊕ 5, 5 ⊕ 12, 12 ⊕ 19, 19 ⊕ 26}
{19 ⊕ 26, 26 ⊕ 33, 33 ⊕ 40, 40 ⊕ 47, 47 ⊕ 54, 54 ⊕ 6, 6 ⊕ 13, 13 ⊕ 20}
{13 ⊕ 20, 20 ⊕ 27, 27 ⊕ 34, 34 ⊕ 41, 41 ⊕ 48, 48 ⊕ 55, 55 ⊕ 3, 3 ⊕ 10}

in general it should be advantageous to use templates as large as possible to
reduce the impact of toggling bits outside the template (the cross talk referred
to elsewhere).

Another and likely more important advantage of forming overlapping tem-
plates along the rings is that in this way all ⊕ and hence key bits are related
to each other in a fixed manner. If we fix one key bit in the ring arbitrarily, all
other key bits are uniquely determined along the ring. Hence, the only degree
of freedom remaining is whether the first key bit was set to 0 or 1, and thus for
each ring only one key bit cannot be recovered in the attack — and not as many
as half of all bits, as was the case for uncorrelated ⊕ relations. Consequently, for
the A rings we find that up to 56− 4 = 52 bits can be recovered in the attack,
which is substantially more than the original 28 bits.

In a similar manner, the first class containing 3 peaks in the correlation
function of Fig. 1 leads to rings as well, namely to two so–called B rings of 28
bits each,

RB
0 :

0→ 7→ 14→ 21→ 28→ 35→ 42→ 49→ 31→ 38→ 45→ 52→ 2→ 9→ 16
→ 23→ 30→ 37→ 44→ 51→ 1→ 8→ 15→ 22→ 29→ 36→ 43→ 50→ 0

RB
1 :

3→ 10→ 17→ 24→ 4→ 11→ 18→ 25→ 32→ 39→ 46→ 53→ 5→ 12→ 19
→ 26→ 33→ 40→ 47→ 54→ 6→ 13→ 20→ 27→ 34→ 41→ 48→ 55→ 3

(2)

Again, these rings are decomposed into 4×(7+1) bits, so 8 bits for each template,
such that the templates overlap by one bit on either side.

Now, rings A and B leak in different rounds of the DES key schedule as
visualised in Fig. 1, and spelled out in detail in Table 5. Hence, it must be
possible to combine and stack their leakages and thereby improve the attack
substantially. Indeed, when inspecting rings A and B of Eqs. (1) and (2) one
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Table 5. All ⊕ key bit relations in the DES key schedule and their occurrences in the
15 delta rounds. Some ⊕ relations occur much more frequently than others, leading to
a much more structured effective Hamming Weight of the total key — when including
this weighting — with as much as 575 possible values rather than 57.

⊕ rounds ⊕ rounds ⊕ rounds ⊕ rounds

0 ⊕ 7 1, 8, 15 0 ⊕ 14 2, 3, 4, 5, 6, 9, 10, 11, 12, 13 0 ⊕ 43 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14 0 ⊕ 50 1
1 ⊕ 8 1, 8, 15 1 ⊕ 15 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14 1 ⊕ 44 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14 1 ⊕ 51 1, 8, 15
2 ⊕ 9 15 2 ⊕ 16 2, 4, 5, 6, 7, 9, 10, 11, 12, 13 2 ⊕ 45 3, 5, 6, 7, 10, 11, 12, 13, 14 2 ⊕ 52 1, 8
3 ⊕ 10 8, 15 3 ⊕ 17 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14 3 ⊕ 48 3, 4, 5, 6, 7, 9, 10, 11, 13, 14 3 ⊕ 55 1, 8, 15
4 ⊕ 11 1, 8, 15 4 ⊕ 17 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14 4 ⊕ 18 2, 3, 4, 5, 6, 10, 11, 12, 13, 14 4 ⊕ 24 1, 15
5 ⊕ 12 1, 8, 15 5 ⊕ 19 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14 5 ⊕ 46 2, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14 5 ⊕ 53 8, 15
6 ⊕ 13 1, 8, 15 6 ⊕ 20 2, 3, 4, 6, 7, 9, 10, 12, 13, 14 6 ⊕ 47 2, 3, 4, 5, 7, 9, 10, 11, 13, 14 6 ⊕ 54 8, 15
7 ⊕ 0 1, 8, 15 7 ⊕ 14 1, 8, 15 7 ⊕ 21 2, 3, 4, 6, 7, 10, 11, 12, 13, 14 7 ⊕ 50 2, 3, 4, 5, 7, 9, 11, 12, 13, 14
8 ⊕ 1 1, 8, 15 8 ⊕ 15 1, 8, 15 8 ⊕ 22 2, 4, 5, 6, 7, 9, 10, 12, 14 8 ⊕ 51 2, 3, 5, 6, 7, 9, 10, 11, 13
9 ⊕ 2 15 9 ⊕ 16 1, 8, 15 9 ⊕ 23 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14 9 ⊕ 52 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14
10 ⊕ 3 8, 15 10 ⊕ 17 1, 8, 15 10 ⊕ 24 2, 3, 4, 5, 7, 10, 11, 12, 13, 14 10 ⊕ 55 2, 3, 4, 5, 6, 9, 11, 12, 13, 14
11 ⊕ 4 1, 8, 15 11 ⊕ 18 1, 8, 15 11 ⊕ 24 2, 3, 4, 6, 7, 9, 10, 11, 12, 13 11 ⊕ 25 2, 3, 5, 6, 7, 9, 10, 11, 12, 14
12 ⊕ 5 1, 8, 15 12 ⊕ 19 1, 8 12 ⊕ 26 2, 3, 5, 6, 7, 10, 11, 12, 13, 14 12 ⊕ 53 2, 3, 4, 6, 7, 9, 11, 12, 13, 14
13 ⊕ 6 1, 8, 15 13 ⊕ 20 1, 8 13 ⊕ 27 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14 13 ⊕ 54 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13
14 ⊕ 0 2, 3, 4, 5, 6, 9, 10, 11, 12, 13 14 ⊕ 7 1, 8, 15 14 ⊕ 21 1, 8, 15 14 ⊕ 28 2, 3, 4, 5, 7, 9, 10, 11, 12, 14
15 ⊕ 1 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14 15 ⊕ 8 1, 8, 15 15 ⊕ 22 1, 8, 15 15 ⊕ 29 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14
16 ⊕ 2 2, 4, 5, 6, 7, 9, 10, 11, 12, 13 16 ⊕ 9 1, 8, 15 16 ⊕ 23 1, 8 16 ⊕ 30 3, 4, 5, 6, 7, 9, 10, 11, 12, 14
17 ⊕ 3 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14 17 ⊕ 4 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14 17 ⊕ 10 1, 8, 15 17 ⊕ 24 1, 8
18 ⊕ 4 2, 3, 4, 5, 6, 10, 11, 12, 13, 14 18 ⊕ 11 1, 8, 15 18 ⊕ 25 1, 15 18 ⊕ 32 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14
19 ⊕ 5 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14 19 ⊕ 12 1, 8 19 ⊕ 26 1, 8, 15 19 ⊕ 33 3, 4, 5, 6, 7, 9, 10, 11, 12, 13
20 ⊕ 6 2, 3, 4, 6, 7, 9, 10, 12, 13, 14 20 ⊕ 13 1, 8 20 ⊕ 27 1, 8, 15 20 ⊕ 34 2, 3, 5, 6, 7, 9, 11, 12, 13
21 ⊕ 7 2, 3, 4, 6, 7, 10, 11, 12, 13, 14 21 ⊕ 14 1, 8, 15 21 ⊕ 28 1, 15 21 ⊕ 35 2, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14
22 ⊕ 8 2, 4, 5, 6, 7, 9, 10, 12, 14 22 ⊕ 15 1, 8, 15 22 ⊕ 29 1, 8, 15 22 ⊕ 36 3, 4, 5, 6, 7, 9, 11, 13, 14
23 ⊕ 9 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14 23 ⊕ 16 1, 8 23 ⊕ 30 1, 8, 15 23 ⊕ 37 2, 3, 4, 5, 7, 9, 10, 11, 12, 13
24 ⊕ 4 1, 15 24 ⊕ 10 2, 3, 4, 5, 7, 10, 11, 12, 13, 14 24 ⊕ 11 2, 3, 4, 6, 7, 9, 10, 11, 12, 13 24 ⊕ 17 1, 8
25 ⊕ 11 2, 3, 5, 6, 7, 9, 10, 11, 12, 14 25 ⊕ 18 1, 15 25 ⊕ 32 1, 8, 15 25 ⊕ 39 2, 4, 5, 6, 9, 10, 11, 13, 14
26 ⊕ 12 2, 3, 5, 6, 7, 10, 11, 12, 13, 14 26 ⊕ 19 1, 8, 15 26 ⊕ 33 1, 15 26 ⊕ 40 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14
27 ⊕ 13 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14 27 ⊕ 20 1, 8, 15 27 ⊕ 34 1, 8, 15 27 ⊕ 41 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14
28 ⊕ 14 2, 3, 4, 5, 7, 9, 10, 11, 12, 14 28 ⊕ 21 1, 15 28 ⊕ 35 1, 8, 15 28 ⊕ 42 2, 3, 4, 6, 9, 10, 11, 13, 14
29 ⊕ 15 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14 29 ⊕ 22 1, 8, 15 29 ⊕ 36 1, 15 29 ⊕ 43 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14
30 ⊕ 16 3, 4, 5, 6, 7, 9, 10, 11, 12, 14 30 ⊕ 23 1, 8, 15 30 ⊕ 37 8, 15 30 ⊕ 44 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14
31 ⊕ 38 1, 8, 15 31 ⊕ 42 2, 3, 5, 7, 9, 10, 12, 13, 14 31 ⊕ 45 2, 4, 6, 7, 9, 11, 12, 13, 14 31 ⊕ 49 1, 8, 15
32 ⊕ 18 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14 32 ⊕ 25 1, 8, 15 32 ⊕ 39 1, 8, 15 32 ⊕ 46 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14
33 ⊕ 19 3, 4, 5, 6, 7, 9, 10, 11, 12, 13 33 ⊕ 26 1, 15 33 ⊕ 40 8, 15 33 ⊕ 47 2, 3, 4, 5, 6, 9, 10, 11, 12, 14
34 ⊕ 20 2, 3, 5, 6, 7, 9, 11, 12, 13 34 ⊕ 27 1, 8, 15 34 ⊕ 41 1, 8, 15 34 ⊕ 48 2, 4, 5, 6, 7, 10, 11, 12, 14
35 ⊕ 21 2, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14 35 ⊕ 28 1, 8, 15 35 ⊕ 42 1, 8, 15 35 ⊕ 49 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14
36 ⊕ 22 3, 4, 5, 6, 7, 9, 11, 13, 14 36 ⊕ 29 1, 15 36 ⊕ 43 8, 15 36 ⊕ 50 2, 3, 4, 5, 6, 10, 12, 13, 14
37 ⊕ 23 2, 3, 4, 5, 7, 9, 10, 11, 12, 13 37 ⊕ 30 8, 15 37 ⊕ 44 1, 8, 15 37 ⊕ 51 2, 3, 4, 6, 7, 9, 10, 11, 12, 14
38 ⊕ 31 1, 8, 15 38 ⊕ 45 8, 15 38 ⊕ 49 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14 38 ⊕ 52 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14
39 ⊕ 25 2, 4, 5, 6, 9, 10, 11, 13, 14 39 ⊕ 32 1, 8, 15 39 ⊕ 46 1, 8, 15 39 ⊕ 53 3, 4, 5, 7, 9, 10, 12, 13, 14
40 ⊕ 26 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14 40 ⊕ 33 8, 15 40 ⊕ 47 1, 8, 15 40 ⊕ 54 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14
41 ⊕ 27 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14 41 ⊕ 34 1, 8, 15 41 ⊕ 48 1, 8, 15 41 ⊕ 55 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14
42 ⊕ 28 2, 3, 4, 6, 9, 10, 11, 13, 14 42 ⊕ 31 2, 3, 5, 7, 9, 10, 12, 13, 14 42 ⊕ 35 1, 8, 15 42 ⊕ 49 1, 8, 15
43 ⊕ 0 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14 43 ⊕ 29 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14 43 ⊕ 36 8, 15 43 ⊕ 50 1, 8, 15
44 ⊕ 1 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14 44 ⊕ 30 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14 44 ⊕ 37 1, 8, 15 44 ⊕ 51 1, 8
45 ⊕ 2 3, 5, 6, 7, 10, 11, 12, 13, 14 45 ⊕ 31 2, 4, 6, 7, 9, 11, 12, 13, 14 45 ⊕ 38 8, 15 45 ⊕ 52 1, 8, 15
46 ⊕ 5 2, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14 46 ⊕ 32 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14 46 ⊕ 39 1, 8, 15 46 ⊕ 53 1, 8, 15
47 ⊕ 6 2, 3, 4, 5, 7, 9, 10, 11, 13, 14 47 ⊕ 33 2, 3, 4, 5, 6, 9, 10, 11, 12, 14 47 ⊕ 40 1, 8, 15 47 ⊕ 54 1, 8
48 ⊕ 3 3, 4, 5, 6, 7, 9, 10, 11, 13, 14 48 ⊕ 34 2, 4, 5, 6, 7, 10, 11, 12, 14 48 ⊕ 41 1, 8, 15 48 ⊕ 55 1, 15
49 ⊕ 31 1, 8, 15 49 ⊕ 35 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14 49 ⊕ 38 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14 49 ⊕ 42 1, 8, 15
50 ⊕ 0 1 50 ⊕ 7 2, 3, 4, 5, 7, 9, 11, 12, 13, 14 50 ⊕ 36 2, 3, 4, 5, 6, 10, 12, 13, 14 50 ⊕ 43 1, 8, 15
51 ⊕ 1 1, 8, 15 51 ⊕ 8 2, 3, 5, 6, 7, 9, 10, 11, 13 51 ⊕ 37 2, 3, 4, 6, 7, 9, 10, 11, 12, 14 51 ⊕ 44 1, 8
52 ⊕ 2 1, 8 52 ⊕ 9 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14 52 ⊕ 38 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14 52 ⊕ 45 1, 8, 15
53 ⊕ 5 8, 15 53 ⊕ 12 2, 3, 4, 6, 7, 9, 11, 12, 13, 14 53 ⊕ 39 3, 4, 5, 7, 9, 10, 12, 13, 14 53 ⊕ 46 1, 8, 15
54 ⊕ 6 8, 15 54 ⊕ 13 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13 54 ⊕ 40 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14 54 ⊕ 47 1, 8
55 ⊕ 3 1, 8, 15 55 ⊕ 10 2, 3, 4, 5, 6, 9, 11, 12, 13, 14 55 ⊕ 41 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14 55 ⊕ 48 1, 15

sees that the B rings simply oscillate between two companion A rings, which can
be graphically expressed as two disjunct C rings of the form

7 → 21→ 35→ 49→ 38→ 52→ 9 → 23→ 37→ 51→ 8 → 22→ 36→ 50→ 7
↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗

0→ 14→ 28→ 42→ 31→ 45→ 2 → 16→ 30→ 44→ 1 → 15→ 29→ 43→ 0

10→ 24→ 11→ 25→ 39→ 53→ 12→ 26→ 40→ 54→ 13→ 27→ 41→ 55→ 10
↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗

3→ 17→ 4 → 18→ 32→ 46→ 5 → 19→ 33→ 47→ 6 → 20→ 34→ 48→ 3

(3)
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For these two C rings we decided to construct the templates maximally overlap-
ping. So, if the first template is, e.g.,

7 → 21→ 35→ 49
↗↘↗↘↗↘

0→ 14→ 28→ 42
(4)

then the next template “to its right” is

21→ 35→ 49→ 38
↗↘↗↘↗↘

14→ 28→ 42→ 31
(5)

and so on. These templates contain 12 ⊕ relations, but those are not all linearly
independent. In fact, there are 5 closed ⊕ loops found in each template, e.g.,
0 → 7 → 14 → 0, meaning 5 ⊕ equations that need to be always satisfied, and
hence the number of linearly independent variables is only f = 12 − 5 = 7 in
this case. The internal bit representation of these templates has therefore been
chosen such that the f linearly independent bits are the lowest–valued ones when
counting from right to left, like

{7⊕14, 14⊕21, 21⊕28, 28⊕35, 35⊕42, 42⊕28, 28⊕14, 14⊕0, 0⊕7, 7⊕21, 21⊕35, 35⊕49}

for the template of Eq. (4). Numerically, it is then easy to mask out all bits that
are linearly dependent when needed. In fact, the linearly independent bits are
simply the ⊕ relations obtained when traversing the template of Eq. (4) on the
outer “rim” anticlockwise, starting at bit 49, and ending at 42.

Because of the strong overlap between the 28 templates thus constructed,
the original pattern–template rankings get modified as discussed in more detail
in Sec. 2.2, but for now let it suffice to say that the templates of Eq. (4) and
Eq. (5) overlap by 5 linearly independent bits.2

The advantage of using C–type templates like Eq. (4) is that they concentrate
all relevant electrical variations in as few template positions as possible.3 For
instance, when an “inner” key bit such as bit 21 changes its value in the first

2 Another way of working out the effective depth of each pattern–template ranking
list after accounting for overlapping is to observe that the overlap between Eqs. (4)
and (5) is a set of eight ⊕ links, but there are three closed ⊕ loops included within
those, and hence only five degrees of freedom left. Now, the total number of degrees
of freedom for the ⊕ in template Eq. (4) is seven, meaning that after accounting for
overlap, only two degrees of freedom remain. This makes sense, since there are also
only two key bits in this non–overlapping region.

3 Here and in the following we will refer to template positions or template ranking lists
when we refer to a template, or a list of templates, at a particular position along the
rings. In another context the notion template may also refer to the actual template
value.
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Ranks Template 1 Ranks Template 2

r1

r2

1 0 1 1

0 0

1 0

0 1

1 0

1 1

1 0

0 1

0 0

0 1

1 1

Fig. 2. Illustration of the effect of overlapping templates on the search strategy as
expressed formally in Eq. (6). In this example the two ranking lists of templates overlap
by 2 bits, such as is the case for Ring A, and thus roughly only every 4th rank on the
right–hand side would have matching overlapping bits.

template, it will trigger the four ⊕ links to its neighbours 7, 14, 28, and 35 to
also flip. Naturally, this results in a much larger electrical change than when
those four ⊕ links had all been scattered over differently defined templates —
like when creating 6–bit templates based on the round keys at the input of the
eight S–boxes. Therefore, choosing C–ring–type templates results in different
template values being much more easily distinguished from each other above the
noise level, and consequently the pattern / template matching process is much
more robust as a result. Clearly, the larger the template is for the C rings, the
more “inner” key bits there are compared to the fixed number of key bits at the
“surface” of the template, i.e. key bits 0, 7, 42, and 49 in Eq. (4). Based on these
observations one expects results to be better for C–type templates compared to
A– or B–type templates and, furthermore, to improve when increasing the size
of the C–type templates. Only when the C–type templates are chosen so large
in size — and hence can assume so many different values — that there are not
enough traces during Profiling Phase to populate each template value properly
anymore, should the C–type templates start to deteriorate again.

2.2 Key Search Strategies on Rings

Since we are dealing with multiple overlapping ranking lists of templates, key–
search strategies need to be somewhat more elaborate than normal. It is not
sufficient to search in each ranking list individually anymore.

So, let us assume we have a template with f linearly independent bits, result-
ing in M = 2f template values, having o bits overlap between two neighbouring
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ranking lists of templates.4 Then, let us consider two such neighbouring ranking
lists of templates, where the correct pattern / template match is found at ranks
r1 and r2, respectively.5 Then, for each entry in the left ranking list, starting
from the top, one needs to search for those ranks in the right ranking list that
match in the o common bits, and ignore the rest. An illustration of this process
is given in Fig. 2. A pseudo code for this would look like

for ( i1 = 1; i1 <= M; i1++ )

{

for ( i2 = 1; i2 <= M; i2++ )

if ( Overlap_Matching(ranking_1(i1), ranking_2(i2) )

Put_on_Search_List(i1,i2)

}

Without any statistical bias and further knowledge, this matching would only
occur with a probability of roughly O−1 = 2−o, and hence at first sight on
average only every O–th ranking entry in the loop over i2 will need to be tried
in the search strategy, resulting in as little as M/O matches for each value of
i1. However, this rough analysis is not quite accurate, since the correct pattern
/ value match is by definition found at position r2, and hence the matching
probability for this particular ranking entry is definitely 1. Consequently, the
average matching probability over all ranks from 1 to r2 is slightly higher than
O−1. More precisely, the match at rank r2 means that one match out of the
M/O possible matches is already consumed, and thus not available anymore
when searching in the previous (r2 − 1) ranks. Likewise, one ranking entry out
of the M has also been consumed by the same reasoning. As a result, for those
ranks up to but excluding r2 the matching probability is not O−1, but rather
Õ−1 = (M/O− 1)/(M − 1), leading to an average matching probability over all
r2 ranks of

P (r2) =
1 + (r2 − 1) M−O

(M−1)O

r2
. (6)

So, what this effectively means is that the original ranking r2 for the right–
side template gets statistically improved to r2P (r2). In the limit of r2 = 1 we
have P (1) = 1 as it should, whilst for the statistical average ranking value
of r2 = (M + 1)/2 we have P ((M + 1)/2) = (M + O)/(O(M + 1)), leading
to r2P (r2) = (M/O + 1)/2, which is the statistical average ranking value in
the new, reduced search space, again as it should. Finally, for r2 = M one

4 For rings A and B the overlap chosen in this work was o = 2, whilst for the C rings
the overlap is much larger and depends on the template size used in the end. For
templates of the form Eq. (4) with the next template being Eq. (5), the number of
overlapping bits is o = 5 and hence O = 25 = 32. This can be worked out by counting
the number of ⊕ in the overlap region, of which there are 8, and then subtracting
the number of closed ⊕ loops, which come to 3. On the other hand, the number of
linearly independent ⊕ bits is f = 7 in this case.

5 Here and in the following all ranking lists will denote rank 1 as the top rank, so
everything is base 1.
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finds P (M) = O−1, which again makes good sense as when searching the entire
ranking list of M entries, M/O matches will be found in total.

It can be argued that Eq. (6) only applies to the case when the starting point
on the left ranking list was such that its overlapping bits with the right ranking
list match the bits of the correct key. If this is not the case, the correction in
Eq. (6) due to the correct key being found at r2 would not necessarily apply. In
this case the reduction formula would simply read

P ′(r2) =
1

O
. (7)

However, with r2(P (r2) − P ′(r2)) = (M − r2)(O − 1)/(O(M − 1)) ≥ 0 one
finds that Eq. (6) is a conservative approximation underestimating the effect of
overlapping, and hence it will be used in the remainder of this paper.

Perhaps the assumption holding the least when deriving Eq. (6) is the as-
sumption that all ranks in the right–hand list that belong to the same “parent”
rank in the left list — by way of having the same pattern in the o overlapping
bits — will be statistically independent. They are mutually statistically depen-
dent by the very fact that they do have the same “parent”, and this regardless of
whether they represent the correct key or not. This will lead to some clustering.

Because of the very existence of overlapping bits between ranking lists and
the correlations this induces between ranking lists, it is not necessarily the best
possible strategy to search each template ranking list all the way to the bottom
of it. Rather, it is preferable to search up until a certain threshold value r across
all ranking lists and, if unsuccessful, increase this threshold r step by step. A
pseudo code for this could look like

for ( r = 1; r <= M; r++ )

{

/* The right list is at maximal value r */

for ( i1 = 1; i1 <= r; i1++ )

{

if ( Overlap_Matching(ranking_1(i1), ranking_2(r) )

Put_on_Search_List(i1,r)

}

/* The left list is at maximal value r */

for ( i2 = 1; i2 < r; i2++ )

{

if ( Overlap_Matching(ranking_1(r), ranking_2(i2) )

Put_on_Search_List(r,i2)

}

}

If these are the only two ranking lists of templates to consider, as is the case for
A rings, for instance, then this search strategy will have found the correct match
once rmax = max(r1, r2) has been reached. In doing so roughly r2maxP (rmax)
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calls to Put on Search List() are required. For the A rings we have P (rmax) ≈
O−1 = 1/4.6

When more than two ranking lists of templates are connected in a ring, like
in the C rings, the analysis becomes a bit more involved, but in essence stays
the same — the max(.) operation will then have to run over all ranking lists of
templates along the ring.

Finally, it should be noted that although each template above may have f
linearly independent bits, when closing a C ring, one more degree of freedom
will be consumed by the boundary condition of the total sum of ⊕ around the
ring needing to be even, necessarily. With this is turns out that for each C ring a
total of 27 linearly independent bits exist and need to be determined. The 28th
bit is taking account of the fact that the ⊕ defines the original key bits only up
to an overall inversion of all bits.

Clearly, if there is statistical bias in the bits of the patterns in the ranks
1...rmax, then the approximation of Eq. (6) will not be quite accurate anymore.
Whilst this effect is likely not important when rmax ≈ M , it is expected that
Eq. (6) will provide a too small estimate for the effective ranking when rmax �
M .

Also, it should be noted that with this strategy the correct pattern / template
matching will not be found before rank rmax ≡ max(ri) has been reached, where
i runs over all ranking lists of template positions along the ring. Consequently,
this strategy will yield poor results if just one of those lists screws up in its
ranking ri. However, due to the overlapping bits between neighbouring template
ranking lists, there is also strong correlation between their ri, and hence outliers
are much less likely than expected from statistically independent ranking lists.

Having such an effective maximal rank rmax one can calculate the estimated
remaining rest entropy by calculating the key space that needs to be ploughed
through with brute force, based on the template ranking lists. For the A rings
one finds

EArmax
= 4 + 8 log2(rmax) , (8)

where the additional term 4 is to account for the fact that under the ⊕ operation
the 4 A rings are only determined up to an overall sign for each ring, and the
factor 8 stems from the total number of overlapping template lists used for A
rings. Each template list accounts for a factor rmax when counting the number
of possible combinations of template ranks across all 8 ranking lists — hence
8 log2(rmax). Likewise, one finds for the B rings, which are only two rings but
still eight template ranking lists,

EBrmax
= 2 + 8 log2(rmax) . (9)

For the C rings, where the construction of templates has been for maximal
overlap, resulting in 28 template lists split over two rings, one finds

ECrmax
= 2 + 28 log2(rmax) , (10)

6 The factor 1/4 is important as it ensures that even in the worst–case limit of rmax =
M the number of calls to Put on Search List() does not exceed the number of
templates possible for a 14–bit vector, i.e., 214.
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or
EC

′

rmax
= 1 + 14 log2(rmax) (11)

for just one of these rings. There may well be more optimal search strategies than
those described above, which would lead to smaller estimates of the remaining
entropy, and thus the above can be considered as approximations only.

As just discussed, because of the overlap and hence correlation between neigh-
bouring templates, there is a tendency for all rankings ri to be of roughly the
same value and hence, in order to get a quick glance, it is useful to make a rather
bold worst–case approximation and work with the arithmetic average7

r =
1

R

R∑
i=1

ri (12)

instead of rmax, where R = 8 for A and B rings, and R = 28 for C rings.8 This is
a crucial assumption, which will generally somewhat overestimate the number of
broken key bits. In the following we will refer to this assumption as the worst–
case assumption. Assumptions of this kind are often used in Common Criteria
evaluations to be on the safe side.9

Eqs. (6) and (10) provide a first estimate about the remaining rest entropy
when doing a brute–force attack, but it is interesting to see how efficient a key–
search strategy can in fact be implemented. First we notice that the problem
decomposes into two parts, the search over the 28 key bits related to the C–
Register, and the search over the 28 key bits stemming from the D–Register,
since both registers effectively set up independent key schedules [13]. This makes
the problem much more manageable.

A simple key search is done in a few characteristic steps. But before going
there, let us briefly outline the data structure we implemented. For each of
the 28 template ranking lists, and each entry in all these lists, we created lists
containing the 4 pointers to the matching templates and their rankings on the

7 It is normally not allowed to reverse the order of steps taken when calculating the
rest entropy and performing an averaging, as we do here by first averaging over ri
and then calculating the rest entropy. However, the overlap and hence correlation
between neighbouring templates justify this as a worst–case scenario. A more detailed
and accurate analysis of the resulting ranking distribution is performed later in this
Section.

8 There is actually no reason for r to be the same in different rings, since there is no
correlation between templates across different rings. It is straightforward, though, to
generalise Eqs. (8–10) below to such a scenario. For instance, Eqs. (10) would then
read as EC

rmax,r′max
= 2 + 14(log2(rmax) + (log2(r′max)).

9 When using Eqs. (8–10) with a statistically average value for r = r̄, one finds
EA

r̄=64.5 = 52.09, EB
r̄=64.5 = 50.09, and EC

r̄=2.5 = 39.01. At first sight this appears to
be in contradiction to the expectation that without any leakage, one would expect
E ≈ 55 for DES. However, even if there is no statistical leakage for an individual
template position, if we assume all ranking lists across all template positions to be
the same, then we are still assuming perfect correlation between all ranking lists,
and hence not a statistically uncorrelated distribution.
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“right–hand” side of each ranking list. The matching is here simply defined
by the overlap properties of neighbouring template values. With these lists it
is then easily possible to set up graphs across all 28 nodes that present valid
combinations of nodes.10 Since we only need to tackle C–type rings / graphs
containing 14 elements at the time, this is neither a challenge memory–wise (of
the order of 15GB are required for the entire list of 2×227 graphs) nor is it from
a computational point of view.

In a first step we create the list of all valid graphs — there will be 227 valid
graphs in total for the C–Register, and another 227 graphs for the D–Register.
These graphs need to have the property of being closed along the C ring and,
secondly, also need to have an even number of ⊕ along the ring on the top line
as well as the bottom line (i.e., the two A rings that are contained in each C
ring).

The second step is to sort this list of graphs according to some sorting prin-
ciple — this is the key enumeration step. We have implemented two different
key enumeration metrices so far. Firstly, we take the average ranking across all
14 nodes of a graph and, secondly, we choose the maximal ranking rmax found
across all 14 nodes. In both cases we sort for increasing values. When performing
the corresponding sorting of the original list it is important to realise that there
is only a limited number of possible sorting values that can be had, and there is
no point in sorting graphs that are “degenerate” by having the same average or
maximal ranking. This feature helps in accelerating the sorting tremendously.

The final step is to actually perform the search through this sorted list, taking
care to account for the variability introduced by the degeneracy mentioned above
— leading to a best–case rest entropy, a worst–case rest entropy and, finally,
an average rest entropy. Since it turns out that best–case and worst–case rest
entropy are very close to each other, in what follows we will only report the
average rest entropy.

The first two steps — so the creation of the unordered list of graphs and
the subsequent key enumeration — execute in a time roughly independent of
where the key is actually ranked in the list. They only depend on the template
size. Only the last, third step is highly dependent on the key ranking, but it is a
normal brute–force search just like for a normal DES, with almost no additional
overhead. Of course, the actual brute–force attack will have to deal with the
C– and D–Registers simultaneously, but this is only required for this last, third
step.

A pseudo code for this key–search strategy could look like

/* Read in 14 input files containing the rankings of 14 template lists */

for ( p = 0; p < 14; p++ )

{

for ( r = 1; r <= M; r++ )

{

10 A node is defined by a template position along the C ring and the value that this
template has.
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/* For each r there will be 4 matches returned */

Work_Out_List_of_Matching_Overlaps_with_Right_Hand_Template(p)

}

}

/* Create an unordered list of nodes connected as graphs that */

/* represent valid combinations of neighbouring templates */

Set_Time()

Pick_first_Template_Ranking_List(0)

for ( r = 1; r <= M; r++ )

{

For_All_Paths:

{

Follow_Path_Via_Next_Neighbour_Matching_along_Ring()

if ( Path_Closes_Along_Ring && Number_Xors_in_A_and_B_Ring_is_Even )

Add_Path_2_List_of_Graphs()

}

}

printf(Elapsed_Time T_1)

/* Key enumeration step: */

/* Order the list of graphs according to minimal average, */

/* or minimal max_rank_r. Note that this ordering is fast, */

/* since no ordering is needed between graphs having the */

/* same minimal average / minimal max_rank_r */

Set_Time()

Order_List_of_Graphs()

printf(Elapsed_Time T_2)

/* Perform the actual key search on the C or D Register */

Search_Ordered_List_for_Matching_Key()

The pseudo code as given here is valid for searching for the subkey belonging
to either the C–Register or the D–Register, but not for both at the same time.
However, this is trivially extended to in the final section of the pseudo code.

These are basic search algorithms and it is expected that one can improve on
those. To start with we notice that according to Table 5 the ⊕ between different
key bits do not leak all with the same weight. Some leak only once, whilst
others leak up to 12 times.11 It is thus not unreasonable to assume that those
⊕ relations that leak more will also yield more stable results in the template
matching, and hence require a different treatment in the key search than those

11 To be more precise, the links on the top and bottom lines of the C rings have large
weights, i.e., the links stemming from the A rings, whilst all links related to the B
rings have much less weight.
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Fig. 3. A typical single EM (electromagnetic) trace of the TOE showing 4 calls to
the DES HW engine. It was obtained by placing a Langer EM probe on top of what
had previously been identified as a DES coprocessor hard macro in the chip layout.
Sampling rate: 5 GS/s.

bits that leak less. Augmenting the key–search strategy along these lines should
give substantial improvements.

Secondly, if we assume that the total Hamming weight of the correct key leaks
perfectly, the key–search strategy could be modified in a way that for each 28 key
bits tried for the C–Register, knowing the Hamming weight of the total key, we
can work out the remaining Hamming weight of the 28 key bits stemming from
the D–Register (or vice versa), and this will cut down on the number of possible
key candidates in that second search. Actually, this approach yields more bits
than one might first think, since the number of possible Hamming weights of
the full key is not 57, but rather much more, 575, since each key bit contributes
to the total effective Hamming weight with a weight according to its occurrence
as given in Table 5. Trials have shown that the remaining rest entropy can be
reduced by as much as 5 to 7 bits this way.12

In a similar fashion, if there are any other leakages present — for instance
like those found in [12] for the same device — they could be factored into this
key–search strategy as well.

12 In order to attack the total Hamming weight of the key, for each trace one has to
fold back all 15 ⊕ rounds into a single round by summing them up. This is to make
sure the leakage occurs always at the same sample point in the trace.
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Fig. 5. Standard deviation with all four DES blocks aligned. The first DES block is
the most difficult to align and far from perfect yet.

3 Results for a Contemporary Smart Card

Target of Evaluation (TOE) was a smart card from 2012 containing a JAVA OS
where we could freely call the DES function — although likely via a wrapper in
an underlying crypto library. A typical single EM trace is given in Fig. 3, show-
ing essentially 4 calls to the DES hardware engine. First we remove the strong
timing jitter between these blocks using a simple rigid–pattern filter that locks
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Fig. 6. χ2 and correlation of the ⊕ round key updating along the A rings: Eq. (1).

into these four DES blocks. In a next step we refine the alignment by applying an
elastic alignment filter based on segment–wise parametrizing the internal clock
/ time as T = a+ bt+ ct2 + dt3 + et4 + ft5, where t corresponds to the external
clock / time, and then finding the best set of coefficients (a, b, c, d, e, f) for each
DES segment of each trace.13 Starting with a little over 7M raw traces with
random plain text and random key, this procedure yielded just over 5M aligned

13 The raw traces show two different types of timing jitter: Firstly, there are random
delays inserted between the four DES blocks. These are removed by taking one trace
as a reference trace and then for each trace perform a least–square search for each
of the 4 DES blocks separately to get a rough alignment of those 4 DES blocks.
Secondly, the internal clock does not appear to be very stable. In the most simple
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Fig. 7. χ2 and correlation of the ⊕ round key updating along the B rings: Eq. (2).

traces, with their average trace given in Fig. 4, and its standard deviation shown
in Fig. 5. Likely, the multiple calls to the DES hardware engine are due to coun-
termeasures against fault attacks. We do not need to know whether these DES
calls are “forward” or “backward” calculations — it does not matter, anyway,

approximation we assume the internal clock frequency to vary smoothly over time
and model this with a polynomial fit. Since polynomial fits only work well over
rather short time intervals, it then becomes necessary to split each DES block into
a couple of time segments and apply the polynomial fit to each of them separately,
using continuity equations as needed. Again, for each trace and each time segment,
the best set of coefficients is determined using a least–square algorithm.
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Fig. 8. χ2 and correlation of the ⊕ round key updating along the C rings: Eq. (3).

for launching a template attack, as long as they are static and do not change
from one call to another. However, subsequent analysis reveals that these are
forward – backward – forward – backward DES calls. Interestingly, they do not
have precisely the same run–time behaviour, and also their standard deviations
are slightly different as per Fig. 5. The last two DES blocks are much easier to
align. Other than this alignment, no further preprocessing has been performed
for calculating the templates later on.
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3.1 Results based on Exploiting the Ring Structure

A number of standard DPA attacks were initially tried out on this TOE, such
as targeting the input and output of the S–Boxes, after the ⊕ at the output, as
well as the Hamming distance model, and some leakage was indeed seen here
and there, but none of those first–order approaches seemed to work very well
with a million traces, and thus we conclude that the DES hardware engine has
been reasonably hardened against these attacks. Also, targeting the round key
itself did not yield any useful correlation signal, although some strong spikes are
visible in a χ2 analysis, indicating that Points of Interest for a template attack
are at least available. However, the ⊕ between two successive round keys seemed
most promising, showing strong correlation signals.14 Figure 6 displays the χ2

and correlation function for the select function based on Eq. (1), i.e., for A rings.
Since we do not know the countermeasures implemented in this DES hardware
engine, we can only speculate, but it seems that some blinding of the rounds has
been implemented, which does its job when looking at each round in isolation,
but which perhaps does not get updated from one round to the next and thus
gets removed when performing an ⊕ operation between two rounds and thereby
attacking the Hamming distance.

Likewise, we have plotted the χ2 and correlation functions for rings B and C
in Figs. 7 and 8 respectively. Overall, we find good qualitative agreement with
the simulated leakage shown in Fig. 1.

Clearly, this weakness should be exploitable and, given the strength of the
leakage observed, in the remaining part of this paper we will aim to exploit it
using a single trace in the Exploitation Phase only.

Statistical Analysis In a first step, the Profiling Phase, we create 28 sets of
(2n + 1)–bit templates for the C rings as described in Sec. 2 using 4.75 million
traces with random keys as input.15 Then, in a second step, the Exploitation
Phase, we test how good these templates are by applying them to a further set
of a few ten thousand random–key traces (32K traces to be precise), treating
each of them as a single–trace attack during Exploitation Phase, and extracting
some statistical properties of this 32K ensemble of single–trace attacks.

Firstly, we analyse the auto–correlation of the rankings of neighbouring tem-
plates along the ring. Because of them overlapping, one can expect a strong auto–
correlation that will decay as the distance between the templates along the ring
increases. To be more precise, a C–type template of size (2n+ 1) can be shifted
by n steps before it loses overlap with the template at its original position. This

14 In fact, we checked whether there are any other ⊕ leakages visible in the correlations
and χ2 between any two DES key bits other than those predicted by the A, B, or
C–rings and listed in Table 5, but none were found other than those also seen in [12],
suggesting that the chosen leakage model is indeed very suitable for the analysis of
this smart card.

15 For each substantial positive and negative peak in the correlation function ≈ 9 POIs
were taken, leading to some 1035 POIs in total for the C rings.
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Fig. 9. Correlation C(∆) of neighbouring templates as a function of their mutual dis-
tance ∆ along the ring, as defined in Eq. (13). The correlation decays at the scale of the
size of the C–type template. So, for (2n + 1)–bit templates, which overlap with their
nearest neighbour by 2n bits, the correlation spans up to ∆max ≈ n. (C–type templates
of the type Eq. (4) shift in units of 2 because of the two rails that they have.)

hypothesis is confirmed in Fig. 9.16 Here we have plotted the auto–correlation
between the rankings of neighbouring C–type templates of varying sizes as a
function of their mutual distance ∆ along the ring — and this averaged over all
template positions i and 14 + i along the two rings as

C(∆) =
1

28

∑
i=0...13

(Corr(r(i+∆)mod14, ri) + Corr(r14+(i+∆)mod14, r14+i) . (13)

The auto–correlation C(∆) as shown in Fig. 9 decays almost linearly with the
mutual distance ∆, like C(∆) ≈ 1 −∆/n for not too large template sizes, and
it is slightly larger than what one would expect given the size 2n + 1 of the
template. This is attributed to higher–order effects. It is currently not clear why
the 11–bit templates deteriorate for ∆ = 1 compared to the 9–bit templates.
Perhaps, it has to do with an insufficient number of traces used for generating
the templates.

In Figs. 10 to 13 we have plotted the distribution of the maximal rankings,
rmax = max(ri)|i=0...27, for this random ensemble of 32K traces with randomly
chosen keys — based on 5–bit, 7–bit, 9–bit, and 11–bit templates, respectively.
For reference, we have also plotted the expected scaled distribution of rmax if all

16 Here and in the following we will always use — as defined in [12] — the LnP AvC

approximation to the probability density function of the multivariate normal distri-
bution.
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Fig. 10. Histogram of the maximal ranking rmax = max(ri)|i=0...27 along the C rings
for 3–bit and 5–bit templates. In a given random–key ensemble of 32K traces for the
Exploitation Phase, the smallest maximal rankings found at the left–hand onset of the
distribution are rmax = 4 and rmax = 7, respectively.

rankings were uncorrelated and unbiased. This distribution can be easily derived
by working out how many ranking results {ri=0...27} are possible when each
ranking ri needs to be within the range 1...rmax, leading to Puncorrelated ∝ r27max.
As can be seen, the centre of the distribution moves to lower ranks (relative to
the maximal rank possible) as the template size increases, which suggests that
further improvements to this attack should be possible by collecting even more
traces during the Profiling Phase and then creating even larger templates such
as 13–bit and 15–bit templates — both of which are still within computational
range.

Next we study the average ranking values for each of the 28 template posi-
tions along the C ring, when averaged over this ensemble of 32K random traces.
Figure 15, top graph, shows the average rankings r̄i found for the 28 possible
C–type 9–bit template positions — again for the case of LnP AvC as defined in
[12].17 Clearly, these rankings fall into two classes: Template positions 0 to 13
which correspond to the C–Register, and positions 14 to 27, which map to the
D–Register. The fact that the D–Register leaks more can be used to improve
the key–search strategy. This effect seems to be getting stronger when going for
larger template sizes as is apparent when comparing Figs. 14, 15 and 16.

17 Note, the approximations LnP AvC, LnP nAvC, and LnP wAvC defined in [12] work
equally well here, with LnP gAvC, LnP lAvC, LnP lgAvC, and LnP lwAvC being a tad
worse. The same observation had been made with an older data set already, and
hence there seems to be some consistency in this regard.
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Fig. 12. Same as Fig. 11, but for 11–bit templates and a random–key ensemble of
32K traces. The smallest maximal ranking at the left–hand onset of the distribution
in the top graph is rmax = 36. The corresponding actual rankings ri of the associated
single trace are shown in Fig. 15, bottom part. For reference, the expected (scaled)
distribution based on uncorrelated, unbiased rankings at 28 template positions is also
shown: Puncorrelated ∝ r27

max.
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Fig. 13. Same as Fig. 11, but for 11–bit templates and a random–key ensemble of
32K traces. The smallest maximal ranking at the left–hand onset of the distribution
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Fig. 14. Top: Average (original) rankings r̄i as a function of the template position i
in the C rings, based on a random–key ensemble of 32K traces. “Original” ranking
means that Eq. (6) has not yet been applied, and thus a 7–bit template results in
128 different possible ranks. The average rankings for templates associated with the
so–called C register in the DES are found to be rather higher than those associated
with the D register. In both cases the rankings r̄i vary rather smoothly as a function
of the position index i, which is a tell–tale of the correlation between them. Bottom
Figure: Same, but for a single trace. Here the maximal ranking along the C rings is
rmax = 18, found at positions i = 17, which with Eqs. (6) and (10) translates to an
estimated remaining rest entropy of 15.64 bits.
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Fig. 15. Top: Average (original) rankings r̄i as a function of the template position i
in the C rings, based on a random–key ensemble of 32K traces. “Original” ranking
means that Eq. (6) has not yet been applied, and thus a 9–bit template results in
512 different possible ranks. The average rankings for templates associated with the
so–called C register in the DES are found to be rather higher than those associated
with the D register. In both cases the rankings r̄i vary rather smoothly as a function
of the position index i, which is a tell–tale of the correlation between them. Bottom
Figure: Same, but for a single trace. Here the maximal ranking along the C rings is
rmax = 36, found at positions i = 6 and i = 15, which with Eqs. (6) and (10) translates
to an estimated remaining rest entropy of 9.55 bits.
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Fig. 16. Top: Average (original) rankings r̄i as a function of the template position i in
the C rings, based on a random ensemble of 32K traces. “Original” ranking means that
Eq. (6) has not yet been applied, and thus a 11–bit template results in 2048 different
possible ranks. The average rankings for templates associated with the so–called C
register in the DES are found to be rather higher than those associated with the D
register. In both cases the rankings r̄i vary rather smoothly as a function of the position
index i, which is a tell–tale of the correlation between them. Bottom Figure: Same,
but for a single trace. Here the maximal ranking along the C rings is rmax = 98, found
at position i = 14, which with Eqs. (6) and (10) translates to an estimated remaining
rest entropy of 7.37 bits.
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Table 6. Characteristic statistical data of the rmax ranking distributions shown in
Figs. 10 – 13 based on the analysis of an ensemble of 32K random–key traces in Ex-
ploitation Phase: The onset ranking and estimated rest entropy found for a particularly
leaky individual trace (a characteristics which clearly is highly dependent on the size
of the ensemble of traces analysed), the ranking rmax(Q) reached at various first quan-
tiles Q, and finally the estimated average rest entropy ĒQ calculated within those
respective quantiles, based on Eqs. (6) and (10) and a simple search strategy based on
rmax = max(ri)|i=0...27. For comparison, we also show the “worst case” results based on
first averaging the template rankings over all 28 template positions along the C rings
as well as over the ensemble of all traces with r̄ = 1/28

∑
i r̄i, and then calculating the

estimated rest entropy E(r̄).

Templates 3–bit (32K) 5–bit (32K) 7–bit (32K) 9–bit (32K) 11–bit (32K)

rmax Ē rmax Ē rmax Ē rmax Ē rmax Ē

Onset 3 20.01 7 20.49 18 15.64 36 9.55 98 7.37

Permille 3.05 29.56 10.06 27.19 25.70 19.59 69.00 13.94 218.00 11.38

Percentile 4.03 36.05 13.42 31.96 39.94 25.48 112.86 19.30 386.00 16.86

64th Quantile 4.12 38.31 14.36 33.33 43.41 26.92 125.94 20.79 433.00 18.37

32th Quantile 4.37 40.32 16.01 35.51 50.07 29.43 150.63 23.44 530.67 21.03

Hexacile 4.88 41.33 17.85 38.05 58.03 32.29 180.07 26.45 641.50 24.10

Octile 5.21 44.44 20.02 40.75 67.34 35.48 218.21 29.89 788.00 27.57

Quartile 5.67 46.35 22.53 43.72 79.59 39.04 271.16 33.96 999.03 31.74

Median 6.25 48.98 25.87 46.97 96.81 43.24 348.46 38.93 1324.30 36.99

Average 6.58 51.20 25.60 50.90 94.53 48.56 341.10 45.53 1300.05 44.14

r̄ E(r̄) r̄ E(r̄) r̄ E(r̄) r̄ E(r̄) r̄ E(r̄)

“Worst Case” 3.12 28.14 8.80 24.72 27.93 21.89 94.86 19.73 350.71 18.71

Next we look at the extreme cases to the left in the histograms of Figs. 10
to 13 — single traces that are particularly leaky. Figure 15, bottom graph,
shows the rankings of all 28 template positions, with an rmax as low as rmax =
max(ri)|i=0...27 = 36, occurring at positions i = 6 and i = 15. With Eqs. (6)
and (10) this maximal ranking then translates to an estimated remaining rest
entropy of 9.55 bits.

Likewise, in Fig. 16, bottom graph, we show the results for the most leaky
trace found in the ensemble of 32K traces when analysing with 11–bit templates.
Here rmax = max(ri)|i=0...27 = 98 at i = 14, so in the D–Register this time,
leading to an estimated remaining rest entropy of 7.37 bits.

Finally, in Table 6 we provide an overview over the most important charac-
teristic statistical properties of the rmax ranking distributions for (2n + 1)–bit
templates. For various quantiles Q the corresponding value of rmax(Q) at the
quantile boundary is provided, as well as the estimated rest entropy Ē(Q) av-
eraged over that quantile (as opposed to the estimated rest entropy E(Q) at
the quantile boundary Q, which can be simply derived by plugging rmax(Q) into
Eqs. (6) and (10)). Generally, as expected, it is observed that results improve
when going for larger template sizes (2n+ 1). For the largest template size anal-
ysed so far, 11 bits, it is seems the improvement when going from 9–bit to 11–bit
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Table 7. Characteristic statistical data of the rmax = max(ri)|i=0...55 ranking distri-
butions and the corresponding estimated remaining rest entropy Ē for a hypothetical
2–key 2DES implementation for various template sizes.

Templates 3–bit (16K) 5–bit (16K) 7–bit (16K) 9–bit (16K) 11–bit (16K)

rmax Ē rmax Ē rmax Ē rmax Ē rmax Ē

Permille 4.22 83.80 16.39 77.21 50.40 62.55 153.33 52.19 561.00 48.55

Percentile 5.05 91.40 19.21 83.88 63.60 73.08 202.86 61.88 744.67 58.27

64th Quantile 5.10 93.24 20.07 85.62 66.53 75.17 216.57 64.34 789.50 60.62

32th Quantile 5.24 94.88 21.20 88.64 72.49 78.74 242.67 68.61 886.80 64.72

Hexacile 5.52 95.70 22.52 91.76 79.24 82.72 270.50 73.53 997.27 69.45

Octile 6.01 96.87 24.08 94.99 87.27 87.23 305.11 78.76 1139.20 74.91

Quartile 6.15 101.6 25.93 98.66 96.95 92.28 347.79 84.66 1323.60 81.23

Median 6.43 104.34 28.04 102.72 108.48 97.85 405.58 91.55 1569.17 88.67

Average 6.88 105.60 27.94 107.41 106.47 104.56 396.17 100.22 1531.59 98.19

templates is not as large as when going from 7 to 9 bits. This may have to do
with the rather small ensemble analysed, but it could also be an indication that
the base of 4.75M traces used for generating the templates is not enough for
obtaining sufficiently accurate 11–bit templates.

In any case, when comparing the results with the worst–case result based
on r̄ discussed earlier in the context of Eq. (12), one finds that the worst–case
assumption is indeed a very aggressive, but still realistic one. Moreover, as the
template size increases, the worst–case results correspond to higher quantiles,
meaning the worst case becomes more likely to occur. This is attributed to the
effect of overlapping templates and the resulting correlation between the results
ri at the 28 template positions i along the rings. To conclude, the worst–case
analysis is a useful tool to get a quick impression about the strength of the attack
without having to work out a large statistics.

To be fair, though, one needs to add a few bits to the values shown in Table 6
to weight in the fact that the results only hold for a certain quantile of a given
random set of traces, whilst for the rest of the traces the attack would not
succeed within the given quantile. Thus, for instance, for the Quartile results
shown here, 2 bits need to be added, for the Octile results 3 bits, and so on.

An example attack scenario could be a set of 800 smart cards that are si-
multaneously attacked on the basis of a given single trace in Exploitation Phase
— different for each card — and out of these roughly 100 smart cards would
be broken with an average brute force effort of 27.57 bits when using 11–bit
templates. A further 100 smart cards would yield when spending another 4 bits
of brute–force effort.

In order to get an idea how the brute–force effort would look like to break 2–
key and 3–key 3DES implementations, we have summarized in Table 7 the most
important parameters of the rmax ranking distributions and their corresponding
estimated remaining rest entropy Ē for a hypothetical 2–key 2DES implementa-
tion. It is based on the same ensemble of traces as used for generating Table 6,
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but now always pairing two consecutive traces to form one longer trace of a hypo-
thetical 2–key 2DES operation, and finally determining rmax = max(ri)|i=0...55

across all 56 template positions.

This can then be applied to a 2–key 3DES implementation of the form
DES(k1)DES−1(k2)DES(k1) by applying Table 7 on the effectively 112–bit search,
with the first trace belonging to the two outer DES(k1) operations, and the
second trace always belonging to the inner DES−1(k2) operation. Such a si-
multaneous attack of k1 and k2 is not possible with a standard DPA. Also, it
should be noted that in doing so we grossly underestimate the leakage of the two
outer DES(k1) operations having the same key k1, since for these twice as many
POIs are in fact available than had been used for calculating the templates and
pattern–template matching results underlying Table 6. Hence, for the two outer
DES(k1) operations results better than those shown in Table 6 are to be ex-
pected. Consequently, from this point of view Table 7 will be a too conservative
estimate for the leakage of a 2–key 3DES implementation.

On the other hand, Table 7 should be fairly accurate for a 3–key 3DES in a
meet–in–the–middle–attack scenario, if and when it is applicable.

From all these results and observations we conclude that the correlation of
neighbouring templates due to overlap along the rings is an important aspect
that needs to be heeded in any key–search strategy and it will generally improve
results substantially. Secondly, we conclude that C–type templates as large as
possible should be used.

To conclude this Section we investigate a few example traces and apply a
full key search as outlined at the end of Sec. 2.2. To be precise, we only present
results for key searches within the C–Register or the D–Register separately, but
not both at the same time. However, it is fairly straightforward to generalise our
results to the case of a complete key search across both registers. In doing so
one should take advantage of the different average rankings in the C– and D–
Registers, as visualised in Figs. 14 to 16, top graphs, which translate to different
average search depths in these registers. For large template sizes, like 13 bits,
the difference in average rankings between the two is as large as a factor two.

In Tables 8 & 9 we show for selected traces — identified simply by their
Trace ID / position in the ensemble of traces — what the found remaining rest
entropy is. Here EC

′

rmax
is the remaining rest entropy as estimated by Eqs. (6)

and (11), whilst Ermax
is the result of a real key search based on sorting the

graphs introduced at the end of Sec. 2.2 according to increasing values of rmax.
Likewise, Er is based on sorting the graphs for increasing average ranking values,
r = 1

14

∑13
i=0 ri for the C–Register, and r = 1

14

∑27
i=14 ri for the D–Register.

Firstly, we notice that whilst the execution time required for setting up the
list of nodes, T1, as well as the time required for sorting /enumerating this list,
T2, do depend on the size of the template, of course, they do not really depend
on the position of the correct key in this list — as expected. Note that to keep
things simple T1 is the time taken for setting up the lists for Ermax

, Er as well
as a few other key enumeration schemes that we tried, all together in a single
run.
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Table 8. Comparison of the rest entropy EC′
rmax

as estimated by Eqs. (6) and (11)
(applied to C–Register and D–Register separately) for selected traces, with actual key
searches based on minimal average ranking r (:Er) or minimal rmax ranking (:Ermax).
Also, rough run times on a PC are given for creating the lists of graphs, T1, and
enumerating / sorting these lists for efficient subsequent brute–force search, T2.

Trace ID T’pl. Size C–Register D–Register

[bits] EC′
rmax

T1 [s] T2 [s] Er T2 [s] Ermax EC′
rmax

T1 [s] T2 [s] Er T2 [s] Ermax

4750272 5 27.48 58 21 25.38 20 26.17 28.51 59 20 26.65 20 27.18

4750032 5 25.25 58 22 20.99 20 24.41 25.25 58 21 20.09 20 24.25

4750068 5 24.04 58 20 18.62 20 23.47 22.07 59 21 13.9 20 21.37

4756552 5 18.3 64 23 16.16 23 18 19.89 66 21 13.86 20 19.22

4750232 5 17.45 58 21 16.1 20 17.37 15.64 57 21 15.62 19 15.35

4760532 5 15.64 59 21 14.45 20 15.41 17.45 59 21 14.81 20 17.36

4763629 5 19.11 58 21 14.81 19 18.88 11.45 67 24 9.59 23 11.3

4754072 5 12.58 57 20 11.7 19 13.73 18.3 60 20 14.07 20 18.59

4777975 5 13.65 58 20 13.61 20 13.44 8.97 58 20 8.95 19 8.46

4781560 5 12.58 58 21 12.47 20 12.3 10.25 58 19 10.01 20 9.78

4763788 5 13.65 59 21 13.84 20 13.87 11.45 58 20 9.86 20 11.63

4780499 5 12.58 63 22 7.36 21 11.77 14.67 58 21 10.27 20 14.36

4750798 5 10.25 58 19 7.32 19 10.24 19.89 60 21 16.32 20 19.43

4763782 5 10.25 62 23 6.49 22 9.93 12.58 59 20 12.35 20 12.09

4757225 5 10.25 59 20 10.53 20 9.44 10.25 62 20 10.79 19 9.51

4750272 7 27.9 136 54 25.14 51 26.91 28.02 136 54 26.22 52 27.06

4750032 7 17.61 140 59 19.9 56 20.16 23.24 144 56 20.76 51 23.53

4750068 7 21.07 136 55 17.8 51 22.49 17.18 138 55 14.28 52 19.7

4750232 7 15.86 137 54 16.86 51 18.51 8.49 136 55 14.96 56 12.34

4756552 7 14.19 137 54 14.93 52 17.01 11.82 136 55 14.19 51 15.42

4763629 7 13.43 137 54 14.15 51 16.51 6.77 137 54 8.48 51 9.70

4750798 7 9.45 136 55 8.94 51 13.53 13.43 136 55 16.08 52 16.99

4760532 7 8.82 136 55 12.79 52 12.18 12.91 137 55 15.11 52 16.63

4757225 7 10.96 136 55 11.15 51 14.21 7.48 137 55 11.29 52 11.25

4780499 7 10.67 150 56 8.92 57 13.29 8.16 150 71 10.32 74 12.12

4754072 7 7.48 136 54 11.54 51 12.8 10.96 136 55 12.89 51 14.54

4777975 7 10.07 137 55 11.97 51 13.23 6.77 137 54 9.60 51 10.79

4763788 7 8.16 153 56 13.59 57 12.78 6.41 152 57 10.47 52 9.60

4781560 7 7.13 148 61 11.38 55 10.08 7.82 151 61 8.58 59 11.43

4763782 7 4.89 137 55 7.06 52 7.73 8.81 137 55 12.03 52 12.37

Secondly, there is a fairly good agreement found between the estimated rest
entropy EC

′

rmax
and the entropies Er and Ermax

actually obtained with one of the
two key–enumeration strategies, as long as the trace does not leak too much,
i.e., when its rmax is in the bulk of the distributions shown in Figs. 10 to 13.
For traces stemming from the left tail of these distributions, the estimated rest
entropy EC

′

rmax
is generally underestimating the rest entropy by up to 8 bits.

Still, the results, e.g., for Trace ID 4763782 and 11–bit templates are such that
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Table 9. Same as Table 8, but for larger template sizes.

Trace ID T’pl. Size C–Register D–Register

[bits] EC′
rmax

T1 [s] T2 [s] Er T2 [s] Ermax EC′
rmax

T1 [s] T2 [s] Er T2 [s] Ermax

4750272 9 27.01 414 176 25.15 176 26.53 25.72 414 176 25.84 175 25.71

4750032 9 21.77 466 200 21.5 194 23.85 20.73 433 198 20.54 185 22.96

4750068 9 9.80 414 175 17.33 176 16.22 11.91 415 175 15.27 176 17.74

4750232 9 11.49 424 176 16.11 175 17.16 8.86 414 176 15.98 176 15.56

4754072 9 8.12 415 175 11.43 175 15.51 9.10 415 175 13.54 175 16.05

4780499 9 11.56 415 176 11.05 176 16.65 4.97 415 176 10.42 176 10.91

4756552 9 7.95 416 176 12.84 176 14.26 6.38 417 176 14.12 176 13.15

4750798 9 5.83 419 180 9.60 169 12.1 8.45 452 210 16.11 192 15.08

4760532 9 5.92 418 179 12.15 168 12.22 7.27 418 179 14.73 169 14.09

4757225 9 7.87 415 176 12.39 176 14.16 5.64 414 176 11.26 176 12

4763782 9 3.97 415 176 7.90 177 9.79 8.86 415 176 12.19 175 15.12

4763629 9 7.44 414 176 12.08 175 14.08 3.97 414 176 8.99 176 9.49

4763788 9 5.55 462 200 13.31 184 12.36 4.77 452 178 10.82 188 10.92

4781560 9 6.56 414 175 12.58 176 12.39 4.38 414 176 7.38 176 10.26

4777975 9 4.77 417 180 11.09 168 9.83 4.77 418 179 10.63 169 11.41

4750272 11 26.57 1741 824 24.74 805 26.34 24.83 1649 811 25 814 25.36

4750032 11 21.95 1633 793 22.37 795 24.18 18.17 1640 805 21.48 806 22.24

4750232 11 9.34 1638 800 15.12 805 16.08 8.13 1636 795 16.66 799 16.21

4750068 11 6.98 1634 797 16.36 800 14.35 10.61 1639 801 17.38 804 18.07

4750798 11 5.11 1632 789 8.52 794 11.58 14.41 1633 788 17.63 778 20.35

4780499 11 9.30 1678 836 9.13 817 15.18 5.09 1628 790 12.24 797 12.74

4757225 11 7.09 1636 794 11.01 798 14.63 4.52 1629 786 11.09 790 12.34

4754072 11 5.13 1790 878 10.32 873 13.17 6.67 1657 796 13.79 800 15.77

4781560 11 7.54 1694 866 12.37 861 14.28 2.86 1824 842 3.81 793 8.34

4763788 11 5.98 1628 786 13.47 788 13.81 3.92 1630 792 10.66 794 11.45

4760532 11 3.86 1639 800 10.65 804 10.41 4.89 1638 804 13.63 810 13.15

4777975 11 5.28 1689 802 11.06 805 11.23 3.99 1630 798 10.37 804 11.62

4763629 11 5.56 1635 797 11.77 803 13.69 3.61 1632 793 10.33 793 11.15

4756552 11 3.29 1640 804 11.55 806 8.40 4.27 1636 799 13.48 803 12.1

4763782 11 1.70 1629 791 5.61 795 4.81 3.68 1631 789 11.58 792 11.01

— if taken alone — the C–Register key search terminates in as little as 4.81
bits when enumerating keys according to rmax, and also the D–Register search
is done after 11.01 bits. When combining this one has to take the maximum
of the two, meaning that the total key will be found after a brute–force effort
of ≈ 22.02 bits.18 Even better, for Trace ID 4757225 and 5–bit templates we
find when enumerating keys according to rmax that the search in the C–Register

18 Strictly speaking, it is not quite correct to simply take the maximum of the C–
and D–Register results and simply double it, since both registers will have slightly
different search / key enumeration lists and thus the search will terminate slightly
differently in those two registers. But it should be good enough to give an indication.



35

Table 10. Comparison of the rest entropy EC′
rmax

as estimated by Eqs. (6) and (11)
(applied to C–Register and D–Register separately) for selected traces, with actual key
searches based on minimal average ranking r (:Er) or minimal rmax ranking (:Ermax),
and using the additional assumption of knowing the Hamming weight of the correct
key.

Trace ID T’pl. Size C–Register D–Register

[bits] EC′
rmax

Er Ermax EC′
rmax

Er Ermax

4750032 5 25.25 15.28 18.45 25.25 14.25 17.44

4750068 5 24.04 12.2 17.78 22.07 9.05 15.06

4763788 5 13.65 7.02 7.71 11.45 4.32 5.25

4763782 5 10.25 3.58 4.25 12.58 4.64 4.09

4777975 5 13.65 6.77 7.08 8.97 4.17 3.7

4757225 5 10.25 5.36 4.58 10.25 2.00 2.32

4750272 7 27.9 18.83 20.76 28.02 19.76 20.57

4750032 7 17.61 14.28 14.56 23.24 14.94 17.07

4750068 7 21.07 11.55 16.65 17.18 9.15 13.57

4763629 7 13.43 7.71 9.31 6.77 1 3.17

4757225 7 10.96 5.67 9.16 7.47 2 3.32

4763788 7 8.16 6.97 6.19 6.41 4.81 4.58

4763782 7 4.89 3.81 3.58 8.81 4 4.17

4750272 9 27.01 18.84 20.39 25.72 19.41 19.25

4750032 9 21.77 15.97 18.14 20.73 14.79 16.71

4750232 9 11.49 11.20 12.17 8.86 10.87 10.39

4757225 9 7.87 7.34 8.94 5.64 2 4.17

4760532 9 5.92 6.41 6.49 7.27 8.61 7.98

4750798 9 5.83 4.32 6.61 8.45 10.03 9.16

4763629 9 7.44 5.91 7.29 3.97 1 3.58

4763788 9 5.55 7.12 6.17 4.77 5.29 4.86

4777975 9 4.77 4.39 3.17 4.77 6.13 6.58

4750032 11 21.95 16.83 18.44 18.17 15.73 16.19

4750232 11 9.34 10.37 11.13 8.13 11.61 11.21

4763788 11 5.98 7.17 7.73 3.92 5.00 5.64

4756552 11 3.29 6.49 4.91 4.27 8.75 7.38

4763782 11 1.70 3.32 1.58 3.68 3.32 2.58

terminates at 9.44 bits, and in D–Register at 9.51 bits. So, in this case the total
brute–force effort is about 19 bits only.

When comparing these results based on key–search strategies with the “worst
case” results predicted by evaluating the rest entropy formula Eq. (10) for a
simple average ranking r, as tabulated at the bottom of Table 6, one finds those
“worst case” results actually to be in surprisingly good agreement and they do
live up to their name.

Secondly, we want to point out that whilst Eqs. (6) and (11/10) are only
accurate in the bulk of the rmax distributions and are predicting too small rest
entropies in the left wing of such a distribution, where rmax �M , this effect is
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much less important in the case of a triple DES, be it two key or three key. The
reason is simply that in those cases rmax � M is much less often fulfilled than
in the case of single–key DES. Consequently, Table 7 should be a fairly accurate
assessment of the 2–key TDES case.

Preliminary results indicate that the key–enumeration / search algorithm
might be slightly improved upon when first sorting for rmin = min(ri)|i=0...13

for the C–Register, respectively rmin = min(ri)|i=14...27 for the D–Register, and
then, within each cluster of rmin, perform a sorting according to either minimal
average ranking or minimal rmax. More generally, a better understanding of the
statistical properties of the correct key rankings will help to improve the search
strategies.

As indicated in Sec. 2.2, these results can be improved upon when the effective
Hamming weight of the total key is known. Given the strong leakage seen, this is
not an unreasonable assumption to make. When the effective Hamming weight
of the total key is known, then for each candidate of the C–Register, one can
work out the only possible remaining Hamming weight of the candidate of the
D–Register that is worth trying in the brute–force search. Table 10 shows the
results when assuming perfect Hamming–weight leakage. For instance, for Trace
ID 4763782 and 11–bit templates, if we take the C–Register to be the primary
search list, then for a key–enumeration metric based on minimal rmax, the partial
remaining rest entropy found in Table 9 is just 4.81 bits. From Table 10 we find
for the same Trace ID, same template size, and same key–enumeration metric
based on rmax a partial remaining rest entropy for the D–Register of merely 2.58
bits when the Hamming weight of the D–Register is known. Of course, it is not
quite correct to simply add things up here, since the search depth is likely not
the same in both registers, but it does give an impression of where things are
heading if the effective Hamming weight is also known. In the example given,
the total brute–force effort is likely to be less than 10 bits to recover the entire
DES key.

4 Conclusions

A new template attack has been performed on the DES hardware engine of a
fairly recent smart card using a single measurement in Exploitation Phase. A
vulnerability was found in the key scheduling, leading to leakages as large as 70%
in the correlation function. The template analysis is exploiting a ring structure
seen in the key scheduling of the DES, which is independent of the particular
implementation at hand. Using the concept of highly overlapping templates and
a key–enumeration strategy adapted to this scenario we analysed the statistical
key ranking distribution of 32K single–trace attacks. The key–enumeration step
introduces only a negligible overhead in the entire key search of the order of a few
minutes to a few hours, for a standard PC, depending on the size of the templates
chosen. A particularly leaky trace was found with a remaining rest entropy as
low as ≈ 19 bits that only need recovering by brute force. More representative is
our finding that the first Octile of the key–ranking distribution has an estimated
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average remaining rest entropy of ≈ 28 + 3 bits, and the Median of ≈ 37 + 1
bits. Whether or not such a brute–force attack is indeed possible will depend on
the application at hand. With this result, and provided a meet–in–the–middle
attack scenario is applicable, even a triple–key triple DES seems below the limit
of 60 bits of remaining entropy often imposed in Common Criteria, when using
13–bit templates or larger.

For this particular platform the findings become even more severe as it is
using a DES hardware coprocessor built in what is called a hard–macro design
methodology, meaning that it is a design block with fixed geometry all the way
down to the gate level. This hard macro is thus optically visible in the layout, be
it in 140nm, 130nm, or 65nm, and it is used in many other products in precisely
the same shape over and over again. Hence, once a weakness such as this one has
been found in one family member, it can be easily reproduced in all other family
members as well. Worse still, one has to assume that templates generated for one
family member will be applicable to all other family members as well, leading
to potential collateral damages between different markets where this product is
deployed. The security risks that could result from hard–macro designs and their
reuse have been exposed before [14].

In fact, as this hard macro or slight variants of it is used in billions of devices
today, ranging from banking cards to electronic passports, ID cards, health cards
and driving licences to TPMs, IoT applications and mobile phones, it is impor-
tant to address this vulnerability in the proper way. Following a responsible
disclosure policy the authors made the relevant certification authorities aware of
this vulnerability in April 2016 and provided all details requested since then.

The underlying hardware has a Common Criteria certificate at level EAL
5+, but the JAVA OS itself is not certified as far as we are aware. Typically,
the hardware CC certification would result in some guidance for the software
development on that platform as to how to use the hardware platform in such
a way that the assurance level of EAL 5+ can actually be reached. Since this
is a black–box analysis without any knowledge about the hardware design nor
the OS, we do not know whether the OS developer has indeed heeded any such
guidance possibly given on the usage of the DES coprocessor of this hardware
platform.

However, in terms of possible and — more importantly — effective counter-
measures against this template attack that could in principle be part of such a
guidance, one needs to realise that when merely a single trace is needed for the
attack, most if not all of the traditional countermeasures used in software will
fail, since one way or another they all rely on averaging. Introducing a random
jitter between the DES calls is not effective, as was already demonstrated in
this work. Another countermeasure is based on calling the DES N times, where
N − 1 times a wrong key was used and only once the correct key, and this at
random positions of the N DES calls. This countermeasure will only have a lim-
ited value, as one can attack each of the N DES calls separately in the same
single trace, and simply check by brute force whether it is using the correct key
or not. Obviously, when N becomes very large, the effort for brute forcing each
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and every DES call will increase substantially, but then also the performance
impact on the application will be very massive and it may fail to meet targets
for, e.g., transaction times. In any case, the brute–force effort only scales linearly
with this countermeasure, which seems quite affordable for the attacker. Finally,
running another coprocessor in parallel is also not effective when it is possible to
localise the DES coprocessor in the layout of the chip and place the EM probe
on top of it. This should be straightforward to do as this smart card — as just
discussed — uses a hard macro for the DES hardware coprocessor which is easily
located by optical inspection of the layout. Based on all these considerations we
conclude that countermeasures in software — for instance in a crypto library —
are simply not effective in mitigating this attack.

A number of improvements are clearly possible for this attack. Trivially, it
should be noted that the measurements were done with a sampling rate that
yielded only 9 sample points per peak in the correlation function and in χ2.
Thus, increasing the sampling rate alone could possibly already improve the re-
sults shown here as it would increase the number of POIs. Using an oscilloscope
with more than 8 bits resolution should also help. Likewise, it will pay off to
spend more effort on aligning all traces even further. Careful alignment is par-
ticularly crucial for single–trace attacks. Figures 5 and, e.g., 8 indicate that the
alignment of especially the first DES block is not good yet. But perhaps the most
straightforward improvement is to collect more than 5M traces in the Profiling
Phase, perhaps as much as 10M, and construct larger C–type templates, as Ta-
bles 6 & 7 seems to suggest that it is beneficial to use larger templates.19 15–bit
templates are certainly within computational range, and beyond that stochastic
models may help [15].

In addition, one can also increase the overlap between neighbouring templates
further by inserting between any two templates of the type Eqs. (4) and (5)
another template of the shape

7→ 21→ 35→ 49
↘↗↘↗↘↗
14→ 28→ 42→ 31

(14)

which makes for another 28 templates along the C rings. Now neighbouring
templates only differ not by two, but just by one key bit. It should be noted
that this will not only affect the search / key–enumeration strategies, but also
the formula for the remaining rest entropy will be modified to

EC
′

r = 2 + 56 log2(r) . (15)

Another improvement of the results will be possible when combining the
results of the C rings with other leakages found, such as for instance the leakage

19 On the other hand, for the smaller template sizes of 5 or 7 bits, it is possible to use
less traces than we have during the Profiling Phase — perhaps of the order of 1M
or 2M traces.
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exploited in [12], which was on the same device. Also there substantial leakage
of the key was present in a single trace.

But perhaps the biggest improvements to this attack can be had by improving
the key–enumeration strategy for the brute–force attack. One direction already
identified is to make use of the fact that some bits leak up to 12 times during the
entire DES key schedule, whilst others leak just once or twice, and this should
have an effect on the “stickiness” of these bits.

More work is required to get a better understanding of the statistical proper-
ties of the correct key rankings as this will help to improve the search strategies.
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