热解温度对玉米秸秆炭产率及理化特性的影响

叶协锋,周涵君,于晓娜,张晓帆,李志鹏,付仲毅,孟琦 (河南农业大学烟草学院/国家烟草栽培生理生化研究基地/烟草行业烟草栽培重点实验室,郑州 450002)

摘要:【**目的**】通过对不同热解温度条件下玉米秸秆炭理化特性的分析,探索玉米秸秆炭具有较高利用价值的 炭化温度。【**方法**】以玉米秸秆为原料,采用低氧升温炭化法,在不同热解温度下(100℃、200℃、300℃、 400℃、500℃、600℃、700℃、800℃)分别炭化2h,制备生物炭,收集并测定了固体产物生物炭产率及特性。 【**结果**】生物炭的产率随热解温度的升高逐渐降低。生物炭全碳含量和碳氮比随热解温度升高而升高,全氮含 量在 400℃ 以后随热解温度升高而降低。阳离子交换量(CEC)在 400℃~600℃ 达到较高水平,为 70.87~83.48 cmol/kg。随热解温度升高,玉米秸秆炭表面碱性含氧官能团增加、酸性含氧官能团减少,pH 随着热解温度的 升高逐渐增加,当温度达到 400℃ 及 400℃ 以上时呈碱性甚至强碱性。红外光谱分析表明,热解温度达到 500℃ 时,纤维素和半纤维素已经完全分解;高温热解使玉米秸秆中-CH₃、-CH₂、-OH、-C=O 间发生缔合或 消除,促进芳香基团的形成。随着热解温度的升高,玉米秸秆炭的比表面积和比孔容均是先变大后变小,孔径 先变小后变大,在 400℃~600℃ 条件下,玉米秸秆炭的孔隙相对较为丰富,不同热解温度下玉米秸秆炭的比表 面积和比孔容呈极显著正相关关系(*P* < 0.01)。【**结论**】综合各项指标,玉米秸秆的最佳热解温度为 400℃ ~500℃,此温度下制备的生物炭产出率相对较高,氮、碳养分损失少,生物炭的理化性能和养分利用均达到最优。 关键词: 玉米秸秆炭,热解温度,炭化,理化特性

Physiochemical properties and yields of corn-stalk-biochar under different pyrolyzed temperatures

YE Xie-feng, ZHOU Han-jun, YU Xiao-na, ZHANG Xiao-fan, LI Zhi-peng, FU Zhong-yi, MENG Qi (Tobacco Science College of Henan Agricultural University/National Tobacco Cultivation and Physiology and Biochemistry Research Centre/Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou 450002, China)

Abstract: [Objectives] The physiochemical properties of corn-stalk-biochar were largely determined by the carbonization temperature. The aim of the experiment was to investigate the yields and physiochemical properties of corn-stalk-biochar at different pyrolyzed temperatures $(100 \,^\circ\text{C}-800 \,^\circ\text{C})$, looking for the suitable temperature in which biochar has a high use value. **[Methods]** Corn-stalk-biochar was prepared through the hypoxia carbonization method. The furnace temperatures were set at $100 \,^\circ\text{C}$, $200 \,^\circ\text{C}$, $300 \,^\circ\text{C}$, $400 \,^\circ\text{C}$, $500 \,^\circ\text{C}$, $600 \,^\circ\text{C}$, $700 \,^\circ\text{C}$ and $800 \,^\circ\text{C}$, respectively, and the rate of heating up was $20 \,^\circ\text{C}/\text{min}$ and finally held at that temperature for 2 hours. We studied the properties, including pH, total N and total C content, and CEC of biochar. **[Results]** The yields of corn-stalk-biochar were decreased with the rising of pyrolysis temperature. The total C contents were increased with the increase of pyrolysis temperature, the total N contents started to decrease when the temperature was higher than $400 \,^\circ\text{C}$. The CEC of corn-stalk-biochar reached peak values between $400 \,^\circ\text{C}-600 \,^\circ\text{C}$, which were $70.87-83.48 \,^\circ\text{cmol/kg}$. With the increase of carbonization temperature, the alkaline functional groups contents were reduced significantly. The pH values of corn-stalk-biochar became alkaline after $400 \,^\circ\text{C}$ and would continue to

收稿日期: 2016-12-14 接受日期: 2017-05-20

基金项目:烟草行业烟草栽培重点实验室资助项目;河南省烟草公司资助项目(HYKJ201301);重庆市烟草公司资助项目 (NY20140401070010)资助。

作者简介:叶协锋(1979—),男,河南郏县人,博士,副教授,主要从事烟草栽培生理和土壤改良研究。E-mail: yexiefeng@163.com

increase to strong alkaline with the further increase of temperature. When the pyrolysis temperature reached 500 °C, the cellulose and hemicellulose were completely decomposed, and the groups of -OH, $-CH_3$, $-CH_2$, -C=O would be associated or eliminated to form new aromatic groups. With the carbonization temperature increasing, the specific surface area and pore volumes of corn-stalk-biochar were both increased firstly and then declined. However, the pore sizes showed an opposite trend. The porosity of corn-stalk-biochar was relatively more abundant at 400 °C – 600 °C. The specific surface area showed a significant highly positive correlation with the pore volume. **[Conclusions]** Comprehensively considering the effects of yields and physiochemical properties, the optimum carbonization temperature of corn-stalk-biochar should be remained at 400 °C – 500 °C. **Key words:** corn-stalk-biochar; pyrolysis temperature; carbonization; physiochemical characteristics

随着我国玉米种植面积不断扩大和玉米良种的 大面积推广使用,玉米秸秆可收集量大幅增加11,对 玉米秸秆的合理使用已经成为推进节能减排、治理 大气污染、促进生态文明建设的重要举措。目前, 玉米秸秆综合利用技术包括: 有机肥化利用、能源 化利用、栽培食用菌、工业原料化利用以及饲料化 利用等,此外,还有部分玉米秸秆充当了农村热效 低的燃料, 饲养动物的垫料[2-3]。合理开发利用玉米 秸秆,提高其综合利用水平,一直是国内外学者的 研究热点^[4],其中利用玉米秸秆制备生物炭并还田是 极具前景的有效利用途径之一,可促进资源的再循 环利用和污染减量化。生物炭是以生物质为原料在 限氧条件下 (缺氧或是厌氧) 炭化产生的一类高度芳 香化且富含碳元素的固态物质59,其表面含丰富的羧 基、酚羟基、羰基、酸酐等官能团。Gerard 等⁶⁰认 为, 生物炭在炭化后, 大多保留了原有生物质的良 好孔隙结构,具有较大的孔隙度和比表面积,其多 孔结构使生物炭施入土壤后能够增强土壤透气性, 为土壤微生物提供生存繁殖空间四,生物炭的孔隙结 构可以降低土壤容重、增加持水性能等,伴随土壤 含水量的提高,作物根际范围内有更充足的水分, 且土壤更多的矿质元素处于可溶态,利于矿质养分 的移动,从而能更好地被作物吸收利用,可以有效 防止土壤养分流失题。许燕萍等™通过对比研究 300℃~ 500℃ 玉米和小麦生物炭的理化特性后发现, 生物炭 的 pH 值、碳含量、灰分含量、全磷含量等随制炭温 度升高而升高。陆海楠等110的研究表明,300℃~ 500℃条件下,水稻秸秆生物炭比玉米秸秆生物炭的 芳环骨架更加明显,芳香化程度更高。这些性质均 使生物炭具备较强的吸附力和抗氧化能力。由于生 物质的种类、制炭方式和条件参数不同,所获得的 生物炭性质也不尽相同凹。目前对玉米秸秆炭的制备 已有报道,但对其理化性质与炭化温度之间的系统 研究较少。本文通过对不同热解温度 (100℃~

800℃)下所获得的玉米秸秆炭的理化性质进行对比, 为确定优质玉米秸秆炭的生产条件提供理论参考。

1 材料与方法

1.1 试验材料与生物炭制备

玉米秸秆来自河南省郏县,玉米品种为豫玉 22。 选取玉米秸秆的茎秆部分并剪切成 2~3 cm 小段, 在室温下自然风干,采用低氧升温炭化法^[12],利用程 序控温马福炉 (SX2-8-10NP) 制备秸秆生物炭,该设 备结构简单、密闭性能好。具体方法为:将风干的 玉米秸秆放入 200 mL 坩埚内,压紧盖上盖子,用锡 箔纸包裹置于马福炉反应腔内,关闭炉门,开启加热 程序和控温升温程序,热解温度分别设置为 100℃、 200℃、300℃、400℃、500℃、600℃、700℃ 和 800℃,在低氧条件下以 20℃/min 的速度升温,达到 热解温度后炭化 2 h,关闭马福炉电源,自然冷却至 常温,取出样品后称重,根据玉米秸秆炭化前后的 质量比算出产率。各处理温度条件下均重复制备 3 次。将得到的炭化产物粉碎,过 20 目筛后待测。

1.2 分析方法

生物炭灰分的测定参照《木炭和木炭实验方法》GB/T17664-1999,灰分含量的计算:

$$A = \frac{G2 - G1}{G} \times 100\%$$

式中: A 为灰分含量 (%); G2 为灼烧后灰分和坩埚 总重 (g); G1 为空坩埚重 (g); G 为灼烧前生物炭的 重量 (g)。采用 ICP 光谱仪 (ICP-OES) 检测矿质元素 含量。

采用碳氮元素分析仪 (Vario MAX CN,德国 Elementar 公司) 测定全碳含量和全氮含量;采用 pH 计 (pHS-2F) 测定 pH(生物炭与水比例为1:20); 采用乙酸钠交换法测定阳离子交换量 (CEC)^[13];采 用 Boehm 滴定法测定表面含氧官能团,其含量用通

100

80

60

40

20

0

100 200

玉米秸秆炭化产率 (%) Productive rate of com-stalk-biochar

用耗碱量 (mmol/g) 表示^[14-15];用傅立叶变换红外光谱 仪 (Nicolet 6700 FT-IR,赛默飞世尔科技公司) 对生 物炭进行红外光谱分析;在液氮温度 (77K) 条件下 用比表面积及孔径分布仪 (全自动比表面积及微孔分 析仪 Quadrasorb Si Four Station Surface Area Analyzer and Pore Size Analyzer,美国 Quantachrome

1.3 数据分析

运用 Excel 2010 软件和 SPSS 19.0 软件对所获数 据进行统计分析。采用单因素方差分析以及最小显著 差法 (LSD 法) 对不同处理间的差异显著性进行分析。

Instruments 公司) 测定比表面积及孔径分布[16]。

2 结果与分析

2.1 不同温度下玉米秸秆炭化产率的变化

不同热解温度下玉米秸秆炭产率变化如图 1。随 着温度的升高,玉米秸秆炭化产率逐渐降低,尤其 是在 100℃~300℃时,玉米秸秆炭化产率下降幅度 较大,从 89.6%下降至 35.0%。而 400℃~800℃ 范 围内,玉米秸秆炭化产率下降趋势变缓,逐渐趋于 稳定,产率从 26.9%下降至 10.0%。回归分析发现, 生物炭产率 (y)与热解温度 (x)呈指数相关关系, y=109.83e^{-0.321x} (*R*² 为 0.97),可以较为准确地表征产 率与温度的关系。

2.2 不同温度下玉米秸秆炭化后全碳含量、全氮含量和碳氮比的变化

由图 2 可知, 玉米秸秆全碳含量随热解温度的 升高明显增加,含碳量介于 42.5%~83.1%。生物炭 的全氮含量随热解温度的升高呈现先升高后降低的 趋势,在 400℃ 时含量较高,为1.4%,800℃ 时全 氮含量较低。玉米秸秆炭的 C/N 随热解温度的升高 明显增加,整个热解温度内 C/N 的范围在 34.65~ 97.68,800℃ 的 C/N 是 100℃ 的 2.63 倍。

2.3 不同温度下玉米秸秆炭化后矿质元素含量和 含氧官能团含量以及 pH 的变化

由表1可知,玉米秸秆炭的pH值随炭化温度的 升高呈升高趋势,热解温度在100℃~300℃时,生 物炭pH变化不大,且呈酸性,当热解温度由300℃ 升高到400℃时,pH急剧升高,随着热解温度的继 续升高,玉米秸秆炭呈碱性甚至强碱性。碱性含氧 官能团的变化规律与pH值的变化规律相似,与酸性 官能团的变化规律相反,且均在400℃~500℃时达 到平均水平。酸性官能团主要包括羧基、内酯基和 酚羟基^[15],由表1中可以看出酚羟基与酸性官能团含

 $y = 109.83e^{-0.321x}$

 $R^2 = 0.9711$

300 400 500

600

700 800

图 2 不同热解温度玉米秸秆炭的碳、氮含量及碳氮比 Fig. 2 C and N contents and C/N ratio of corn-stalkbiochar under different pyrolysis temperatures

量呈相似的变化趋势,且酚羟基含量多于内酯基和 羧基。内酯基含量在400℃~500℃增幅最大,达到 233.3%。羧基含量呈现递减趋势,当温度高于500℃ 时,未能再检测出羧基。温度高于500℃时,碱性 含氧官能团含量高于酸性含氧官能团含量,这也是 导致生物炭 pH 值变化的一个重要原因。

玉米秸秆炭中矿质元素和灰分含量的变化如表 2, 玉米秸秆炭中矿质元素含量和灰分含量随热解温度 的升高而逐渐增加,其中 P、Ca、Mg 的含量较高, 分别为 0.36~1.30、1.71~4.37、1.72~6.27 g/kg。灰 分含量由 100℃ 的 3.4% 增加到 700℃ 的 15.4%。说 明随着热解温度的升高,生物炭的 P、K、Ca、Mg 等矿质元素相对富集,并转化为灰分。

2.4 不同温度下玉米秸秆炭阳离子交换量 (CEC) 的变化

生物炭的 CEC 大小对增加土壤中营养元素的吸 附能力和改善土壤肥力具有重要作用。由图 3 可知, 热解温度在 100℃~300℃ 时,玉米秸秆炭中 CEC

1271

表 1 不同热解温度下玉米秸秆炭 pH 以及表面含氧官能团含量 (mmol/g) Table 1 Oxygen-containing functional group contents on the surface of corn-stalk-biochar and pH under different pyrolysis temperature

热解温度 (℃) Pyrolysis temperature	pН	碱性官能团 Basicity functional group	酸性官能团 Acidic functional group	酚羟基 Phenolic hydroxyl group	内酯基 Actone	羧基 Carboxy
100	5.06 c	0.99 e	7.60 b	5.60 b	0.60 de	1.40 a
200	5.21 c	3.80 d	7.80 b	3.60 d	3.10 a	1.10 b
300	5.84 c	3.10 de	8.20 a	7.10 a	0.42 e	0.72 c
400	9.08 b	4.20 c	6.00 c	5.20 bc	0.30 e	0.54 cd
500	10.42 a	5.70 bc	5.50 cd	4.30 c	1.00 cd	0.21 d
600	10.44 a	6.80 ab	5.30 d	4.10 cd	1.20 cd	_
700	10.47 a	7.80 a	4.60 de	3.00 de	1.60 bc	_
800	10.48 a	7.90 a	4.00 e	1.70 e	2.30 b	_

注(Note): 同列数据后不同小写字母表示处理间差异达显著水平 (P < 0.05) Different lowercase letters in same column represent significant differences (P < 0.05). "—" 表示未检测出 The dash represents not detected.

表 2 不回然解血度下玉木柏杆灰矿 原几素 百里 Table 2 Mineral element contents of corn-stalk-biochar under different pyrolysis temperatures								
热解温度 (℃) Pyrolysis temperature	P (g/kg)	K (g/kg)	Ca (g/kg)	Mg (g/kg)	Zn (mg/kg)	Cu (mg/kg)	Fe (mg/kg)	灰分 (%) Ash
100	0.36 c	0.14 e	1.80 d	1.72 c	2.03 b	0.73 d	1.37 e	3.42 d
200	0.43 c	0.55 e	1.71 d	1.98 c	3.10 b	0.62 d	9.56 d	4.13 d
300	0.84 b	1.89 d	3.13 c	4.19 b	3.85 b	0.96 c	25.54 c	7.31 c
400	1.01 a	2.85 cd	3.73 b	4.12 b	3.93 b	2.38 b	31.44 c	8.91 c
500	1.10 a	6.23 bc	3.56 bc	3.73 b	3.74 b	3.01 a	36.04 b	10.57 b
600	1.19 a	15.03 ab	3.83 ab	4.97 b	6.30 a	2.28 b	38.77 ab	13.60 a
700	1.09 a	23.78 a	4.37 a	5.32 a	6.98 a	3.58 a	39.88 ab	15.41 a
800	1.30 a	20.16 a	3.74 ab	6.27 a	5.63 a	3.22 a	42.75 a	13.70 a

注(Note): 同列数据后不同小写字母表示不同热解温度间差异达显著水平 (P < 0.05) Values followed by different lowercase letters in same column represent significant differences (P < 0.05).

变化较小,当温度达到 400 ℃ 时,CEC 骤然升高, 增幅达到 101.1%,温度在 400 ℃ ~600 ℃ 范围内, CEC 趋于稳定,继续升高炭化温度时,生物炭的 CEC 又表现出降低趋势,这主要是与生物炭中的芳 香族碳结构的变化有关^[17]。有研究表明生物炭的 CEC 与氧原子和碳原子的比值 (O/C) 相关,O/C 比值越 高,CEC 值越大^[18],高的 O/C 比值与快速热解制备 的炭表面存在有羟基、羧基和羰基的现象相一致。

2.5 不同温度下玉米秸秆炭化后 FTIR 图谱

图 4 为玉米秸秆炭在 100℃~800℃ 炭化的红外 光谱图。由图 4 可知,不同热解温度下所制备秸秆 炭的表面官能团存在一定差异。100℃~200℃ 范围 内所获生物炭的吸收峰相似,即在此温度条件下制 备的生物炭与原材料含有大致相同的官能团。随着 热解温度的升高,官能团会发生一定变化,主要表 现为醚键(C-O-C)、甲基(-CH₃)和亚甲基(-CH₂)消 失,但仍存有羟基(-OH)、烯烃(C=C)和芳香族化 合物^[19]。不同温度下玉米秸秆炭化均在3431 cm⁻¹ 附 近有较大的吸收峰,该峰为-OH的伸缩振动所引 起,谱峰强度随着热解温度的升高而明显减弱,说 明酸性含氧官能团酚羟基减少。波长在2919 cm⁻¹ 左 右的吸收峰代表饱和脂肪烃-C-H的伸缩振动,随温 度升高峰的吸收强度有减小的趋势,在温度为 500℃时该吸收峰已经较弱,即随热解温度升高,生 物炭的烷基基团丢失,说明纤维素已经完全分解, 生物炭的芳香化程度逐渐升高^[20]。1733 cm⁻¹ 处的吸 收峰反映了半纤维素-C=O 基团的伸缩振动,400℃

以上时此峰消失,说明半纤维素在此温度下已经完 全分解。1636~1459 cm⁻¹处的吸收峰体现芳香烃的 伸缩振动,此区间内峰的强度并不随温度升高而减 弱,说明生物炭具有高度芳香化和杂环化的结构, 且数目随温度的升高而逐渐增多。在1141 cm⁻¹ 附近 的吸收峰为-C=O 基团的伸缩振动或纤维素、半纤维 素主链上-C-O-C 逆对称及对称伸缩振动,随着温度 的升高,谱峰逐渐减弱。1056 cm⁻¹ 附近的谱峰为 SiO₂ 的伸缩振动,随着温度的升高,谱峰变宽,说 明 SiO₂ 的增加。

2.6 不同炭化温度对玉米秸秆孔隙结构的影响

随着热解温度的升高,玉米秸秆炭化后的孔隙 参数均发生较大变化(表3)。比表面积和比孔容均随 热解温度的升高先增加后减小,均在600℃~ 700℃达到较高水平,其原因可能是与此时微孔和中 孔的数量较大,增加了生物炭的孔隙度有关。平均 孔径在 100℃~500℃ 范围内较稳定,变幅较小; 600℃~700℃ 时孔径较小,微孔 (< 2 nm)和中孔 (2~50 nm)含量较高,而当温度上升到 800℃ 时, 平均孔径明显增加,而其他参数均呈下降趋势,这 可能是因为炭化温度升高到 800℃ 时,生物炭的孔 隙结构遭到严重的破坏,大部分维管束破坏,细胞 解体,从而使微孔变少,大孔 (> 50 nm)变多,导致 平均孔径变大。表 4 的相关性分析表明,不同热解 温度下玉米秸秆炭化后的比表面积和比孔容呈极显 著正相关关系。

3 讨论

3.1 热解温度对玉米秸秆炭化产率的影响

本研究中玉米秸秆制备炭的产率随热解温度的 升高而降低,且先急速下降后再缓慢下降,这与尹 云锋等^[2]的研究结果一致。玉米秸秆由大量的纤维 素、半纤维素和木质素组成,半纤维素的分解温度 为200℃~260℃,纤维素的分解温度为240℃~350℃, 木质素的分解温度为280℃~500℃^[22],所以当热解 温度升高到500℃时,玉米秸秆中所含有的纤维素, 木质素等成分几乎全部热解,导致产率急剧下降, 温度继续升高到500℃以上时,高沸点物质和难挥 发物质缓慢分解,生物炭产率缓慢下降。因此,生 物炭的特性在满足用途的前提下,应该实现产率最 大化,根据不同温度的产率确定最佳的热解温度。

3.2 热解温度对玉米秸秆炭化学特性的影响

当热解温度为 100℃~200℃ 时,由于有机物还 未大量热解,损失的主要是水蒸汽,所以全碳、全 氮含量变化不大^[23],当热解温度达到 300℃ 时,纤维 素和半纤维素大量分解,尤其是半纤维素中羧基和 羰基的分解,并释放出大量 H₂O、CO₂、CO,相应 地使全氮含量略有上升。随热解温度升高,有机物 分解加剧,氧被消耗殆尽^[24],剩下富含碳的残留物 质,使玉米秸秆炭的相对全碳含量升高。C/N 是有 机物质释放无机氮能力的重要指标,会因温度的不 同导致 C/N 比例变化较大^[25]。

pH 值是生物炭的重要性质之一。本研究中玉米 秸秆炭化后的 pH 随热解温度的升高而增加,与罗煜 等^[20]和 Mukome 等^[27]报道的研究结果一致。产生该结 果主要有以下两个原因:一方面,随着热解温度的 升高,纤维素和木质素快速分解,生物炭挥发损失 的同时,碱性矿质元素 K、Ca、Mg 等以氧化物或碳 酸盐的形式富集于灰分中,导致 pH 快速增大^[28];另

Table 5 Tore parameters of corn-stark-blochar under unterent pyrotysis temperatures							
热解温度 (℃) Pyrolysis temperature	比表面积 (m²/g) SSA	平均孔径 (nm) APS	比孔容 (cm³/g) SPV	t-Plot MicSSA (m²/g)	t-Plot MicPV (cm ³ /g)	MesSSA (m²/g)	MesPV (cm ³ /g)
100	1.025 d	1.847 b	0.001 d	0.484 d	_	0.627 c	0.001 bc
200	1.169 d	1.847 b	0.001 d	0.238 d	_	0.544 c	0.002 b
300	1.559 d	1.847 b	0.002 cd	1.267 b	0.001	0.672 c	0.003 b
400	2.731 c	1.766 b	0.003 c	0.857 c	_	1.388 b	0.008 a
500	2.748 c	1.847 b	0.004 bc	1.071 b	_	1.150 b	0.006 a
600	4.017 b	1.543 c	0.005 b	0.750 c	_	2.133 a	0.010 a
700	6.429 a	1.543 c	0.007 a	2.462 a	0.001	2.541 a	0.010 a
800	2.676 c	3.794 a	0.004 bc	0.428 d	_	1.579 b	0.008 a

表 3 不同热解温度下玉米秸秆炭化的孔隙参数 Table 3 Pore parameters of corn-stalk-biochar under different pyrolysis temperatures

注(Note): SSA—Specific surface area; APS—Average pore size; SPV—Specific pore volume; MicSSA—微孔比表面积 Micropore specific surface area; MicPV—微孔孔容 Micropore pore volume; MesSSA—中孔比表面积 Mesopore specific surface area; MesPV—中孔孔容 Mesopore pore volume. 同列数据后不同小写字母表示不同热解温度处理间差异达显著水平 (*P* < 0.05) Values followed by different lowercase letters in same column represent significant differences (*P* < 0.05).

表 4 不同温度下玉米秸秆炭化后孔径、比表面积和比孔容的相关性 Table 4 Correlation among pore size specific surface area and specific pore volume of corn-stalk-biochar

under different temperatures

		•		
项目 Item	热解温度 Pyrolysis temperature	比表面积 SSA	孔径 Pore size	比孔容 SPV
热解温度 Pyrolysis temperature	1	0.744*	0.447	0.833*
比表面积 SSA		1	- 0.186	0.968**
孔径 Pore size			1	-0.04
比孔容 SPV				1

注(Note): SSA—比表面积 Specific surface area; SPV—比孔容 Specific pore volume. * 表示在 0.05 水平上的显著; ** 表示在 0.01 水 平上显著, * and ** mean significant at 0.05 and 0.01 levels, respectively.

一方面,生物炭表面富含大量的含氧官能团,随着 热解温度的升高,生物炭表面酸性含氧官能团数量 显著减少,碱性含氧官能团数量增多,本研究中玉 米秸秆炭的表面官能团的变化与此结论一致。在低 温热解条件下,由于纤维素等前体材料分解不完全 而保留了大量含氧官能团,高温热解则使大量羧基 和酚羟基高度酯化^[5],减少可解离质子的存在,且其 表面高度共轭的芳香结构是其呈碱性的主要原因^[29]。 玉米秸秆炭化后的生物炭 pH 也与生物炭表面的含氧 官能团种类和数量密切相关,其在较高温度条件下 产生的生物炭呈碱性这一特征对改良酸性土壤具有 重大意义,并且玉米秸秆炭含有大量的矿质元素, 由此可以推测,生物炭施入土壤中,还可以增加土 壤中的矿质营养元素的含量,提高土壤肥力和质量。

姚红宇等^[30]研究棉花秸秆生物炭发现,CEC 随 炭化温度的升高而降低。Bird 等^[31]研究表明,不同种 类的海藻在 300℃~500℃ 温度范围内制备的生物炭 CEC 随温度升高而升高。本研究结果表明,玉米秸 秆在 400℃~600℃ 下制备的生物炭具有较高的 CEC, 而在 600℃~800℃ 范围表现出降低的趋势。这些研 究结果不一致的原因,可能与生物质原料不同和生 物炭的表面积、羟基、羧基和羰基官能团有关^[32]。生 物炭的表面积在一定的温度范围内最大,而大的表 面积含有较多的-COOH 和-OH 含氧官能团^[33]。本试 验中,在 400℃~600℃ 范围内获得的生物炭具有较 大的比表面积和较多的酸性官能团,这也正好与 CEC 的结果相吻合。

3.3 热解温度对玉米秸秆炭物理结构的影响

本研究显示,热解温度在100℃~600℃范围 内,随着温度的升高,比表面积增加,比孔容变 大,孔径变小,与在此温度条件下微孔结构的发育 和中孔含量逐渐增加的趋势有关。在较低热解温度 条件下,生物炭的孔隙度升高,一方面是由于生物 质本身的海绵状结构,很多原有生物质结构消失, 主要留有炭化木质素等支撑起的多孔炭架结构,炭 化后外围轮廓清晰,孔隙结构变得非常丰富^[34];另一 方面是因为在脱水和裂解过程中,水分和挥发成分 逐渐从生物质器官组织表面及内部逸出,形成许多 气泡与气孔^[26]。李力等^[35]研究两种制炭温度的玉米秸 秆生物炭理化性质后得出,700℃下制得的生物炭比 表面积及孔容孔径比350℃更大,该结果与本研究 结果相近。林晓芬等^[36]在研究裂解温度对稻壳和梧桐 叶生物炭影响时发现,提高裂解温度(850℃)会促进 生物炭的塑性变形,抑制微孔的形成,这可能是本 研究中生物炭在800℃条件下孔隙度降低的原因。

3.4 应用前景

综上所述,玉米秸秆炭具有较高的 pH、相对较 大的比表面积、较高的 CEC 以及丰富的孔隙结构, 因此生物炭既可以作为优良的土壤改良剂,也可以 作为一种生产长效缓释肥料的优良基质。陈温福等^[37] 利用玉米芯秸秆生物炭研制出一种环保型高效玉米 专用炭基缓释肥料,叶协锋等^[38]利用烟秆生物炭研制 出烟草专用生物炭基缓释复合肥。生物炭直接应用 于农田,不仅可以减少土壤养分流失,还能够钝化 土壤中重金属,吸附土壤有机污染物^[39],从而减少土 壤污染。

大田施用生物炭具有较大的固碳潜力与空间。 应用生物炭可能是唯一以输入稳定性碳源而改变环 境生态系统中土壤碳库自然平衡,提高土壤碳库容 量的技术方式^[40]。生物炭除本身可作为一种重要的 "碳汇"形式外,施入土壤后也可减少 N₂O 等温室 气体的排放^[41]。从而为实现固碳减排和农业可持续发 展提供技术途径。

4 结论

随着热解温度的升高,生物炭的产率逐渐下降。 生物炭全碳含量和 C/N 随热解温度升高而升高,全 氮含量随热解温度升高而降低。玉米秸秆炭 CEC 在 400℃~600℃ 达到较高水平,矿质元素和灰分含量 随热解温度的升高而逐渐增加,在700℃~800℃ 达 到较高水平。无机碳和表面官能团的变化均会影响 生物炭的 pH 值,当热解温度高于 400℃ 时,玉米秸 秆炭呈碱性。随着热解温度的升高,玉米秸秆炭的 孔隙度发生变化,比表面积和比孔容均是先变大后 变小,孔径先变小后变大,在400℃~600℃ 条件 下,玉米秸秆的孔隙相对较为丰富。 综合玉米秸秆炭化后各项理化指标的变化, 400℃~500℃炭化得到的玉米秸秆炭更适合作为土 壤调理剂。

参考文献:

- [1] 李飞跃, 汪建飞. 中国粮食作物秸秆焚烧排碳量及转化生物炭固碳量的估算[J]. 农业工程学报, 2013, 29(14): 1–7.
 Li F Y, Wang J F. Estimation of carbon emission from burning and carbon sequestration from biochar producing using crop straw in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(14): 1–7.
- [2] 曹国良,张小曳,王亚强,郑方成.中国区域农田秸秆露天焚烧排放 量的估算[J].科学通报, 2007, 52(15): 1826–1831.
 Cao G L, Zhang X Y, Wang Y Q, Zheng F C. Estimation of emissions from open burning of crop straw in China[J]. Chinese Science Bulletin, 2007, 52(15): 1826–1831.
- [3] 杨轶因, 吴迪, 刘文明, 等. 吉林省玉米秸秆资源化利用的问题与对策研究[J]. 玉米科学, 2016, 24(2): 171–174.
 Yang Y N, Wu D, Liu W M, *et al.* Maize straw resource utilization and countermeasures in Jilin Province[J]. Journal of Maize Sciences, 2016, 24(2): 171–174.
- [4] Egüés I, Sanchez C, Mondragon I, Labidi J. Effect of alkaline and autohydrolysis processes on the purity of obtained hemicelluloses from corn stalks[J]. Bioresource Technology, 2012, 103(1): 239–248.
- [5] Jr M J A, Gronli M. The art, science, and technology of charcoal production[J]. Industrial and Engineering Chemistry, 2003, 42(8): 1619–1640.
- [6] Cornelissen G, Kukulska Z, Kalaitzidis S, et al. Relations between environmental black carbon sorption and geochemical sorbent characteristics[J]. Environmental Science and Technology, 2004, 38(13): 3632–3640.
- [7] Luo Y, Durenkamp M, Nobili M D, et al. Microbial biomass growth, following incorporation of biochars produced at 350°C or 700°C, in a silty-clay loam soil of high and low pH[J]. Soil Biology and Biochemistry, 2013, 57(2): 513–523.
- [8] 袁金华,徐仁扣. 生物质炭的性质及其对土壤环境功能影响的研究 进展[J]. 生态环境学报, 2011, 20(4): 779–785.
 Yuan J H, Xu R K. Progress of the research on the properties of biochars and their influence on soil environmental functions[J].
 Ecology and Environmental Sciences, 2011, 20(4): 779–785.
- [9] 许燕萍,谢祖彬,朱建国,等.制炭温度对玉米和小麦生物质炭理化 性质的影响[J]. 土壤, 2013, 45(1): 73–78. Xu Y P, Xie Z B, Zhu J G, *et al.* Effects of pyrolysis temperature on physical and chemical properties of corn biochar and wheat biochar[J]. Soils, 2013, 45(1): 73–78.
- [10] 陆海楠, 胡学玉, 刘红伟. 不同裂解条件对生物炭稳定性的影响[J]. 环境科学与技术, 2013, 36(8): 11–14.
 Lu H N, Hu X Y, Liu H W. Influence of pyrolysis conditions on stability of biochar[J]. Environmental Science and Technology, 2013, 36(8): 11–14.
- [11] Verheijen F, Jeffery S, Bastos A C, et al. Biochar application to soils: A critical scientific review of effects on soil properties, processes and functions [M]. Luxembourg: Office for the Official Publications of the European Communities, 2009: 149.
- [12] Cheng C H, Lehmann J. Ageing of black carbon along a temperature gradient[J]. Chemosphere, 2009, 75(8): 1021–1027.

- [13] Cheng C H, Lehmann J, Thies J E, et al. Oxidation of black carbon by biotic and abiotic processes[J]. Organic Geochemistry, 2006, 37(11): 1477–1488.
- [14] Boehm H P. Some aspects of the surface chemistry of carbon blacks and other carbons[J]. Carbon, 1994, 32(5): 759–769.
- [15] 毛磊,童仕唐,王宇.对用于活性炭表面含氧官能团分析的 Boehm 滴定法的几点讨论[J].炭素技术,2011,30(2):17-19.
 Mao L, Tong S T, Wang Y. Discussion on the Boehm titration method used in analysis of surface oxygen functional groups on activated carbon[J]. Carbon Techniques, 2011, 30(2):17-19.
- [16] Lowell S. Automatic volumetric sorption analyzer [P]. US: 73/865.5, 1986-01-28.
- [17] Moreno-Castilla C, Álvarez-Merino M A, López-Ramon M V, et al. Cadmium ion adsorption on different carbon adsorbents from aqueous solutions. Effect of surface chemistry, pore texture, ionic strength, and dissolved natural organic matter[J]. Langmuir, 2004, 20(19): 8142–8148.
- [18] Jensen A, Dam-Johansen K, Wójtowicz M A, et al. TG-FTIR study of the influence of potassium chloride on wheat straw pyrolysis fuel[J]. Energy and Fuels, 1998, 12(5): 929–938.
- [19] 郝蓉, 彭少麟, 宋艳暾, 刘名茗. 不同温度对黑碳表面官能团的影响
 [J]. 生态环境学报, 2010, 19(3): 528–531.
 Hao R, Peng S L, Song Y T, Liu M M, *et al.* Effects of different temperature on surface functional groups of black carbon[J]. Ecology and Environmental Sciences, 2010, 19(3): 528–531.
- [20] 郑庆福, 王永和, 孙月光, 等. 不同物料和炭化方式制备生物炭结构 性质的 FTIR 研究[J]. 光谱学与光谱分析, 2014, 34(4): 962–966. Zheng Q F, Wang Y H, Sun Y G, *et al.* Study on structural properties of biochar under different materials and carbonized by FTIR[J]. Spectroscopy and Spectral Analysis, 2014, 34(4): 962–966.
- [21] 尹云锋, 张鹏, 雷海迪, 等. 不同热解温度对生物质炭化学性质的影响[J]. 热带作物学报, 2014, 35(8): 1496–1500.
 Yin Y F, Zhang P, Lei H D, *et al.* Influence of different pyrolysis temperature on chemical properties of biochar[J]. Chinese Journal of Tropical Crops, 2014, 35(8): 1496–1500.
- [22] Hamelinck C N, Hooijdonk G V, Faaij A P C. Ethanol from lignocellulosic biomass techno-economic performance in short-, middle- and long-term[J]. Biomass and Bioenergy, 2005, 28(4): 384–410.
- [23] Şensöz S, Can M. Pyrolysis of pine (*Pinus Brutia* Ten.) chips: 1. Effect of pyrolysis temperature and heating rate on the product yields[J]. Energy Sources, 2002, 24(4): 347–355.
- [24] Bridle T R, Pritchard D. Energy and nutrient recovery from sewage sludge via pyrolysis[J]. Water Science and Technology, 2004, 50(9): 169–175.
- [25] 孙红文. 生物炭与环境[M]. 北京: 化学工业出版社, 2013: 82.
 Sun H W. Biochar and environment [M]. Beijing: Chemical Industry Press, 2013: 82.
- [26] 罗煜, 赵立欣, 孟海波, 等. 不同温度下热裂解芒草生物质炭的理化 特征分析[J]. 农业工程学报, 2013, 29(13): 208–217. Luo Y, Zhao L X, Meng H B, *et al.* Physio-chemical characterization of biochars pyrolyzed from miscanthus under two different temperatures[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(13): 208–217.
- [27] Mukome F N D, Zhang X M, Silva L C R, et al. Use of chemical and physical characteristics to investigate trends in biochar feedstocks[J].

Journal of Agriculture and Food Chemistry, 2013, 61(9): 2196-2204.

- [28] Lehmann J. A handful of carbon[J]. Nature, 2007, 447(7141): 143–144.
- [29] Radovic L R, Moreno-Castilla C, Rivera-Utrilla J. Carbon materials as adsorbents in aqueous solutions[J]. Chemistry and Physics of Carbon, 2000, 27: 227–405.
- [30] 姚红宇, 唐光木, 葛春辉, 等. 炭化温度和时间与棉杆炭特性及元素 组成的相关关系[J]. 农业工程学报, 2013, 29(7): 199–206.
 Yao H Y, Tang G M, Ge C H, *et al.* Characteristics and elementary composition of cotton stalk-char in different carbonization temperature and time[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(7): 199–206.
- [31] Bird M I, Wurster C M, de Paula Silva P H, et al. Algal biocharproduction and properties[J]. Bioresource Technology, 2011, 102(2): 1886–1891.
- [32] Lee J W, Kidder M, Evans B R, *et al.* Characterization of biochars produced from corn stovers for soil amendment[J]. Environmental Science and Technology, 2010, 44(20): 7970–7974.
- [33] Sevilla M, Fuertes A B. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides[J]. Chemistry, 2009, 15(16): 4195–4203.
- [34] 叶协锋, 于晓娜, 孟琦, 等. 烤烟秸秆炭化后理化特性分析[J]. 烟草 科技, 2015, 48(5): 14–18.
 Ye X F, Yu X N, Meng Q, *et al.* Analysis of physical and chemical properties of carbonized tobacco stalks[J]. Tobacco Science and Technology, 2015, 48(5): 14–18.
- [35] 李力, 陆宇超, 刘娅, 等. 玉米秸秆生物炭对Cd(II)的吸附机理研究[J]. 农业环境科学学报, 2012, 31(11): 2277–2283.
 Li L, Lu Y C, Liu Y, *et al.* Adsorption mechanisms of cadmium(II) on biochars derived from corn straw[J]. Journal of Agro-Environment Science, 2012, 31(11): 2277–2283.
- [36] 林晓芬,张军, 尹艳山,等. 生物质炭孔隙分形特征研究[J]. 生物质 化学工程, 2009, 43(3): 9–12.
 Lin X F, Zhang J, Yin Y S, *et al.* Study on fractal characteristics of biomass chars[J]. Biomass Chemical Engineering, 2009, 43(3): 9–12.
- [37] 陈温福, 韩晓日, 徐正进, 等. 一种炭基缓释玉米专用肥料及其制备 方法: 中国: 200710097754[P]. 2007-10-17.
 Chen W F, Han X R, Xu Z J, *et al.* One kind of corn carbon-based compound fertilizer and its preparation method: China, 200710097754[P]. 2007-10-17.
- [38] 叶协锋, 于晓娜, 王勇, 等. 烟草专用生物炭基缓释复合肥及其制备 方法: 中国, 201410140025.1[P]. 2014-07-09.
 Ye X F, Yu X N, Wang Y, *et al.* Tobacco carbon-based compound fertilizer and its preparation method: China, 201410140025.1 [P]. 2014-07-09.
- [39] 何绪生,张树清,佘雕,等. 生物炭对土壤肥料的作用及未来研究
 [J]. 中国农学通报, 2011, 27(15): 16–25.
 He X S, Zhang S Q, She D, *et al.* Effects of biochar on soil and fertilizer and future research[J]. Chinese Agricultural Science Bulletin, 2011, 27(15): 16–25.
- [40] Sohi S, Lopez-Capel E, Krull E, Bol R. Biochar, climate change and soil: A review to guide future research [R]. CSIRO Land and Water Science Report, 2009.
- [41] Lehmann J. Bio-energy in the black[J]. Frontiers in Ecology and the Environment, 2007, 5(7): 381–387.