DOI: 10.13973/j.cnki.robot.2017.0347

机器鼠的仿鼠运动程度评估

李 康,石 青,李 昌,邹明杰,王化平,福田敏男,黄 强 (北京理工大学,北京 100081)

摘 要:在仿生机器鼠与实验鼠行为交互实验中,需要机器鼠能够在形态和动作行为上都非常接近实验鼠. 为此,对先前研制出的仿生机器鼠硬件进行了优化改进,使其在形态上更接近实验鼠.使用最大俯仰角(MPA) 和最大到达高度(MRH)、最大弯曲角(MBA)和最小弯曲距离(MBD)4个参数来评估机器鼠的动作基元:俯 仰和偏航运动.实验结果表明,改进后的机器鼠具有良好的俯仰运动性能,偏航运动还需要完善.然后,结合基 于俯仰角和弯曲角的第1个关键影响因子、以及基于到达高度和弯曲距离的第2个关键影响因子,以其作为衡量 机器鼠与实验鼠运动相似度的量化指标,并建立运动相似性评估模型.最后,通过机器鼠对实验鼠3个典型行为 过程的模拟,计算出前述的2个关键影响因子,得到机器鼠对实验鼠典型行为的相似度分别为96.12%、98.68%和 96.61%.上述实验结果表明,机器鼠能够高质量地实现对实验鼠动作行为的模拟.

关键词:机器鼠;运动性能评估;运动相似性评估 中图分类号: TP24 **文献标识码:** A

文章编号: 1002-0446(2017)-03-0347-08

Motion Similarity Evaluation between a Robotic Rat and a Laboratory Rat

LI Kang, SHI Qing, LI Chang, ZOU Mingjie, WANG Huaping, FUKUDA Toshio, HUANG Qiang (Beijing Institute of Technology, Beijing 100081, China)

Abstract: In biomimetic interactive experiments of robotic rats and laboratory rats, the robotic rat should be very close to the laboratory rat in the respects of morphology and behaviors. In this view, the structure of our previous robotic rat is optimized to make its morphology more similar to a laboratory rat. 4 indexes, including the maximum pitch angle (MPA) and the maximum reachable height (MRH), the maximum bendable angle (MBA) and the minimum bendable distance (MBD), are proposed to assess action primaries of the robotic rat including the pitch and yaw motions. Experiments show that the optimized robotic rat has good performance of pitch motion and its yaw motion needs to be further improved. Then, the model of motion similarity between the robotic rat and the laboratory rat is established with 2 quantization parameters. One is the first key impact factor based on the pitch and bend angles, and the other one is the second key impact factor based on the arrival height and bendable distance. The 2 key impact factors are calculated by simulating 3 typical behaviors of a laboratory rat, and the similarities of the 3 behaviors are then obtained to be 96.12%, 98.68% and 96.61%, respectively. The results demonstrate that the robotic rat can achieve high-quality action simulation of a laboratory rat.

Keywords: robotic rat; locomotion performance evaluation; motion similarity evaluation

1 引言(Introduction)

随着日益严重的社会老龄化问题及不断出现的 新传染病,越来越多的疾病严重影响国民的身心 健康,为此,需要尽快研制出大量新型药物.由于 伦理道德等原因,新型药物的测试不能直接用于 人体进行临床实验,而是必须首先进行动物实验 测试^[11].由于实验鼠身体构造及药物反应和人类接 近,因此常被用作人类疾病的动物模型(具有人类 疾病模拟表现的动物),是人类疾病规律研究与新 型药物测试及筛选的关键资源.但是传统动物模型 行为评估实验条件不可控、实验周期长,动物之间 的行为交互测试存在再现性低、不易控制的问题, 并且在实验过程中对照组也存在误差等.因此,借 助于可编程和自由配置的仿生机器人代替动物,通 过再现相应的动物行为,与动物进行交互^[2-3],已 经成为了国际研究动物行为的新方法.

仿生机器人是仿生学的技术综合和重要应用, 在动物神经学、动物心理学、行为生物学中研究占 有举足轻重的地位^[4-5].将仿生机器人用于动物行

基金项目: 国家自然科学基金 (61403032);北京市科技新星计划 (Z161100004916071);机器人仿生与功能研究北京市重点实验室研究基金. 通信作者:石青,shiqing@bit.edu.cn 收稿/录用/修回: 2017-01-06/2017-04-26/2017-05-04

为交互,提高了行为交互中实验条件的可控性,便 于实现自动化的实验,能在一定程度上分析及影响 动物行为.例如,比利时布鲁塞尔大学研制的蟑螂 机器人^[6]成功地影响了蟑螂的聚集行为,瑞士洛桑 联邦理工学院研制出能像母鸡一样召唤幼鸡群的小 型移动机器人^[7],德国柏林自由大学研制出的机器 人蜜蜂能够像蜜蜂一样跳舞并跟其他蜜蜂进行通信 交流^[8],纽约大学理工学院研制的机器鱼^[9]通过表 现不同的求爱颜色能影响雄性鱼和雌性鱼的交配行 为.因此,仿生机器人为动物行为研究提供了一种 新的方法和技术手段.

国内外为了研究实验鼠行为学,研制出各种各 样的机器鼠.加利福尼亚大学 Bish 等人为了探究幼 鼠神经行为准则而研制出一款幼鼠机器人,基于数 学模型,该机器人能够模仿幼鼠的感知行为[10].澳 大利亚昆士兰大学 Wiles 等人开发出与成年实验鼠 尺度相当的机器鼠 iRat^[11],可以在小范围内移动并 与实验鼠进行初步交互.墨西哥韦拉克鲁斯大学利 用 e-puck 小型移动机器人^[12],能够紧紧地跟随和 接近实验鼠. 法国皮埃尔玛丽居里大学研制出的大 型仿生机器鼠 Psikharpax^[13] 实现了部分实验鼠动作 的模拟,并安置有类似真实老鼠的胡须传感器实现 触觉感知. 但是, 以上这些机器鼠自由度比较少, 一般只能够实现整体移动,并不能逼真地模仿实验 鼠的个性动作 (例如攀压、直立、嗅探等),因而 不能再现实验鼠同类之间的行为交互, 国内目前有 东北大学进行过仿生鼠的研究[14],但是自由度仅 有4个,类似于小车模型;哈尔滨工程大学基于鼹 鼠的挖掘功能,研制出一种可以在3维空间进行挖 掘的仿鼹鼠机器人^[15].两者共同的缺点是:不仅外 形上不像实验鼠,而且只能完成前进、转弯等简单 功能,并不能完成实验鼠较为复杂的运动.

20世纪90年代,日本早稻田大学高西淳夫教 授最早尝试将小型移动机器人与实验鼠进行交互 实验^[16-17].之后,本课题组通过与动物心理学家和 行为学家合作,研制出能模拟实验鼠行为的 WR 系 列仿生机器鼠,用于研究动物行为学^[18-20].其中最 近研制出的 WR-5 仿生机器鼠,能够模仿再现较多 实验鼠的动作行为并与之交互^[21].经过实验验证, WR-5 能够模拟实验鼠诸如直立、攀爬和理毛等动 作^[22].但是,WR-5 的前肢驱动电压过高,运动范 围畸形,不能较好地模拟实验鼠前肢复杂运动,同 时现有控制电路板没能充分考虑整体外形特征,使 得机器鼠外形比较臃肿.更加重要的是,当前尚未 对机器鼠运动模仿程度及效果等进行系统定量评 估. 定量运动评估能够判断机器鼠与实验鼠实际 运动差异,从而为进一步提高机器鼠运动再现能力 提供量化依据,加快实现其对实验鼠运动的逼真模 拟.

为更好地再现实验鼠同类之间的行为交互,机 器鼠需要在外形、动作行为上十分接近实验鼠.本 研究首先对 WR-5 存在的问题进行改进,优化设计 了前肢机构及控制电路板,使得该机器鼠在外形上 更接近实验鼠,同时能够更好地模仿实验鼠的前肢 运动. 其次, 使用最大俯仰角 (MPA) 和最大到达 高度(MRH)、最大弯曲角(MBA)和最小弯曲距 离(MBD)分别评估俯仰和偏航运动,上述4个指 标能够较好地衡量两者运动性能的差异,为机器鼠 的后续改进提供重要参考.最后,为评估机器鼠对 实验鼠动作行为模仿的相似程度,利用俯仰角、到 达高度、弯曲角和弯曲距离等关键参数建立机器鼠 和实验鼠运动相似程度的评估模型. 评估模型不仅 能够表明机器鼠模拟实验鼠相似的程度,而且为改 进控制算法以提高模仿的相似度提供重要依据.不 仅从视觉效果上,而且从这4个运动参数上对实验 鼠进行模拟,完成机器鼠的仿鼠运动. 高质量的仿 鼠运动为机器鼠与实验鼠的交互实验提供了必要条 件,也为研究实验鼠行为学提供重要支撑.

2 机器鼠系统(System of the robotic rat)

2.1 前肢改进

WR-5 前肢的左、右侧运动分别由 3 个输出直 线位移的超声波电机驱动实现,各具有 2 个自由 度^[22].超声波电机存在所需电压高、容易烧坏电路 等问题,同时其输出的机械直线运动与实验鼠前肢 运动相差较远.

为了解决上述问题,根据实验鼠的特征,提出 如图 1(a) 所示的自由度配置,并设计如图 1(b) 所示 的新型机器鼠前肢模拟装置.前肢的左、右两侧具 有对称结构,以左侧为例:肩部由步进电机驱动, 经减速后利用偏心轮传动实现在 x_z 平面的旋转摇 摆动作(对应关节角 θ_{L1} ,范围为 ±22.6°);肘部由 丝杆电机通过连杆机构带动脚部实现在 x_z 平面的 摆动(对应关节角 θ_{L2} ,范围为 ±20°).

改进后的前肢驱动电机均为步进电机 FDM-0620 (Faulhaber),该步进电机仅需要 6 V 电压供电,输出力矩最高达 0.25 mN·m,能够在耗电小的情况下满足前肢驱动力需求.通过采用曲柄滑块机构使得肩部和肘部的运动顺利配合,从而更加真实地模拟实验鼠的前臂运动,实现攀压、直立、嗅探时前肢的相应蹬踢和摆动等灵活动作.

图 1 机器鼠前肢的自由度配置及机械模型 Fig.1 DOF arrangement and mechanical model of the robotic rat foreleg

图 2 机器鼠实物模型 Fig.2 Physical model of the robotic rat

根据前期采用 X 光成像仪对实验鼠运动进行的 系统分析^[22],将整个机器鼠自由度配置为:13 个 主动自由度,2 个被动自由度.头部含2 个主动自 由度,实现头部的俯仰和偏航运动;前肢含4 个主 动自由度用于实现机器鼠肩部和肘部的上下、前后 运动,和脚掌的2 个被动自由度;基于差动齿轮机 构的腰部含4 个主动自由度,可以实现机器鼠腰部 上下的俯仰运动和左右的偏航运动,以及这2 种运 动的复合运动;车轮底部含2 个主动自由度,采用 2 个直流电机通过圆锥齿轮换向,驱动车轮底部的 2 个车轮,再配合底部前端的2 个万向轮,可以实 现机器鼠在水平面的自由运动;臀部含1 个主动自 由度,通过大力矩舵机实现整个躯干的俯仰运动. 图 2 为机器鼠实物图,表 1 为机器鼠的技术参数.

|--|

Tab.1 Technical parameters of the robotic rat

参数	特性
机器鼠大小(长×宽×高)	${\sim}230~\text{mm} \times 70~\text{mm} \times 105~\text{mm}$
质量	\sim 796 g
最大速度	~ 1.5 m/s
电路板大小(长×宽×高)	$72.6~\text{mm} \times 43.2~\text{mm} \times 8.5~\text{mm}$
执行器	3×舵机,2×丝杆电机
	2×步进电机,6×直流电机
供电电池	12 V 可充电锂电池
平均工作时间	${\sim}1.5~{ m h}$

2.2 控制电路板

WR-5 原有控制电路板没有充分考虑机械硬件 空间, 使得机器鼠显得臃肿, 与实验鼠外形相差较 远,而且该电路板不能稳定驱动前肢电机,无电机 备用接口,不能满足机器鼠功能增加的需求,因此 本研究对控制电路板进行了重新设计.因为将所有 电路集成到一块电路板不太可能, 所以采用 2 块 完全相同的电路板控制整个机器鼠,保证单块电路 板能够承受最大 2.5 A 电流,同时驱动 3 个直流电 机、1个步进电机、1个丝杆电机、2个舵机,与此 同时,为了实现机器鼠的可控性和状态的可视性, 还应具备与外界进行通讯的能力. 通过综合对比, 新控制电路板采用最多可产生 26 路 PWM(脉宽调 制)波的 STM32F103RG 微控制器为主控芯片,以 最大输出电流为1A的TB6552FNG为电机驱动芯 片,以蓝牙为无线通讯方式.通过蓝牙模块实时发 送机器鼠的当前状态信息(包括控制关节角的电机 速度和位置)并且接受上位机的控制指令,以此保 证机器鼠能够自主地运行.同时在电路板设计一个 直流电机的备用接口,提高控制系统的容错率.

为了利用机器鼠腰部上下两侧的剩余空间,在 设计电路板时需要避让腰部的4个直流电机,为此 电路板上分别设计了2个通孔,同时考虑到腰部外 形,将电路板设计为如图3所示的不规则形状.电 路板的长为72.6 mm,宽为43.2 mm,高为8.5 mm. 电路板通过螺钉固定并紧紧嵌入到机器鼠腰部的上 下两侧. 然后将3D打印制造的外壳盖上,使之既 能在外形上类似实验鼠,又能实现保护控制电路的 作用.为了满足各类电机的供电要求,以及尽量延 长机器鼠的工作时长,结合电池的体积、质量等因 素,采用3块串联的锂电池进行供电,单块电池的 电压为3.7 V~4.2 V,容量为2000 mAh,保证机

3 动作基元规划 (Action primitives planning)

3.1 关节运动的 PI 控制

为控制机器鼠以设定速度到达预定位置,并分 别保持腰部前后不同负载的 2 个电机运行速度一 致,对腰部的直流电机采用基于比例一积分 (PI) 的速度闭环控制,微控制器通过每 5 ms 产生一次 中断来读取电机数字磁编码器产生的脉冲数,作为 电机的反馈速度,之后与设定速度进行比较,然后 通过 PI 控制器来实现对速度的闭环控制 (如图 4 所 示).对直流电机多次调试 PI 参数后得到:当 $k_P =$ 50, $k_I = 30$ 时,电机达到设定速度的时间最短,为 25 ms.将上述调节好的 PI 参数应用到机器鼠的腰 部电机控制中,通过对电机速度的闭环控制,可以 准确地控制关节转动速度;再通过对速度积分可以 得到位置信息,进而准确地控制关节转动角.通过 对关节转动速度和转动角度的准确控制,可以精确 地控制机器鼠的基本动作,如俯仰和偏航运动.

Fig.4 System diagram of joint angular speed control

3.2 俯仰和偏航运动性能评估

俯仰和偏航是实验鼠的典型动作基元,俯仰运动主要出现在实验鼠的攀压、直立、嗅探等动作中,偏航运动则在实验鼠的理毛、转身、嗅探动作中经常出现.机器鼠外形上已经十分接近实验鼠,但是依然存在些许差异,不便于直接比较两者的运动性能.为了衡量不同大小、体型的老鼠(包括机器鼠和实验鼠,下同)的运动性能,首先进行如图5(a)所示的定义:

1) 设老鼠身体与尾巴的连接处为 P₁, 髋关节中 点为 P₂, 两肩关节连线的中点为 P₄, P₃ 为平分 P₂P₄ 段脊柱的中点,颈关节的中点为 P₅,头部后侧的中 点、嘴尖分别为 P₆ 和 P₇;

 定义 P₂P₄ 绕 P₂ 旋转到与水平线重合的角 度为俯仰角 α_r(逆时针旋转为正,顺时针旋转为 负);

3) 定义 P₃P₄ 到 P₅P₆ 的角为弯曲角 α_b;

4) 老鼠处于平趴姿态时,从嘴尖 P₇ 到髋关节 中点 P₂ 的水平距离定义为单位体长 (BL);

5) 老鼠头部到地面的最大垂直距离为到达高度 *h*_r (单位 BL);

6) *P*₇ 到 *P*₁ 的直线距离为弯曲距离 *h*_b (单位 BL).

如图 6 所示,机器鼠通过调节关节角 $\theta_1, \theta_2, \theta_5$, θ_7 及 $\theta_3, \theta_4, \theta_6$ 能分别实现俯仰及偏航运动.为评 估俯仰和偏航运动,需要制订一个衡量标准,首 先进行如下定义:将老鼠在运动过程中俯仰角、到 达高度和弯曲角的最大值分别定义为最大俯仰角 (MPA,取值用 α_r^{max} 表示)、最大到达高度 (MRH, 取值用 h_r^{max} 表示)和最大弯曲角 (MBA,取值用 α_b^{max} 表示),弯曲距离的最小值定义为最小弯曲 距离 (MBD,取值用 h_b^{min} 表示).其次,为使机器 鼠尽可能模仿俯仰和偏航两种动作基元,一方面, 需要在俯仰运动上尽可能达到实验鼠的 MPA 和 MRH;另一方面,在偏航运动上尽可能接近实验鼠 的 MBA 和 MBD.

Fig.6 Joint angle of the robotic rat

3.2.1 俯仰运动

通过逐帧标记实验鼠在 X 射线下的影像来提取 实验鼠俯仰运动时的 MPA 和 MRH 参数,再通过 比较机器鼠和实验鼠的这 2 个参数来评估机器鼠的 俯仰运动性能. 从图 5(b) 可以看出,由于精巧的机 构设计,加上优良的控制系统硬件设计和适当的控 制方法,得到机器鼠的 MPA: $\alpha_r^{max} = 62^\circ$ 和 MRH: $h_r^{max} = 1.3$ BL, MPA 与实验鼠相等, MRH 与实验 鼠的 1.52 BL 很接近.由此可见,机器鼠俯仰运动 性能非常接近实验鼠.

3.2.2 偏航运动

同理,通过比较机器鼠和实验鼠的 MBA 和 MBD 参数来评估机器鼠的偏航运动性能. 从图 5(c) 可以看出,机器鼠的 MBA: $\alpha_b^{max} = 115^\circ$ 和 MBD: $h_b^{min} = 0.35$ BL, MBA 与实验鼠相等, MBD 与实验鼠的 0BL 有一定差距. 可见,当前的机器鼠虽然从效果上能够比较好地模拟实验鼠的偏航运动,但是在运动性能方面较实验鼠还有一定差距,因此需要在软硬件方面进一步完善,使之拥有更良好的偏航运动性能.

4 仿鼠运动评估(Motion similarity evaluation)

4.1 机器鼠与实验鼠运动相似性评估模型

为了定量地分析机器鼠和实验鼠运动过程中的 相似程度,需要比较同一时刻两者的俯仰角 α_r 、到 达高度 h_r 、弯曲角 α_b 和弯曲距离 h_b 的相似性.选 取合适的采样时间(本文采用的是 0.1 s 和 33 ms), 提取运动过程中的 α_r 、 h_r 、 α_b 和 h_b 等采样值进行 相似性比较,分别建立综合考虑 α_r 和 α_b 的关键影 响因子 E_{α} (见式(1)),及综合考虑 h_r 和 h_b 的关键 影响因子 E_h (见式(2)).其中, α_r^i 和 $\alpha_r^{r'}$ 、 α_b^h 和 $\alpha_b^{r'}$ 分别为机器鼠和实验鼠运动时 α_r 、 α_b 的采样值(因数据处理中角度一般采用弧度制,故在计算时将度转化为弧度), N_1 为 α_r 、 α_b 采样点个数.同样的, $h_r^i 和 h_r^i$ 、 $h_b^i 和 h_b^i$ 分别为机器鼠和实验鼠运动时 h_r 、 h_b 的采样值, N_2 为 h_r 、 h_b 采样点个数. E_α 和 E_h 的值都是越接近于 1,表明机器鼠模拟实验鼠的运动越像.

$$E_{\alpha} = e^{\frac{-\sqrt{\sum\limits_{i=0}^{N_{1}} (a_{i}^{i} - a_{i}^{j'})^{2} + (a_{b}^{i} - a_{b}^{j'})^{2}}{N_{1}}}$$
(1)

$$E_{h} = e^{\frac{-\sqrt{\sum_{i=0}^{(h_{r}^{i} - h_{r}^{i})^{2} + (h_{b}^{i} - h_{b}^{i})^{2}}{N_{2}}}$$
(2)

为了保证整体评估函数的值位于区间 [0,1],并 且保证值越大所表征运动的相似性越好,建立如公 式 (3) 所示关系式,其中 ω_1 和 ω_2 分别为 E_α 和 E_h 所占总评估函数 η 的权重.因为, α_r 、 h_r 、 α_b 和 h_b 四个变量对老鼠运动具有同等贡献,因此关键影响 因子 E_α 和 E_h 对评估运动模仿的相似性贡献也应该 相同,即认为它们对整体评估函数占有相同权重, 因此采用 $\omega_1 = \omega_2 = 0.5$ 作为评估相似性的权重.

$$\begin{cases} \eta = \omega_1 E_{\alpha} + \omega_2 E_h \\ \omega_1 + \omega_2 = 1 \end{cases}$$
(3)

4.2 基于相似性评估模型的仿鼠运动程度分析

由于动物实验存在可控性和重复性较低等问题,因此所选取的实验鼠行为很难到较好的重复. 但为了减小实验鼠行为之间的差异性,我们挑选几 个实验鼠的典型行为进行模拟.通过大量观察实验 鼠行为活动,发现实验鼠有以下3个典型行为:一 是在表达攻击、自卫等行为时,通常进行先奔跑、 再直立的连续动作;二是表达探索周围环境或与同 类进行攀压交互等行为时,通常进行嗅探、攀压、 回撤等一系列动作;三是表达清洁躯干和尾部行为 时,通常进行理毛动作.本文分别将其定义为行为 模式I(BPI)、行为模式II(BPII)和行为模式III (BPIII).实验过程中,将实验鼠的行为拆分为几个 动作,控制机器鼠按顺序对每个动作进行组合模 拟,每次实验重复3次,取3次实验的平均值为机 器鼠模拟实验的运动参数值,并在图中标注离差.

4.2.1 BPI 情况下运动相似性分析

对于含奔跑及直立的 BPI,整个运动过程中实 验鼠没有偏航方向的运动,所以机器鼠关于偏航方 面的运动参数(α_b 和 h_b)与实验鼠始终相等.机 器鼠奔跑中($0 \sim 0.75$ s)主要在速度 v 模拟实验 鼠,直立中(0.75 s ~ 2 s)主要通过俯仰角 α_r 和 到达高度 h_r 实现对实验鼠的模拟.由于机器鼠和 实验鼠存在体积上的差异,本文用每秒移动的体 长(BL/s)来表征速度.实验鼠在 BPI 中的奔跑平 均速度为 0.71 BL/s,机器鼠在 0.75 s 时间里也以 0.71 BL/s (相当于 0.136 m/s)平均速度前进.

在整个 BPI 模拟过程中, 以 0.1 s 为采样时间, 分别将机器鼠和实验鼠的 α_r 和 h_r 值列出来,如图 7 所示. 由图 7 的 α , 变化曲线可以看出, 由于实验鼠 的身体具有柔性, 根据 α_r 的定义, 实验鼠的 α_r 可 以到达负数(曲线里 α,最小值为 -8°),机器鼠的 自身机械结构决定 α_r 只能为正数 (α_r 最小值为 1°, 曲线里是 2°). 在同一时间,机器鼠与实验鼠 α_r 最 大误差为 14°, 但是 α, 上升趋势基本一致, 而且机 器鼠达到了实验鼠的 MPA (62°). 由于整个过程中 没有偏航方向的运动,故 $\alpha_{h}^{i} = \alpha_{h}^{i'} = 0$,由式(1)可 以得到 α_r 和 α_b 关键影响因子 $E_{\alpha} = 96.77\%$.如图 7 的 h, 变化曲线所示, 由于实验鼠具有柔性的、可伸 缩的身体,实验鼠的 h,变化更大,而且最大到达高 度也更大(实验鼠的 MRH = 1.52 BL). 机器鼠由 于自身结构原因,最大到达高度虽然没有实验鼠大 (机器鼠的 MHR = 1.31 BL),整个过程中机器鼠和 实验鼠的 hr 最大误差为 0.23 BL, 但是两者的变化 趋势基本相同. 由于 $h_{\rm b}^i = h_{\rm b}^{i'} = 1$ BL, 根据式 (2) 得 到 BPI 过程中 h_r 和 h_b 关键影响因子 $E_h = 95.46\%$.

根据计算出 BPI 的 2 个关键影响因子,可以计算出机器鼠在 BPI 情况下与实验鼠的运动相似度 $\eta = 96.12\%$,由此可以看出机器鼠的仿鼠运动程度 很高.

4.2.2 BPII 情况下运动相似性分析

对于含嗅探、攀压和回撤的 BPII,整个运动过 程实验鼠同样没有偏航方向的运动.机器鼠嗅探中 (0~3.9 s)和回撤中(5.2 s~7 s)主要在到达高 度 h_r 模拟实验鼠,攀压中($3.9 \text{ s} \sim 5.2 \text{ s}$)主要通 过俯仰角 α_r 和到达高度 h_r 实现对实验鼠的模拟.

BPII 同 BPI 类似,分别将机器鼠和实验鼠的 α_r 和 h_r 值列出来,见图 8. 由图 8 的 α_r 变化曲线 可以看出,机器鼠与实验鼠 α,最大误差为 9°,但 是两者的上升趋势基本一致,而且机器鼠攀压时 α_r的最大值为 27°,非常接近实验鼠的 28°.由于 $\alpha_{\rm h}^{i} = \alpha_{\rm h}^{i'} = 0$,根据式(1)可以得到 $\alpha_{\rm r}$ 和 $\alpha_{\rm h}$ 关键影 响因子 $E_{\alpha} = 97.82\%$.如图 8 的 h_{r} 变化曲线所示, 在嗅探、攀压和回撤的过程中,实验鼠 h,的最大值 分别为 0.47 BL、0.67 BL 和 0.7 BL, 对应的机器鼠 的值分别为 0.46 BL、0.67 BL 和 0.69 BL, h_r 最大 误差分别为 0.04 BL、0.12 BL 和 0.04 BL. 在嗅探 过程中,实验鼠 h_r 的最小值为 0.26 BL,但是机器 鼠由于自身结构的限制, hr 的最小值为 0.3 BL. 总 的来说,实验鼠的 h_r变化比较多样,而且有突变, 机器鼠的 h, 变化比较平滑, 几乎没有突变, 但两者 的变化趋势和最终结果都非常相近. 由于 $h_{\rm b}^{i} = h_{\rm b}^{i'} =$ 1 BL, 根据式 (2) 可以得到 BPII 过程中 h_r 和 h_b 关 键影响因子 E_h = 99.54%.

图 8 BPII 情况下机器鼠/实验鼠在 3.9 s ~ 5.2 s 期间俯仰 角和 0 ~ 7 s 期间到达高度随时间变化曲线

Fig.8 Comparison of α_r during 3.9 s~5.2 s and h_r during 0~7 s between the robotic rat and the laboratory rat under BPII

同样的,根据上述计算出来的 2 个关键影响因 子,可以计算出机器鼠在 BPII 情况下与实验鼠的 运动相似度 $\eta = 98.68\%$,由此可以看出机器鼠的仿 鼠运动程度非常高.

4.2.3 BPIII 情况下运动相似性分析

对于含理毛的 BPIII,由于整个运动过程实验 鼠没有俯仰方向的运动,所以机器鼠与实验鼠关于 俯仰方面的运动参数 (α_r 和 h_r)始终相等.机器鼠 理毛时 ($0 \sim 0.43$ s)主要在弯曲角 α_b 和弯曲距离 h_b 方面模拟实验鼠.

在整个 BPIII 模拟过程中,由于选取的理毛视

频中实验鼠运动较快,故本文选取的采样时间为 33 ms, 分别将机器鼠和实验鼠的 α_b 和 h_b 值列出 来,见图9. 由图9的α,变化曲线可以看出,机器 鼠不仅达到了实验鼠的 MBA (115°), 并且 $\alpha_{\rm b}$ 的上 升趋势基本一致. 在同一时间, 机器鼠与实验鼠 α, 最大误差为14°. 由于整个过程中没有俯仰方向的 运动, 故 $\alpha_{r}^{i} = \alpha_{r}^{i'} = 0$, 由式(1)可以得到 α_{r} 和 α_{b} 关键影响因子 $E_{\alpha} = 97.06\%$. 如图 9 的 $h_{\rm b}$ 变化曲线 所示,由于实验鼠具有柔性的、可伸缩的身体,实 验鼠的 hb 变化更大, 而且最小弯曲距离也更小 (实 验鼠的 MBD = 0 BL). 机器鼠由于自身结构原因, 最大到达高度虽然没有实验鼠大(机器鼠的 MBD = 0.35 BL),整个过程中机器鼠和实验鼠的 h 最 大误差为 0.35 BL, 但是两者的变化趋势基本相同. 由于 $h_r^i = h_r^{i'} = 0$ BL, 根据式 (2) 得到 BPIII 过程中 $h_{\rm r}$ 和 $h_{\rm b}$ 关键影响因子 $E_h = 96.16\%$.

图 9 BPIII 情况下机器鼠/实验鼠在 0 ~ 0.43 s 期间弯曲角 和弯曲距离随时间变化曲线

Fig.9 Comparison of α_b and h_b during $0 \sim 0.43$ s between the robotic rat and the laboratory rat under BPIII

同样的,根据上述计算出来的 2 个关键影响因 子,可以计算出机器鼠在 BPIII 情况下与实验鼠运 动的相似度 $\eta = 96.61\%$,由此可以看出机器鼠的仿 鼠运动程度非常高.

5 结论(Conclusion)

本文对仿生机器鼠的机构和电路进行改进,使 其外形更加接近实验鼠.在动作行为方面,针对机 器鼠主要取得如下研究成果:

(1)提出了定量评估机器鼠和实验鼠的俯仰、 偏航运动性能指标,并通过对两者相应指标进行分析,表明所设计的机器鼠具有类似实验鼠的俯仰运动能力,偏航运动能力还需加强.

(2) 基于机器鼠和实验鼠运动过程中的俯仰角 α_r、到达高度 h_r、弯曲角 α_b 和弯曲距离 h_b 随时间 的变化,建立了一组评估函数,进而建立起两者运 动相似性的评估模型.

(3) 选取实验鼠的 3 个典型行为进行模拟,并 利用已建立的评估函数对其运动相似性进行定量评 估.实验表明,机器鼠模拟这 3 种行为的相似度分 别达到 96.12%、98.68% 和 96.16%,能够高质量地 模拟实验鼠的动作行为.

研究表明,机器鼠与实验鼠的偏航运动仍有一 定差距.今后将通过进一步优化设计,改进机器鼠 偏航运动,提高机器鼠整体运动相似性,从而使机 器鼠具有与实验鼠更好的运动相似性.本研究将为 机器鼠与实验鼠进行仿生交互实验提供重要支撑.

参考文献(References)

- van der Staay F J. Animal models of behavioral dysfunctions: Basic concepts and classifications, and an evaluation strategy[J]. Brain Research Reviews, 2006, 52(1): 131-159.
- [2] Ishii H, Shi Q, Fumino S, et al. A novel method to develop an animal model of depression using a small mobile robot[J]. Advanced Robotics, 2013, 27(1): 61-69.
- [3] Ishii H, Shi Q, Masuda Y, et al. Development of experimental setup to create novel mental disorder model rats using small mobile robot[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2010: 3905-3910.
- [4] Pfeifer P, Lungarella M, Iida F. Self-organization, embodiment, and biologically inspired robotics[J]. Science, 2007, 318(5853): 1088-1093.
- [5] Krause J, Winfield A F T, Deneubourg J L. Interactive robots in experimental biology[J]. Trends in Ecology and Evolution, 2011, 26(7): 369-375.
- [6] Halloy J, Sempo G, Caprari G, et al. Social integration of robots into groups of cockroaches to control self-organized choices[J]. Science, 2007, 318(5853): 1155-1158.
- [7] Gribovskiy A, Halloy J, Deneubourg J L, et al. Towards mixed societies of chickens and robots[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2010: 4722-4728.
- [8] Landgraf T, Moballegh H, Rojas R. Design and development of a robotic bee for the analysis of honeybee dance communication[J]. Applied Bionics and Biomechanics, 2008, 5(3): 157-164.
- [9] Phamduy P, Polverino G, Fuller R C, et al. Fish and robot dancing together: Bluefin killifish females respond differently to the courtship of a robot with varying color morphs[J]. Bioinspiration & Biomimetics, 2014, 9(3): No.036021.
- [10] Bish R, Joshi S, Schank J, et al. Mathematical modeling and computer simulation of a robotic rat pup[J]. Mathematical and Computer Modelling, 2007, 45(7/8): 981-1000.
- [11] Wiles J, Heath S, Ball D, et al. Rat meets iRat[C]/IEEE International Conference on Development and Learning and Epigenetic Robotics. Piscataway, USA: IEEE, 2012: 2pp.
- [12] Del Angel Ortiz R, Contreras C M, Gutiérrez-Garcia A G, et al. Social interaction test between a rat and a robot: A pilot study[J]. International Journal of Advanced Robotic Systems, 2016, 13(1).

- [13] N'Guyen S, Pirim P, Meyer J A. Texture discrimination with artificial whiskers in the robot-rat psikharpax[C]//International Joint Conference on Biomedical Engineering Systems and Technologies. Berlin, Germany: Springer, 2010: 252-265.
- [14] 郭强. 仿生鼠机械系统设计与运动特性研究 [D]. 沈阳: 东北大学, 2010.
 Guo Q. Mechanical system design and the research on motion characteristic for bio-mimetic mouse[D]. Shenyang: Northeastern University, 2010.
- [15] 李艳杰. 仿鼹鼠挖掘机器人及运动特性研究 [D]. 哈尔滨: 哈尔滨工程大学, 2013.

Li Y J. A bionic digging robot inspired by mole & its movement characteristics research[D]. Harbin: Harbin Engineering University, 2013.

- [16] Takanishi A, Aoki T, Ito M, et al. Interaction between creature and robot: Development of an experiment system for rat and rat robot interaction[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 1998: 1975-1980
- [17] Aoki T, Watanabe T, Miwa H, et al. An animal psychological approach for personal robot design – Interaction between a rat and a rat-robot[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2000: 365-370.

- [18] Shi Q, Ishii H, Miyagishima S, et al. Development of a hybrid wheel-legged mobile robot WR-3 designed for the behavior analysis of rats[J]. Advanced Robotics, 2011, 25(18): 2255-2272.
- [19] Shi Q, Ishii H, Kinoshita S, et al. A rat-like robot for interacting with real rats[J]. Robotica, 2013, 31(8): 1337-1350.
- [20] Shi Q, Ishii H, Kinoshita S, et al. Modulation of rat behaviour by using a rat-like robot[J]. Bioinspiration & Biomimetics, 2013, 8(4): No.046002.
- [21] Shi Q, Ishii H, Sugita H, et al. A rat-like robot WR-5 for animal behavior research[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA: IEEE, 2012: 784-789.
- [22] Shi Q, Ishii H, Sugahara Y, et al. Design and control of a biomimetic robotic rat for interaction with laboratory rats[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(4): 1832-1842.

作者简介:

- 李 康 (1993-), 男, 硕士生. 研究领域: 仿生机器人.
- 石 青(1983-),男,博士,副教授.研究领域:仿生机器人,微纳操作机器人等.
- 李 昌(1991-),男,博士生.研究领域:仿生机器人.

(上接第346页)

 [10] 夏佩伦. 目标跟踪与信息融合 [M]. 北京: 国防工业出版 社, 2010: 125-139.
 Xia P. J. Target tracking and information fusion[M]. Pailing:

Xia P L. Target tracking and information fusion[M]. Beijing: National Defense Industry Press, 2010: 125-139.

- [11] Kennedy H L. Clutter-based test statistics for automatic track initiation[J]. Acta Automatica Sinica, 2008, 34(3): 266-273.
- [12] 夏瑜,吴小俊,李菊,等. 基于改进融合策略的多特征跟踪算法 [J]. 机器人, 2016, 38(4): 428-436.
 Xia Y, Wu X J, Li J, et al. Multiple features tracking algorithm based on an improved fusion strategy[J]. Robot, 2016, 38(4): 428-436.
- [13] Kumar M N V S S, Modalavalasa N, Ganesh L, et al. A new

approach for tracking moving objects in underwater environment[J]. Current Science, 2016, 110(7): 1315-1323.

作者简介:

- 李冬冬 (1989 –), 男, 博士生. 研究领域: 水下目标跟踪.
- 张 瑶(1984-),男,博士,副研究员.研究领域:水下 目标跟踪,水下声信号处理.
- 林 扬(1962-),男,研究员,博士生导师.研究领域: 自主水下机器人总体技术,水下航行器载体技术.