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Abstract—This paper presents the first practical fault at-
tack on the ChaCha family of addition-rotation-XOR (ARX)-
based stream ciphers. ChaCha has recently been deployed
for speeding up and strengthening HTTPS connections for
Google Chrome on Android devices. In this paper, we propose
differential fault analysis attacks on ChaCha without resorting
to nonce misuse. We use the instruction skip and instruction
replacement fault models, which are popularly mounted on
microcontroller-based cryptographic implementations. We cor-
roborate the attack propositions via practical fault injection
experiments using a laser-based setup targeting an Atmel AVR
8-bit microcontroller-based implementation of ChaCha. Each
of the proposed attacks can be repeated with 100% accuracy
in our fault injection setup, and can recover the entire 256 bit
secret key using 5-8 fault injections on an average.

Keywords-ChaCha, ARX cipher, Laser, Fault Attack, Instruc-
tion Skip, Instruction Replacement

I. INTRODUCTION

The introduction of the Salsa family of stream ciphers
by Bernstein in [1] has caused the Addition-Rotation-XOR
(ARX) family of crypto-primitives to gain popularity in
cryptographic literature. Besides Salsa, there exists today a
number of block ciphers (e.g. SPECK [2]) and hash func-
tions (e.g. BLAKE [3]) that use the ARX design paradigm.
As the name suggests, ARX uses a combination of modular
addition (for non-linearity), rotation and XOR operations, as
opposed to the standard use of substitution-boxes (S-Boxes)
along with linear operations. An ARX operation is typically
of the form d = ((a + c)≪ k)⊕ b) where k is usually
a constant, and a,b,c and d are registers of appropriate
width. ARX operations usually afford lower diffusion per
round; consequently ARX-based crypto-primitives usually
require a larger number of rounds. However, ARX-based
designs avoid the need for S-Box lookups, which makes
them efficient in software and resistant to timing-based side-
channel attacks.

A. The ChaCha Family of Stream Ciphers
The ChaCha family of stream ciphers was proposed by

Bernstein in [4]. It is an improvement over the original
Salsa family of stream ciphers, with increased levels of
diffusion per round. The basic operational unit for ChaCha
is 32-bit words. The ChaCha Function maps a 256-bit key
k = {k0,k1, ...k7}, a 64-bit nonce v = (v0,v1), and a 64-bit
counter t =(t0, t1) to a 512-bit keystream block. In particular,
this function takes as input the 4 × 4 matrix of 32-bit words
written as:

X =


x0 x1 x2 x3
x4 x5 x6 x7
x8 x9 x10 x11
x12 x13 x14 x15

=


c0 c1 c2 c3
k0 k1 k2 k3
k4 k5 k6 k7
t0 t1 v0 v1

 (1)

where c0,c1,c2 and c3 are the predefined constants
{0x61707865, 0x3320646E, 0x79622D32, 0x6B206574} re-
spectively, and outputs a 512-bit keystream Z. The overall
ChaCha function comprises of 20 rounds, where each round
function is based on the following nonlinear operation (also
called the quarterround function), which transforms a vector
(x0,x1,x2,x3) to (y0,y1,y2,y3) by sequentially computing:

b0 = x0 + x1,b3 = (x3⊕b0)≪ 16
b2 = x2 +b3,b1 = (x1⊕b2)≪ 12

y0 = b0 +b1,y3 = (b3⊕ y0)≪ 8
y2 = b2 + y3,y1 = (b1⊕ y2)≪ 7

(2)

The quarterround function is applied to the state matrix in
row-major and diagonal-major fashion in the even and odd
numbered rows, respectively. Let X r be the state matrix after
round r. The final output keystream block Z is computed as
Z = X�X20, where � denotes word-wise integer addition.

B. Our Contributions
In this paper, we propose four differential fault analysis

(DFA) attacks on ChaCha using the instruction skip and



Table I: The ChaCha quarterround Function.

Round ARX Input Vectors to the Round Function
Odd numbered (x0,x5,x10,x15), (x1,x6,x11,x12), (x2,x7,x8,x13), (x3,x4,x9,x14)
Even numbered (x0,x1,x2,x3), (x4,x5,x6,x7), (x8,x9,x10,x11), (x12,x13,x14,x15)

instruction replacement fault models [5] that usually target
microcontroller-based cryptographic implementations. Our
attacks target the keystream generation module at the de-
cryption site, and entirely avoid nonce misuse. We practi-
cally demonstrate our proposed attacks on an Atmel AVR
8-bit microcontroller-based implementation of ChaCha using
a laser fault injection setup. Each of our proposed attacks
using instruction skips requires around 5-8 fault injections
on an average to recover the entire 256 bit secret key, while
the attack using instruction replacements requires 32 fault
injections on an average for full key recovery. To the best
of our knowledge, this is the first practical demonstration of
fault attacks on the ChaCha family of stream ciphers to be
reported in the literature.

II. DIFFERENTIAL FAULT ANALYSIS OF STREAM
CIPHERS: AVOIDING NONCE-MISUSE

Standard stream cipher encryption and decryption are
usually accompanied by the use of a nonce and a counter
which do not repeat. This could lead to a notion that classical
DFA [6], [7] using a correct and faulty pair of encryption
executions on the same plaintext may not apply in case of
stream ciphers. In this section, we point to a simple attack
model where the adversary can mount classical DFA on
stream ciphers by targeting the decryption module instead.

Our proposed attack model is illustrated in Fig. 1. The
attack steps may be enumerated as follows:

1) The adversary is assumed to know both the plaintext
message M and the ciphertext C during encryption.
This obviously implies that the adversary also knows
the correct keystream K.

2) The target for fault injection is the equivalent
keystream generation algorithm during decryption.
The adversary obtains the faulty message M′ and
recovers the faulty keystream K′ = M′⊕C.

3) The adversary now proceeds with the standard DFA
procedure using the knowledge of K and K′.

Since the nonce and counter values are identical during
both encryption and decryption, nonce misuse is completely
avoided. Thus, as long as the adversary can obtain at least
a part of the secret key from the correct and faulty pair of
output keystreams, the whole key can always be recovered
from multiple fault injections targeting different parts of the
key. In summary, classical fault analysis techniques such as
DFA can be practically mounted on stream ciphers without
misusing the nonce in any way.

Figure 1: DFA on Stream Ciphers: Attack Model without
Nonce Misuse.

III. INSTRUCTION SKIPS AND INSTRUCTION
REPLACEMENT ATTACKS

In this paper, we present four instances of DFA on ChaCha
under the attack model described in Section II that avoids
nonce misuse entirely. We choose the assembly instruction
replacement fault model, which has been widely studied in
the literature [5] as a potent threat to microcontroller-based
cryptographic implementations. A widely studied sub-class
of instruction replacement attacks is the instruction skip
model, where an instruction is essentially replaced by a NOP.
In our attacks, we also consider the more general class of
instruction replacement attacks, where the target instruction
is converted to an alternate instruction acting on the same
operands. We target the following operations of ChaCha in
the different attacks proposed in this paper:
• The final addition operation between the input, X , and

the output of round 20, X20, during the keystream
generation algorithm

• The 12-bit rotation operation during a quarterround in
round 20 of the keystream generation algorithm

• A branch-not-equal operation in the last quarterround
in round 20 of the keystream generation algorithm

We point out here that our attack techniques are generic
and not specifically dependent on the target implementa-
tion chosen for this paper. While the exact fault injection
parameters may be adopted to the target architecture, the
basic principle of the attacks would remain the same. In
particular, any unprotected microcontroller-based implemen-
tation of ChaCha is expected to contain similar instructions



Table II: Inputs to the quarterround Function.

Content of r19 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07
Input Vector Indices to quarterround (0,4,8,12) (1,5,9,13) (2,6,10,14) (3,7,11,15) (0,5,10,15) (1,6,11,12) (2,7,8,13) (3,4,9,14)

corresponding to the operations that we target in our attack.

IV. THE TARGET IMPLEMENTATION OF CHACHA

We target an Atmel AVR microcontroller-based imple-
mentation of ChaCha. The ISA for this microcontroller
comprises of standard instructions such as add, sub, mov
and cp. The microcontroller uses a 16-bit address-space,
while being an 8-bit processor. Consequently, most of the
instructions use 8-bit operands. Our implementation uses the
general-purpose register set (r16,r17, · · · ,r25), and the addi-
tional register set (r26,r27, · · · ,r31) for indirect addressing.

A. Implementation of the quarterround Function

We present snippets of the AVR code for implementing
the quarterround function in Listing 1. The register r19
stores the input vector for the quarterround operation. An
example comparison step with r19 is illustrated in Line
2. If r19 stores 0x00, then the first column comprising of
x0,x4,x8,x12 is treated as the input, and the instructions
between Line 4 and Label 80 are executed. On the other
hand, if r19 does not hold 0x00, the control branches to
Label 40, followed by another immediate branch to Label
80. The process repeats iteratively until a matching condition
for r19 is encountered. The use of two conditional branch
instructions is motivated by the limitation on the range of
addresses that a single jump can perform in the Atmel ISA.
The input vector indices to the quarterround function for
different values of the register r19 are depicted in Table II.

The fault attacks proposed in this paper target one or
more instructions using a laser fault injection setup, as
described next. The aim of injection is to skip/alter the target
instructions, resulting in alterations to the control flow of
the original program, which are subsequently exploited to
efficiently retrieve the key.

V. LASER-BASED EXPERIMENTAL SETUP

In this section we will explain the experimental setup
which was used for the fault injection.

We describe the various components of the fault injection
setup below:
• Device under test. As the device under test (DUT), we

have selected a general-purpose 8-bit microcontroller,
Atmel ATmega328P. It operates at 16 MHz, therefore
one clock cycle takes 62.5 ns. The area of the chip
is 3× 3 mm2 large. Before the experiment, the DUT
was decapsulated by mechanical milling tools and pol-
ished by using Ultra-TEC ASAP-1 sample preparation
equipment, in order to provide enough precision for
the laser beam. This chip was mounted on the Arduino

Listing 1: Subroutine ARX : Implementation of quar-
terround function.
ARX%=:
c p i r19, 0x00
brne 40f
/* Column 1 : (0,4,8,12)*/

5 l d i r27,hi8(Array)
l d i r26,lo8(Array)
l d i r29,hi8(State + 0x00)
l d i r28,lo8(State + 0x00)
l d i r31,hi8(State + 0x10)

10 l d i r30,lo8(State + 0x10)
/*Relative c a l l to Plus32*/
r c a l l Plus32%=
l d i r29,hi8(State + 0x30)
l d i r28,lo8(State + 0x30)

15 l d i r31,hi8(State + 0x00)
l d i r30,lo8(State + 0x00)
/*Relative c a l l to Xor32*/
r c a l l Xor32%=
l d i r29,hi8(State + 0x30)

20 l d i r28,lo8(State + 0x30)
l d i r31,hi8(State + 0x30)
l d i r30,lo8(State + 0x30)
/*Relative c a l l to Rotate32*/
l d i r22, 0x10

25 r c a l l Rotate32%=
...
...
40:
c p i r19, 0x00

30 brne 80f
...
...
80:
c p i r19, 0x01

35 brne 41f
...
...
/*Rest of the code*/

UNO board, adjusted for the laser testing purposes. The
board communicates with the PC using the USBCDC
interface.
We set a trigger signal on the board to HIGH (5 V)
before performing the operations to correctly identify
the desired time. The board was mounted on an a
positioning table with the step precision of 0.05 µm.

• Optical source. We utilized a near-infrared diode pulse
laser (1064 nm) with maximal pulse power 20 W. The
power was further reduced to 8 W by using a 20×
magnifying lens. Laser spot size with this lens is 15×
3.5 µm2 and response to trigger pulse is ≈ 100 ns.

A trigger device was used for capturing the trigger signal
from the device and adjusting the laser activation timing.
A digital sampling oscilloscope was used for verifying the
laser pulse activation time and for estimating the timing of
sub-operations in the cipher implementation. Finally, a PC
workstation was used for communication with the DUT and
analysis of results.
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Figure 2: First Instruction Skip Attack: Recovering k1.

VI. INSTRUCTION REPLACEMENT-BASED DFA OF
CHACHA: DETAILED DESCRIPTION

In this section, we describe four DFA attacks on ChaCha
using the instruction replacement faults injected with the
help of laser fault injection setup described above. The
faults target the implementation of the ARX quarterround,
described in Listing 1, as well as the final addition between
the initial state X and the output, X20 of round 20 of the
keystream generation algorithm.

A. Attack on Final Addition

1) Attack Description: The first DFA attack targets the
final word-wise addition of the initial state containing the
constants, key, counter and nonce to the final state generated
after round 20. The attack skips one of the 16 word-
additions, causing the faulty keystream output to trivially
reveal the corresponding word of the secret key. The DFA
procedure for recovering the key word k1 is depicted in
Fig. 2. Let Z and Z

′
be the correct and faulty keystreams

respectively. Then, we have:

z1,1 = k1 + s20
1,1

z
′
1,1 = s20

1,1

k1 = z1,1− z
′
1,1 (3)

Solving the set of Equations in (3), we recover the key word
k1. Note that subtraction is performed modulo 232. The attack
may now be repeated on each of the 8 words in the second
and third row of the keystream, to retrieve each of the 8
words of the secret key.

2) Attack Realization: We now discuss a practical fault
injection setting to mount the above attack on our AVR-
based implementation of ChaCha. In the implementation,
the 16-bit addresses of the words to be added are loaded
in indirect addressing registers, and a 32-bit addition sub-
routine is invoked. In order to inject the desired fault in
our laser-based setup, we set the trigger to just before the
commencement of the final addition operation. The injection
successfully skipped the function call to the 32-bit addition
subroutine, and trivially revealed the corresponding word in
the secret key. The fault injection was found to be 100%
repeatable for each of the 8 potential target words, with
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Figure 3: Second Instruction Skip Attack: Perturbing Rota-
tion Offset.

varying injection timings. Detailed experimental results for
the attack are presented in Section VII-A.

B. Attack on Rotation

In any ARX-based cipher, the intermediate state is
circular-rotated by a certain number of bits at some stage
during quarterround execution. In ChaCha, for example, the
various intermediate state registers are rotated by an offset
of 16, 12, 8 and 7 bits in each quarterround. In our second
attack, we target one such rotation in each quarterround
of round 20 in the key generation algorithm. We inject
faults to perturb the rotation offset, and exploit the resulting
keystream via a DFA to recover two words of the secret key.

1) Attack Description: We describe a fault attack that
targets the 12-bit circular rotation in each quarterround
of round 20 in the key generation algorithm. The attack
essentially skips a single-bit circular shift, resulting in a 11-
bit overall rotation instead of the expected 12-bit rotation.
Now, let Z and Z

′
be the correct and faulty keystreams,

respectively. Equations (2) and (4) describe the quarterround
operations for the correct and faulty executions of the
quarterround, respectively.

b0 = x0 + x1,b3 = (x3⊕b0)≪ 16

b2 = x2 +b3,b
′
1 = (x1⊕b2)≪ 11

y
′
0 = b0 +b

′
1,y

′
3 = (b3⊕ y

′
0)≪ 8

y
′
2 = b2 + y

′
3,y

′
1 = (b

′
1⊕ y

′
2)≪ 7

(4)

The inputs x0,x1,x2,x3 in Equations (2) and (4) are
the main diagonal words of the state after round 19,
(see {s19

0,0,s
19
1,1,s

19
2,2,s

19
3,3} in Fig. 3). Similarly, the outputs

{y0,y1,y2,y3} and {y′0,y
′
1,y

′
2,y

′
3} are the main diagonal

words after Round 20, {s20
0,0,s

20
1,1,s

20
2,2,s

20
3,3}. Our aim is to

recover the final state words in the first diagonal, namely



{y0,y1,y2,y3}, which then trivially reveal the corresponding
words in the secret key.

Observe that after the completion of round 20, the first
and fourth rows of final state are added to constants, counter
values and nonce values, all of which are publicly available.
This in turn reveals the following correct and faulty out-
puts of the quarterround: {y0,y3,y

′
0,y

′
3} (see the system of

equations below):

y0 = z0,0− c0,y
′
0 = z

′
0,0− c0

y3 = z3,3− v1,y
′
3 = z

′
3,3− v1 (5)

Now, the difference between the correct and faulty
keystreams reveal their difference in the respective final
states after round 20, leading to the computation of both
b0 and b1 as:

b1 = b
′
1≪ 1

that is,

b
′
1 =

{
(b1 +232−1)/2 if LSB(b1) = 1
b1/2 otherwise

b1−b
′
1 = z0,0− z

′
0,0 = y0− y

′
0

y2− y
′
2 = z2,2− z

′
2,2 = y3− y

′
3

y1− y
′
1 = z1,1− z

′
1,1 (6)

Substituting the values we computed from the set of Equa-
tions (6), we just have y2 left to solve for finding the key
words, k1 and k6. Now, observe the following relation:

y1− y
′
1 = ((b1⊕ y2)≪ 7)− ((b

′
1⊕ (y2− z2,2 + z

′
2,2)≪ 7)

where y2 is the only unknown. A simulation over all 232

values of y2 reveals that on an average, the above equation
is satisfied by 210 values of y2, which in turn maps to
210 unique pairs of values for (k1,k6) (see the following
Equations (7)).

y
′
1 = (b

′
1⊕ y

′
2)≪ 7

y1 = (b1⊕ y2)≪ 7

k1 = z1,1− y1 = z
′
1,1− y

′
1

k6 = z2,2− y2 = z
′
2,2− y

′
2 (7)

Thus the fault attack reduces the search space for the pair
(k1,k6) from 264 to 210. Repeating the same experiment for
the three other diagonals finally reduces the search space of
the entire 256-bit secret key from 2256 to around 212.

2) Attack Realization: In the AVR-based implementation
of the quarterround, the attack on the rotation of the state
registers is realized as follows:

• When the number of bits to be rotated is a multiple of
8, the circular rotation is a simple permutation of the

Figure 4: Branching in ChaCha quarterround function.

8-bit registers. In this case, there is no single-bit shift
operation that could be skipped using the laser injection
setup.

• However, when the number of bits to be rotated is not
a multiple of 8, say 12, then the register permutation
must be followed by four single-bit circular shifts,
performed by four relative calls to single-bit circular
shift subroutine, one of which is targeted with 100%
repeatability using the laser injection setup.

In particular, the laser trigger may be set just before round
20, with the r19 register holding the main diagonal entries
to be passed to the quarterround as inputs. Detailed experi-
mental results for the attack are presented in Section VII-B.

C. A Diagonal Fault Attack via Alteration of Control Flow

Our third attack is a demonstration of a diagonal fault
attack via a change in the control flow of the target program
in round 20 of the keystream generation algorithm. Recall
that Listing 1 depicted the use of branching instructions in
the AVR code for the quarterround operation of ChaCha.
In particular, observe in Fig. 4 that the operation on any
diagonal involves a series of cpi-brne instructions, before
the program control arrives at a matching label for the
register r19.



Unlike in the previous fault injection instances, where the
trigger was placed before round 20, in this case, we place
it right before the ARX call for diagonal 4 in round 20
(that is, after the executions for diagonals 1, 2 and 3 are
completed). Once the subroutine ARX is invoked, the control
spends the initial clock cycles in executing compare and
jump instructions before it starts the operations for diagonal
4. It was observed that one of the brne instructions got
skipped, thereby preventing the control from branching out
to the next label. In particular, a brne instruction skip
was observed following the labels 83, 84 and 85 in Fig. 4
(Line numbers 14, 22, and 30). Targeting line 14 caused the
instructions between labels 83 and 44 to be executed twice
instead of once; for correct functionality, this part of the code
should have been skipped on the second occasion. A similar
pattern is detected for the brne instructions corresponding
to the other diagonals too. Recall that the reason for using
two jumps per diagonal is because of the limitation on the
address range that a brne instruction could incorporate.
More specifically, a jump from label 83 to 84 would not
be possible with a single branch. The section of the code
between labels 83 and 44 perform the Round operation on
Diagonal 1, except the 7-bit rotation which happens after
label 44. The operations that would take place are shown in
the equations below.

b0 = x0 + x1,b3 = (x3⊕b0)≪ 16
b2 = x2 +b3,b1 = (x1⊕b2)≪ 12
y0 = b0 +b1,y3 = (b3⊕ y0)≪ 8
y2 = b2 + y3,y1 = (b1⊕ y2) (8)

Further, observe that the inputs (x0,x1,x2,x3) are nothing
but (s20

0,0,s
20
1,1,s

20
2,2,s

20
3,3), since the fault takes place only the

last diagonal undergoes the quarterround operation. Next,
we solve the following equations to retrieve the key words
k1 and k6.

x0 = z0,0− c0,x3 = z3,3− v1

y0 = z
′
0,0− c0,y3 = z

′
3,3− v1 (9)

b3 = (y3≫ 8)⊕ y0

b0 = (b3≫ 16)⊕ x3

x1 = b0− x0 (10)

b1 = y0−b0

b2 = (b1≫ 12)⊕ x1

x2 = b2−b3 (11)

y2 = b2 + y3

y1 = b1⊕ y2

k1 = z
′
1,1− y1 = z1,1− x1

k6 = z
′
2,2− y2 = z2,2− x2 (12)

As shown in Equation (9), the values of x0 and x3 are
revealed from the non-faulty keystream. This information
is enough to obtain all other xis, bis and yis of the faulty
stream, thus reducing the search space of (k1 and k6) to a
unique pair of values. Following an identical fault injection
approach, the values of k2,k3,k4,k7 can also be retrieved.
Thus the overall key search space is reduced from 2256 to
264 using three fault injections. The remaining key words
k0 and k5 may be further recovered using two additional
instruction skips. We have already discussed in Section VI-A
an instruction skip attack on the final addition step in the
keystream generation algorithm. Since every quarterround
of the keystream generation algorithm also has four 32-bit
addition operations, skipping the first and third addition op-
erations in the last quarterround (corresponding to diagonal
4) of round 20 allows us to uniquely retrieve k0 and k5 from
the following set of equations, respectively:

b
′′
0 = x0,b

′′
3 = (x3⊕b

′′
0)≪ 16

b
′′
2 = x2 +b

′′
3,b

′′
1 = (x1⊕b

′′
2)≪ 12

y
′′
0 = b

′′
0 +b

′′
1,y

′′
3 = (b

′′
3⊕ y

′′
0)≪ 8

y
′′
2 = b

′′
2 + y

′′
3,y

′′
1 = (b

′′
1⊕ y

′′
2)≪ 7 (13)

b
′′
3 = (y

′′
3≫ 8)⊕ y

′′
0

x0 = b
′′
0 = (b

′′
3≫ 16)⊕ x3

x1 = b0− x0

b2 = (b1≫ 12)⊕ x1

y2 = b2 + y3

y1 = (b1⊕ y2)≪ 7 (14)
b0 = x0 + x1,b3 = (x3⊕b0)≪ 16
b2 = x2 +b3,b1 = (x1⊕b2)≪ 12

y
′
0 = b0,y

′
3 = (b3⊕ y

′
0)≪ 8

y
′
2 = b2 + y

′
3,y

′
1 = (b1⊕ y

′
2)≪ 7 (15)

y0 = z0,0− c0

y
′
0 = z

′
0,0− c0

y3 = z3,3− v1

b1 = y0− y
′
0

b0 = y0−b1

b3 = (y3≫ 8)⊕ y0

x3 = (b3≫ 16)⊕b0 (16)

k0 = z1,1− y1
k5 = z2,2− y2

By skipping the third addition the values of b1 and b0 can
be found by solving the Equations in (15) and (16) , and
similarly x0, x1 can be derived by skipping the first addition,
refer to Equations (13) and (14). Every other unknown can
be found by substituting these values, including the key
words k0 and k5. Hence we have uniquely identified the



256-bit key using 5 distinct faults injected targeting different
instructions. Detailed experimental results for this attack are
presented in Section VII-C.

D. Instruction Replacement Attack on the Final Addition

Contrary to the previous attacks that exploited the in-
struction skip fault model, our final attack exploits an
instruction replacement fault, where the intended instruction
is replaced by an alternate instruction with the same set of
operands.Similar to the attack described in Section VI-A,
this attack also targets the final addition operation between
the initial and final states of the keystream generation al-
gorithm. However, instead of skipping word-wise additions,
the attack replaces the add instruction by a sub instruction
and adc instruction by a sbc instruction (the suffix c
denotes carry-based operations). Note that unlike previous
attacks, this attack is platform dependent and the instruction
conversion has been observed for the DUT chosen for this
paper. The attack procedure is described next.

Observe that while in the first attack, we directly skipped
the whole 32-bit addition operation, in this attack, we
inject fault at finer granularity on the four 8-bit addition
operations within the 32-bit module. Let s = (s31s30...s0) be
one of the words in the final state X20 of the keystream
generation algorithm, which is added with a corresponding
word k = (k31k30...k0) of the secret key to obtain a word z =
(z31z30...z0) in the output keystream Z. Let z1 = (z1

31z1
30...z

1
0)

be the faulty keystream generated upon skipping the first
addition operation, z2 = (z2

31z2
30...z

2
0) be the faulty keystream

generated upon skipping the second addition operation, and
so on for z3 and z4. The first of these additions typically
does not involve a carry as it adds the lowest 8 bits, while
the remaining additions involve distinct carry elements.

The following relations are straightforward to observe
upon fault injection in each of the four additions:

z7z6...z0 = s7s6...s0 + k7k6...k0

z15z14...z8 = s15s14...s8 + k15k14...k8 + c0

z23z22...z16 = s23s22...s16 + k23k22...k16 + c1

z31z30...z24 = s31s30...s24 + k31k30...k24 + c2 (17)

z1
7z1

6...z
1
0 = s7s6...s0− k7k6...k0

z1
15z1

14...z
1
8 = s15s14...s8 + k15k14...k8 + c1

0

z1
23z1

22...z
1
16 = s23s22...s16 + k23k22...k16 + c1

1

z1
31z1

30...z
1
24 = s31s30...s24 + k31k30...k24 + c1

2 (18)

Solving equations (17) and (18) together reveals the final
state byte s7s6...s0, the secret key byte k7k6...k0 and the carry
c0. Similarly, comparing z1 and z2 would expose the next
byte of the final state and the secret key, and so on. The
same fault injection method can be followed for the other
key words as well, and the whole secret key can thus be

Table III: Fault Injection Timings for Final Addition Skip &
Single-bit Rotation.

Final Addition Skip Single-bit Rotation
Key Words Fault Injection Timing Key Words Fault Injection Timing
Revealed (in clock cycles) Revealed (in clock cycles)

k0 t0 + 153
(k1,k6)

t1 + 272
t1 + 301

k1 t0 + 191 t1 + 330
t1 + 359

k2 t0 + 230
(k2,k7)

t1 + 1087
t1 + 1116

k3 t0 + 281 t1 + 1145
t1 + 1174

k4 t0 + 319
(k3,k4)

t1 + 1906
t1 + 1935

k5 t0 + 359 t1 + 1964
t1 + 1993

k6 t0 + 398
(k0,k5)

t1 + 2729
t1 + 2758

k7 t0 + 436 t1 + 2787
t1 + 2816

recovered with a total of 32 fault injections on an average.
Detailed experimental results for this attack are presented in
Section VII-D.

VII. EXPERIMENTAL RESULTS

In this section, we present experimental results for the at-
tacks described in Section VI using the laser setup described
in Section V. The attacks target the keystream generation in
the decryption site, as described in Section II.

A. Experimental Results: Skipping the Final Addition

This experiment corresponds to the attack described in
the subsection VI-A. In this experiment, we set the laser
trigger just before final addition commences(that is, right
after round 20 ends). The word which gets skipped depends
on the timing of the fault injection. The timings for which
the 8 key words skip addition are listed in Table III. Let
t0 be the number of clock cycles elapsed from the start of
encryption to the beginning of the Final Addition.

B. Experimental Results: Attack on Rotation

In this experiment we target the 4 relative calls to single-
bit circular shift subroutine of 12-bit rotation. Table III
shows four different fault injection timings which would skip
one of the four rcalls. On average, repeating the experiment
twice for each pair of key words would uniquely determine
the key pair. Let t1 be the number of clock cycles elapsed
from the start of encryption to the beginning of round 20.

C. Experimental Results: Diagonal Fault Attack via Alter-
ation of Control Flow

This experiment targets branch instructions in specific to
be skipped, recall the attack in Section VI-C . Skipping three
brne instructions uniquely reveal 6 words of key in total,
the details about their timings and the words revealed are
mentioned in Table IV. Note that t2 is the time elapsed from
the start of the encryption to the beginning of quarterround
for the last diagonal (∼ t1+2445).



Table IV: Fault Injection Timings for Diagonal Fault Attack.

Diagonal Repeated Key Words Revealed Fault Injection Timing
(in clock cycles)

(x0,x5,x10,x15) (k1,k6) t2 + 17
(x1,x6,x11,x12) (k2,k7) t2 + 25
(x2,x7,x8,x13) (k3,k4) t2 + 32

Table V: Summary of Fault Attack Results on ChaCha.

Attack Type Number of Fault Injections Key Space
Attack on final Addition 8 1

Attack on Rotation 8 1

Diagonal Fault Attack 3 264

5 1
Instruction Replacement 32 1

D. Experimental Results: Instruction Replacement Attack

In the final experiment, every fault injection leaks 8 bits
of the secret key. For instance, to retrieve the key word k0,
we vary the fault injection timings between t0 + 153 and
t0+191. Changing the timings within this range would cause
four different add instructions to be skipped and eventually
32 bits of the key is revealed. Similar timing variations reveal
other key words as well.

In summary, Table V shows the number of fault injections
needed to obtain the 256-bit key using the aforementioned
attacks. Furthermore, a powerful attacker can perform mul-
tiple fault injections in the same decryption cycle, to target
different key bytes with a single faulty key stream. This
would drastically reduce the number of faulty keystreams
required to obtain the whole secret key, as all the words are
treated independently.

VIII. DISCUSSION

The fault models described in this paper were based on
instruction skip/replacement attacks. However, the attacks
would still hold in the presence of more traditional fault
models, such as stuck-at and transient randomized faults, as
described next.

• Attack on the Final Addition A single word stuck-at-
0 fault at the target key words in the initial state during
final addition produces the same result as the instruction
skip of relative call to the 32-bit addition subroutine.

• Attack on Rotation In this attack, a single word is
directly affected in the quarterround function (e.g. b1
in (4)). The attack could be equivalently performed by
injecting a randomized fault in the same keyword.

• Diagonal Fault Attack The diagonal fault attack via
alteration of control flow could be achieved by injecting
multiple byte stuck-at faults in the first and fourth row of
the state matrix. This would avoid the need for diagonal
re-execution, since it directly reveals inputs x0 and x3
for the quarterround functions in round 20. The same
attack procedure follows subsequently.

• Instruction Replacement This instruction replacement
attack could alternatively be performed via injection of

transient faults in the target byte, followed by the same
differential analysis as presented in Section VI-D.

The attacks on the quarterround functions are generally
preferred over the straightforward attacks on final addition as
they involve lesser number of fault injections. For instance,
we need 256 bit flips in the final addition to reveal the 256-
bit key, but if we are able to flip the bits of a input word
for the quarterround functions in the last round, we would
require less than 128 bit flips to get the whole key owing to
fault propagation by modular addition.

IX. CONCLUSION

In this paper, we presented three instances of instruction
skip attacks and one instance of instruction replacement
attack targeting, and also demonstrated them practically on
an AVR implementation using a laser-based fault injection
setup. Our attacks targeted the keystream generation module
at the decryption site, and entirely avoided nonce misuse. We
practically demonstrated our proposed attacks on an Atmel
AVR microcontroller-based implementation of ChaCha us-
ing a laser fault injection setup. Each of our proposed attacks
using instruction skips requires around 5-8 fault injections
on an average to recover the entire 256 bit secret key, while
the attack using instruction replacements requires 32 fault
injections on an average for full key recovery. All the attacks
proposed in the paper were repeatable in our laser-based FI
setup with 100% accuracy. To the best of our knowledge, this
was the first practical demonstration of fault attacks on the
ChaCha family of ARX-based stream ciphers to be reported
in the literature.
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