冲激噪声环境下基于最大相关熵准则的 韧性子空间跟踪新算法

张金凤1,2,邱天爽1,李 森3

(1.大连理工大学电子信息与电气工程学部,辽宁大连 116024;2.深圳大学深圳市现代通信与信息处理重点实验室,广东深圳 518060;3.大连海事大学信息科学技术学院,辽宁大连 116026)

摘 要: 本文采用最大相关熵准则(MCC)对投影近似子空间跟踪(PAST)算法中基于最小平方误差(MSE)准则的目标函数进行修正,推导出适用于冲激噪声环境的韧性投影近似子空间跟踪新算法(MCC_PAST算法).对两种冲激噪声模型包括,稳定分布噪声模型和混合高斯噪声模型环境下的时变波达方向估计问题的实验仿真表明,与基于韧性M估计的 PAST 改进算法(RLM_PAST算法)相比,MCC_PAST算法可以自适应地调整核长,对于阵列接收数据的变化体现出更好的适应性.

关键词: 投影近似子空间跟踪(PAST);相关熵;冲激噪声;M估计
 中图分类号: TN911.7 文献标识码: A 文章编号: 0372-2112 (2015)03-0483-06
 电子学报 URL: http://www.ejournal.org.cn
 DOI: 10.3969/j.issn.0372-2112.2015.03.010

A Robust PAST Algorithm Based on Maximum Correntropy Criterion for Impulsive Noise Environments

ZHANG Jin-feng^{1,2}, QIU Tian-shuang¹, LI Sen³

(1. Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China;

Shenzhen Key Lab of Advanced Communications and Information Processing, Shenzhen University, Shenzhen, Guangdong 518060, China;
 Information Science Technology College, Dalian Maritime University, Dalian, Liaoning 116026, China)

Abstract: By employing the maximum correntropy criterion(MCC) based cost function in projection approximation subspace tracking(PAST) algorithm, we deduce the MCC_PAST algorithm which can be utilized for the projection approximation subspace tracking under impulsive noise environments. We examine the performance of our proposed algorithm in the time-varying DOA(Direction Of Arrival) estimation problem under two types of impulsive noise environments, including the alpha-stable noise environments and the contaminated Gaussian noise environments. By adjusting the kernel parameter adaptively in the algorithm, MCC_PAST exhibits superiority over the robust M-estimate based PAST algorithm, especially when there are sudden changes in the array outputs.

Key words: projection approximation subspace tracking(PAST); correntropy; impulsive noise; M-estimate

1 引言

作为子空间分析的重要研究领域,子空间跟踪的理 论与算法被广泛应用于阵列信号处理,盲源分离等方 面^[1].Yang提出的投影近似子空间跟踪(PAST)算法即 是子空间跟踪的经典算法之一^[2].通过将特征子空间的 确定转化为求解一个无约束最优化问题,结合递推最小 二乘(RLS)理论,PAST算法可以实现对时变信号的特征 子空间的有效跟踪.然而,对基于最小平方误差(MSE) 准则的 RLS 理论的研究表明, RLS 对冲激噪声非常敏感,从而使得 PAST 算法的性能在冲激噪声环境中急剧退化^[3].

自然环境中的冲激噪声环境十分普遍,雷达杂波, 移动无线电信道中的电磁噪声等^[4],均表现出时域的短 时冲激特征.针对这种冲激特征,Chan 提出可以借助鲁 棒的 M 估计的思想改进 PAST 算法中的目标函数^[5].特 别地,李森利用 Alpha 稳定分布模型^[4]来描述这类冲激 噪声,并采用柯西分布的 score 函数对 PAST 算法的目标

收稿日期:2013-10-30;修回日期:2014-03-30;责任编辑:覃怀银

基金项目:国家自然科学基金(No.61172108, No.61139001, No.61301228);中央高校基本科研业务费资助项目(No.3132014212)

函数进行改进,推导出基于递归最小 M 估计的韧性投 影近似子空间跟踪算法(RLM_PAST 算法)^[6].实验仿真 也表明了上述算法在冲激噪声环境中的韧性.然而,此 类算法的局限性在于:(1)M 估计函数的选取问题,目 前,对于不同 M 估计函数的适用范围仍没有建立统一 的评判标准.对于不同冲激噪声环境模型下的 M 估计 适用函数的选取仍存在困难.(2)对于某些特定的 M 估 计函数(例如,前述采用柯西分布的 score 函数的 M 估 计函数),对自身参数无法进行自适应调整,难于适应 信号特征变化的信号环境.

近年来,相关熵作为一种新的随机变量局部相似 性的度量,受到广泛关注^[7,8]. Principe 等证明相关熵可 以诱导一个距离测度(CIM, Correntropy Induced Metric), 并据此提出最大相关熵准则(MCC, Maximum Correntropy Criterion).不同于传统的 MSE 准则, MCC 准则体现出对 冲激噪声环境的适应性. Principe 将 MCC 准则应用于冲 激噪声环境下的信道盲均衡问题, 宋爱民利用 MCC 准 则解决稳定分布噪声下的时间延迟估计问题^[9], 仿真 实验均表明了上述算法对冲激噪声环境的适应性.

受上述文献启发,本文采用 MCC 准则修正 PAST 算 法中基于 MSE 准则的目标函数使之适用于冲激噪声环 境,推导出基于 MCC 准则的韧性投影近似子空间跟踪 算法(MCC_PAST 算法).仿真实验表明,相对于传统的 基于 MSE 准则的 PAST 算法(为区分新算法,本文将其 称之为 MSE_PAST 算法),新算法在冲激噪声环境下表 现出更好的鲁棒性.同时,对比于文献[5]和文献[6]提 出的基于 M 估计的 PAST 改进算法,新算法可以自适应 地调整核长,对阵列接收数据的变化具有更好的适应 性.

文中,符号(・)^T,(・)^H和 ||・|| 分别代表转置,共轭 转置,和 Frobenius 范数.

2 相关熵

对于两随机变量 X 与 Y,其相关熵定义为

$$V_{\sigma}(X,Y) = \mathbb{E}[\kappa_{\sigma}(X-Y)]$$
(1)

其中, $\kappa_{\sigma}(\cdot)$ 为核函数,满足 Mercer 原理^[3], σ 为核长, E[·]为数学期望. Principe 证明,相关熵可以视为基于 Parzen 窗法估计概率密度函数的 Renyi 二次熵的一种退 化表示^[7,8].实际应用中,随机变量 X, Y的联合概率密 度往往未知,只能通过有限的观察数据 $\{(x_i, y_i)\}_{i=1}^{N}$ 估 计随机变量 X, Y的相关熵

$$\hat{V}_{\sigma}(X,Y) = \frac{1}{N} \sum_{i=1}^{N} \kappa_{\sigma}(x_i - y_i)$$
(2)

若选择 $\kappa_{\sigma}(\cdot)$ 为 Parzen 窗法中常见的高斯核函数

$$g_{\sigma}(\cdot) = \frac{1}{\sqrt{2\pi\sigma}} \exp(-\frac{(\cdot)^2}{2\sigma^2}), \bar{\mathcal{A}}$$

$$\hat{V}_{\sigma}(X,Y) = \frac{1}{N} \sum_{i=1}^{N} g_{\sigma}(x_i - y_i)$$
(3)

鉴于高斯核函数的普遍性,本文中相关熵的核函 数均采取高斯核函数.

3 基于 MCC 准则的 PAST 算法

3.1 MSE_PAST 算法

考虑 n×1 维接收数据向量 x,定义目标函数

$$J(\boldsymbol{W}) = \mathrm{E}\{ \| \boldsymbol{x} - \boldsymbol{W}\boldsymbol{W}^{\mathrm{H}}\boldsymbol{x} \|^{2} \}$$
(4)

Yang证明,当 W 的列空间等于 x 中的特征子空间时, 目标函数 J(W)达到全局最小值^[2].考虑采用递推最小 二乘算法对时变的特征子空间进行跟踪,定义指数加 权的目标函数

$$\min J_1(\boldsymbol{W}(t)) = \sum_{i=1}^{t} \beta^{t-i} \| \boldsymbol{x}(i) - \boldsymbol{W}(t) \boldsymbol{W}^{\mathsf{H}}(t) \boldsymbol{x}(i) \|^2$$
$$= \sum_{i=1}^{t} \beta^{t-i} \| \boldsymbol{x}(i) - \boldsymbol{W}(t) \boldsymbol{y}(i) \|^2$$
(5)

式中, $0 < \beta \leq 1$ 称为遗忘因子,而 $y(i) = W^{H}(t)x(i)$ 为近似投影向量.由自适应滤波理论可得到 PAST 算法如下.

(1)选择初始化矩阵
$$P(0)$$
和 $W(0)$.
(2)对 $t = 1, 2, \dots, T$ 计算

$$\begin{cases}
y(t) = W^{H}(t-1)x(t) \\
h(t) = P(t-1)y(t) \\
g(t) = h(t)/[\beta + y^{H}(t)h(t)] \\
P(t) = \frac{1}{\beta} Tri[P(t) - g(t)h^{H}(t)] \\
e(t) = x(t) - W(t-1)y(t) \\
W(t) = W(t-1) + e(t)g^{H}(t)
\end{cases}$$
(6)

其中,Tri[A]表示只计算矩阵 A 的上(或下)三角部分, 然后将上(或下)三角部分复制为矩阵的下(或上)三角 部分.

3.2 基于 MCC 准则的 PAST 改进算法

为改善冲激噪声环境中 MSE_PAST 算法的子空间 跟踪性能,本文采用 MCC 准则对算法中的目标函数进 行改进

$$\max J_{2}(\boldsymbol{W}(t)) = \sum_{i=1}^{t} \beta^{t-i} \kappa_{\sigma}(\boldsymbol{x}(i) - \boldsymbol{W}(t) \boldsymbol{W}^{\mathrm{H}}(t) \boldsymbol{x}(i))$$
$$= \sum_{i=1}^{t} \beta^{t-i} \kappa_{\sigma}(\boldsymbol{x}(i) - \boldsymbol{W}(t) \boldsymbol{y}(i))$$
(7)

为求解式(7),可将极大化问题 max J₂(W)等价于 极小化如下的目标函数

$$\min J_3(\boldsymbol{W}(t)) = \sum_{i=1}^{t} \beta^{\iota i} [\kappa_{\sigma}(0) - \kappa_{\sigma}(\boldsymbol{x}(i) - \boldsymbol{W}(t) \boldsymbol{W}^{\mathrm{H}}(t)\boldsymbol{x}(i))]$$

$$= \sum_{i=1}^{l} \beta^{t-i} [\kappa_{\sigma}(0) - \kappa_{\sigma}(\boldsymbol{x}(i) - \boldsymbol{W}(t)\boldsymbol{y}(i))]$$
$$= \sum_{i=1}^{l} \beta^{t-i} \rho(\boldsymbol{e}(i))$$
(8)

其中 $\kappa_{\sigma}(0) = \frac{1}{\sqrt{2\pi\sigma}}$.这里借鉴了 M 估计自适应滤波理 论^[10],其鲁棒 M 估计的代价函数取为 $\rho(\cdot) \triangleq \kappa_{\sigma}(0) - \kappa_{\sigma}(\cdot)$,并且有误差信号 $e(i) \triangleq x(i) - W(t)y(i)$.由 M 估计自适应滤波理论,可知式(8)的最优解为:

$$\boldsymbol{W}(t) = \boldsymbol{C}_{\kappa_{c}, xy}(t) \boldsymbol{C}_{\kappa_{c}, yy}^{-1}(t)$$
(9)

式中 $C_{\kappa_{o},xy}(t)$, $C_{\kappa_{o},yy}^{-1}(t)$ 分别为基于目标函数 $J_{2}(W(t))$ 的互相关矩阵和自相关矩阵,可由下式进行递推

$$\boldsymbol{C}_{\kappa_{\sigma}, xy}(t) = \beta \boldsymbol{C}_{\kappa_{\sigma}, xy}(t-1) + q(\parallel \boldsymbol{e}(t) \parallel) \boldsymbol{x}(t) \boldsymbol{y}^{\mathrm{H}}(t)$$

(10)
$$\boldsymbol{C}_{\kappa_{\sigma},yy}(t) = \beta \boldsymbol{C}_{\kappa_{\sigma},yy}(t-1) + q(\|\boldsymbol{e}(t)\|)\boldsymbol{y}(t)\boldsymbol{y}^{\mathrm{H}}(t)$$
(11)

其中, $q(e) \triangleq \frac{\partial \rho(e)}{\partial e} \cdot \frac{1}{e}$.选择高斯核函数,则有 $q(\cdot) = \frac{1}{\sqrt{2\pi\sigma^3}} \exp(-\frac{(\cdot)^2}{2\sigma^2}).$

将式(10)和式(11)代入式(9),并利用矩阵求逆引 理,可以得到基于 MCC 准则的投影近似子空间跟踪算 法(MCC_PAST 算法)如下:

(1)选择初始化矩阵 P(0)和 W(0). (2)对 $t = 1, 2, \dots, T$ 计算 $y(t) = W^{H}(t-1)x(t)$ h(t) = P(t-1)y(t) $g(t) = q(|| e(t) ||)h(t)/[\beta + q(|| e(t) ||)y^{H}(t)$ $\cdot h(t)$] $P(t) = \frac{1}{\beta} Tri[P(t) - g(t)h^{H}(t)]$ e(t) = x(t) - W(t-1)y(t) $W(t) = W(t-1) + e(t)g^{H}(t)$ (12)

比较 MSE_PAST 算法与其改进算法 MCC_PAST 算 法可知, MCC_PAST 算法对冲激噪声的抑制作用依赖于 作用于迭代误差 e(t)的函数 q(||e(t)||), 不同于 MSE_PAST 算法可视 q(||e(t)||)取常数 1 的做法, MCC_PAST 算法根据迭代误差的大小相对应地调整算 法的增益向量 g(t).当算法迭代误差 ||e(t)|| 較小时, q(||e(t)||)接近于 1,此时算法近似于 MSE_PAST 算 法;随着 ||e(t)||的增大, q(||e(t)||)则逐渐变小,从 而影响算法的增益向量 g(t)也随之变小;若接收数据 时域中出现冲激性异常显著的情形时, q(||e(t)||)趋 近于0, 也即算法的增益向量 g(t)趋近于0,此时算法的 特征子空间矩阵 W(t)在本次迭代中保持基本不变,因 此自适应地避免了算法受噪声冲激特征作用和影响的 局面.

由以上分析可知, MCC_PAST 算法采用 MCC 准则 作为 PAST 算法的目标函数, 实现冲激噪声环境下对特 征子空间的韧性跟踪.

结合鲁棒 M 估计自适应滤波理论可知,利用函数 $\rho(\cdot) \Delta \kappa_{\sigma}(0) - \kappa_{\sigma}(\cdot), 可将 MCC_PAST 算法视为采用$ $<math>\rho(\cdot)$ 函数为目标函数的鲁棒 M 估计自适应滤波器.文 献[10]已经证明了基于鲁棒 M 估计目标函数的最小二 乘自适应滤波算法的收敛性.因此,可类比推导出 MCC_PAST 算法以均值和方差意义上的收敛.具体过程 可参见文献[10],本文将不再赘述.

4 仿真实验

本文采用时变的波达方向估计问题考察各 PAST 算法的性能. 假定 9 个阵元组成均匀线性阵列, 阵元间 隔为半波长, 3 个独立的窄带平面波入射源, 其来波方 向角分别为 θ_1 , θ_2 和 θ_3 . 入射信号 s(t)设定为 QPSK(四 相移键控)信号.

鉴于文献[6]中的仿真实验已表明,在冲激噪声环 境下,基于鲁棒 M 估计的 RLM_ PAST 算法的子空间跟 踪性能全面优于传统的 MSE_ PAST 算法,限于篇幅原 因,本文仅对 MCC_ PAST 算法和 RLM_ PAST 算法进行 了实验仿真和比较.仿真实验利用两算法得到的子空 间跟踪结果结合 TLS_ ESPRIT 算法^[11]得到波达方向角 的估计值以比较两种算法的性能.其中,RLM_ PAST 算 法采取柯西分布的函数 $\varphi(x) = 2x/(1 + x^2)$ 作为其 M 估计的 score 函数^[5,6].

为充分验证 MCC_PAST 算法的有效性,实验分别 仿真了两种冲激噪声模型下算法的子空间跟踪性能.

模型 1:噪声 n(t)满足 Alpha 稳定分布^[4]模型:对称 Alpha 稳定分布随机变量可由其特征函数 $\Phi(\omega) = \exp(-\gamma|\omega|^{\alpha})$ 来表征,其中 α 为特征指数,满足 $0 < \alpha \le 2$, γ 为分数系数,作用类似于高斯分布的方差. α 值越小,表明其分布函数的拖尾越厚,分布的冲激性越显著.高斯分布即为稳定分布取 $\alpha = 2$ 时的特殊情形. 当 $0 < \alpha < 2$ 时,稳定分布随机变量的 p 阶矩仅当p 满足 $p < \alpha$ 时存在,称为分数低阶(FLOA) Alpha 稳定分布.关于 Alpha 稳定分布的更多知识可参考文献[4].

模型 2:噪声 $n(t) = n_g(t) + b(t)n_w(t)$,其中 $n_g(t)$ 和 $n_w(t)$ 为独立同分布的零均值高斯白噪声随机变量, 其方差分别为 σ_g^2 和 σ_w^2 , b(t)为与 $n_g(t)$ 和 $n_w(t)$ 独立的 随机变量,服从伯努利分布,且满足 $P(b(t) = 1) = p_w$. 可见, p_w 表征了噪声 n(t)中的冲激出现频率. 冲激强度 则利用 $\zeta = p_w \sigma_w^2 / \sigma_g^2$ 来衡量.显然, p_w 值越大, 噪声中的 冲激出现越频密, 而 ζ 值越大, 则噪声中的冲激强度越强.

算法中核长 σ 的选取参见第5节.

实验1 阵列输出信号向量中的加性噪声设定为 满足模型1,即 Alpha 稳定分布.考虑到分数低阶稳定分 布随机变量没有有限的二阶矩,可定义广义信噪比 CSNR=10log($E(|s(t)|^2)/\gamma$)来衡量信号和噪声的能量 对比.本次实验中,噪声的 α 值取为 α = 1.6, CSNR = 15dB,数据点数取为 2000.实验分别仿真了两组时变来 波方向角的情形.

第1组: *θ*₁ 从 20°到 40°随时刻*t* 线性变化, *θ*₂ 从 40° 到 20°随时刻*t* 线性变化, *θ*₃ 固定为 10°不变.

第2组: θ_1 和 θ_2 的变化同第1组,而 θ_3 在t = 1000时由0°跃变为10°.

第1组和第2组来波方向角情形下两算法的仿真 结果分别由图1和图2给出.两图中,由上至下分布的 三子图分别表示迭代过程中的迭代误差矢量的强度, 两算法的信号子空间跟踪值结合 TLS_ESPRIT 算法得 出的波达方向估计结果,以及信号子空间的真实值与 算法的估计值之间的主角.

从图 1 和图 2 可以看出,当 θ_3 固定为 10°不变时, 两算法均能较好地实现对信号子空间的跟踪,且估计 性能相当.然而当 θ_3 在时刻 t = 1000 由 0° 跃变为 10° 时,RLM_PAST 算法对阵列接收数据的突变不能实现有 效的自适应调整.相对地,MCC_PAST 算法对于这种跃 变则体现出较好的适应性,主要地体现在时刻 t = 1000至 1500 期间:(1)在阵列接收数据出现跃变后,两方向 角 θ_1 和 θ_2 的估计偏差小于 RLM_PAST 算法;(2)对于 方向角 θ_3 的跃变, MCC_PAST 算法体现出比 RLM_ PAST 算法更快的跟踪能力.

同时,为了更准确地比较来波方向角取为第2组的 情形下两算法的子空间跟踪性能,对于两算法在固定 噪声的 GSNR 值,而噪声 α 值变化的情形进行了 200 次 Monte-Carlo 实验,并计算两算法对应的 θ_1, θ_2 和 θ_3 的估 计均方根误差,结果如图 3 所示.图中,三条实线和三条 虚线分别对应 MCC_PAST 算法和 RLM_PAST 算法的三 来波方向角的估计均方根误差.线节点标记符号为 '*','〇'和'□',分别代表三来波方向角度 θ_1, θ_2 和 θ_3 .由图 3 可以看出,利用 MCC_PAST 算法得到的三方 向角 θ_1, θ_2 和 θ_3 的估计均方根误差结果均优于 RLM_

图3 噪声满足模型1,来波方向角为第2组情形下,GSNR固定 为15dB,噪声的特征指数α变化时两算法对应的θ₁,θ₂和 θ₁的估计均方根误差

PAST算法,特别对方向角 θ_3 的估计, MCC_ PAST 算法 体现的优势则更为明显. 而对于固定噪声 α 值, GSNR 变化的情形,可以得到与图 3 相类似的实验仿真结果, 限于篇幅原因,这里不再赘述.

实验2 阵列输出信号向量中的加性噪声设定为满足模型2.实验仿真中三来波方向角 θ_1, θ_2 和 θ_3 的设置同实验1第二组情形.

信噪比 SNR = $10\log(E(|s(t)|^2)/\sigma_g^2)$. 分别对固定 噪声的冲激强度 ζ ,冲激频率 p_w 变化,和固定噪声的冲 激频率 p_w ,冲激强度 ζ 变化两种情形下进行了 200 次 Monte-Carlo 实验,计算两算法对应的三来波方向角的估 计均方根误差,结果如图 4 和图 5 所示. 观察图 4 和图 5,可以得出同实验 1 中图 3 相同的实验结论.

图4 噪声满足模型2,来波方向角为第2组情形下,冲激频率 p_w=0.001,冲激强度ξ变化时两算法对应的θ₁,θ₂和θ₃的 估计均方根误差

图5 噪声满足模型2,来波方向角为第2组情形下,冲激强度 ξ=300,冲激频率p₁变化时两算法对应的θ₁,θ₂和θ₃的估 计均方根误差

5 核长 σ 的选择

文献[8]指出,相关熵可以诱导一个距离测度 CIM (Correntropy Induced Metric).给定两向量 $\boldsymbol{a} = (a_1, a_2, \cdots, a_N)^{\mathrm{T}}$ 和 $\boldsymbol{b} = (b_1, b_2, \cdots, b_N)^{\mathrm{T}}$,其 CIM 距离定义为

$$\operatorname{CIM} = (\kappa_{\sigma}(0) - V(\boldsymbol{a}, \boldsymbol{b}))^{1/2}$$
(13)

图 6 给出了核长 σ 分别取 $\sigma = 1$ 和 $\sigma = 2$ 时二维平面上的随机向量 $a = (a_1, a_2)^T$ 与零点的 CIM 距离等高线图.

由图 6 可以看出,随着 a 与零点由近至远,其 CIM 距离分别对应于近似 2-范数距离,1-范数距离,0-范数 距离^[8].换言之,其 CIM 距离测度表现出"混合范数"的 性质.参考前述 3.2 节关于 MCC_PAST 算法的分析可 知,算法中与 MCC 准则相等价的目标函数 $\rho(\cdot) = \kappa_{\sigma}(0) - \kappa_{\sigma}(\cdot)$ 恰好取值为这一距离测度的平方函数.因此,当 算法迭代过程中的误差向量 $\| e(t) \|$ 幅度较小时,MCC 准则体现出类似于 2-范数距离测度的特征,此时 MCC 准则等价于我们熟知的 MSE 准则,随着噪声中的冲激 性特征加入或增强,MCC 准则体现出类似于 1-范数距 离甚至 0-范数距离的特征,从而对这些冲激产生了充分的抑制作用.

另一方面,如图 6 所示,CIM 距离测度的"混合范数"特征完全由其核长控制.核长σ越大,CIM 距离测度的2-范数距离区域也随之扩大,反之,核长越小,其 2-范数距离区域越被压缩,同时,其1-范数距离区域和 0-范数距离区域越被扩张.这给我们在算法中选择核 长以很好的启示,即,选择核长σ应当使算法在迭代误 差 e(t)中的冲激性特征不明显时,其与零点的 CIM 距 离尽量落入2-范数距离区域,而当迭代误差 e(t)中的 冲激性特征显著时,应使其与零点的 CIM 距离尽量落 入1-范数距离或0-范数距离区域,从而有效地实现对 冲激噪声的抑制作用.

若将算法中产生的迭代误差 e(t)理解为高斯白噪 声背景上叠加以某些时刻上具有较大幅度的冲激信 号,则可以通过估计其中背景高斯白噪声的方差 $\hat{\sigma}_{g}^{2}(t)$ 以确定核长,从而由核长来控制迭代误差 e(t)的 CIM 距离测度落入的范数区域,实现对噪声中冲激特征的 抑制.

参考文献[3],可以由下式估计迭代误差 e(t)中背 景高斯白噪声的瞬时方差:

 $\hat{\sigma}_{g}^{2}(t) = \beta \hat{\sigma}_{g}^{2}(t-1) + C_{1}(1-\beta) \operatorname{med}(A_{e}(t)) \quad (14)$ 式中, $A_{e}(t) = \{\sigma_{e}^{2}(t), \dots, \sigma_{e}^{2}(t-N_{w}+1)\}, \sigma_{e}^{2}(t)$ 为迭代 误差 e(t)的瞬时方差, N_{w} 为加窗值, $\operatorname{med}(\cdot)$ 为中值函 数, β 为遗忘因子, $C_{1} = 1.483(1+5/(N_{w}-1))$ 为有限样 本的修正因子.

为建立核长与背景噪声的方差 $\hat{\sigma}_g^2(t)$ 之间的关系, 利用前述第4节中的冲激噪声模型2进行了实验仿真. 其中,背景噪声为(0,1)标准正态分布,叠加以高斯噪声随机变量,冲激频率 p_w = 0.05,冲激强度为 ζ = 300.图 7 对长度为 10000 点的冲激噪声信号与零点的一维 CIM 距离逐点进行了仿真. 仿真中,核长 σ 由 σ = 1 以步长 0.1 逐步增加至 σ = 2. 由图 7 可以看出,选取 σ = 1 可以 使幅度在[-3,3]内,即背景白噪声中 99% (概率论中的 3 σ 理论)的点的 CIM 距离基本落入其 2-范数距离区域,而对幅度较大的信号点进行了充分的抑制. 若仿真中背景白噪声的参数以及叠加噪声的冲激频率,冲激强度等参数发生变化,其仿真结果仍与图 7 相吻合,这里不再重复.

因此,对于使用 MCC 准则的 MCC_PAST 迭代算法, 可直接取核长 $\sigma(t) = \hat{\sigma}_g(t)$.前述第 4 节的实验仿真验 证了基于这种选取方法下 MCC_PAST 算法的有效性. 当然,这种选取是一种近似的选择,关于核长的精确选 取,仍有待于对核长与背景噪声的方差 $\hat{\sigma}_g^2(t)$ 之间的关 系做出更加精确的描述,这也将作为我们下一步的研 究工作重点.

6 结论

本文采用发展于 CIM 距离测度基础上的 MCC 准则 修正 PAST 算法中基于 MSE 准则的目标函数,并推导出 适用于冲激噪声环境的韧性投影近似子空间跟踪新算 法.对包括稳定分布噪声模型和混合高斯噪声模型两 种冲激噪声模型环境下算法的实验仿真表明,与基于 M估计的 RLM_PAST 算法相比,MCC_PAST 算法具有更 优的子空间跟踪性能,尤其对突变的信号环境体现出 更好的适应性.

参考文献

[1] 张贤达.矩阵分析与应用[M].北京:清华大学出版社, 2004.

ZHANG Xian-da. Matrix Analysis and Applications [M]. Beijing: Tsinghua University Press, 2004.

[2] YANG B. Projection approximation subspace tracking[J]. IEEE Transactions on Signal Processing, 1995, 43(1):95 - 107.

- [3] HUBER P J. Robust Statistics[M]. New York: Wiley, 1981.
- [4] NIKIAS C L, SHAO M. Signal Processing with α-Stable Distribution and Applications[M]. New York: John Wiley&Sons, 1995.
- [5] CHAN S C, WEN Y, HO K L. A robust PAST algorithm for subspace tracking in impulsive noise[J]. IEEE Transactions on Signal Processing, 2006, 54(1):105 – 115.
- [6] 李森,邱天爽. Alpha 稳定分布噪声中的韧性投影近似子 空间跟踪算法[J].电子学报,2009,37(3):519-522.
 LI Sen, QIU Tian-shuang. A robust PAST algorithm in alpha stable noise environment[J]. Acta Electronica Sinica, 2009, 37 (3):519-522.(in Chinese)
- [7] SANTAMARIA, POKHAREL P P, PRINCIPE J C. Generalized correlation function: definition, properties, and application to blind equalization[J]. IEEE Transactions on Signal Processing, 2006, 54(6): 2187 – 2197.
- [8] LIU W F, POKHAREL P P, PRINCIPE J C. Correntropy: properties and applications in non-Gaussian signal processing [J]. IEEE Transactions on Signal Processing, 2007, 55(11):5268 – 5298.
- [9] 宋爱民,邱天爽,佟祉谏.对称稳定分布的相关熵及其在时间延迟估计上的应用[J].电子与信息学报,2011,33 (2):494-498. SONG Ai-min, QIU Tian-shuang, TONG Zhi-jian. Correntropy

of the symmetric stable distribution and its application to the time delay estimation [J]. Journal of Electronics & Information Technology, 2011, 33(2): 494 – 498. (in Chinese)

- [10] CHAN S C, ZOU Y X. A recursive least M-estimate algorithm for robust adaptive filtering in impulsive noise; fast algorithm and convergence performance analysis[J]. IEEE Transactions on Signal Processing, 2006, 52(4):975 – 991.
- ZHANG X D, LIANG Y C. Prefiltering-based ESPRIT for estimating parameters of sinusoids in non-Gaussian ARMA noise
 I. IEEE Transactions on Signal Processing, 1995, 43 (1): 349 353.

作者简介

张金凤 女,河北定州人,1979年9月出 生,深圳大学讲师,大连理工大学在读博士生.主 要研究方向为非高斯信号分析与处理. E-mail:zhangjf@szu.edu.cn

邱天爽 男,江苏海门人,1954年8月生,大连理工大学教授,博 士生导师.从事信号信息处理方面的教学科研工作.在国内外学术期 刊与会议上发表论文 200 余篇,曾获教育部科学技术二等奖等多项科 技奖励.

E-mail: qiutsh@dlut.edu.cn