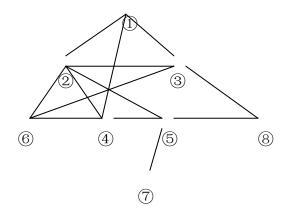
华北水利水电学院 2005 攻读硕士学位研究生招生命题考试

数据结构 试题

注,	意事项: 1、答案全部答在答题纸上,写在试卷上无效;		
	2、考试时间 180 分钟(3 个小时),满分 150 分。		
	3、算法题要求: (1) 可以先用文字简述算法解题思路; (2) 给出数据存		
储	结构定义;(3)用类 C 或类 Pascal 语言写出算法;(4)算法中应给出适当注释。		
— .	. 选择题(每小题2分,本题共30分)		
1.	在数据结构中,从逻辑上可以把数据结构分成()。		
	A、动态结构和静态结构 B、紧凑结构和非紧凑结构		
	C、线性结构和非线性结构 D、内部结构和外部结构		
2.	. 以下关于线性表的说法不正确的是()。		
	A、线性表中的数据元素可以是数字、字符、记录等不同类型。		
	B、线性表中包含的数据元素个数不是任意的。		
	C、线性表中的每个结点都有且只有一个直接前趋和直接后继。		
	D、存在这样的线性表:表中各结点都没有直接前趋和直接后继。		
3.	3. 若已知一个栈的入栈序列是 1, 2, 3,, n, 其输出序列是 p ₁ , p ₂ , p ₃ ,, p _n ,		
	若 p ₁ =n,则 p _i =()。		
	A、i B、n-i C、n-i+1 D、不确定		
4.	在计算递归函数时,如不使用递归过程,则一般情况下必须借助于()数据		
结构。			
	A、栈 B、树 C、双向队列 D、广义表 深度为 5 的二叉树至多有 ()结点。		
5.	深度为5的二叉树至多有()结点。		
	A, 16 B, 32 C, 31 D, 10		
6.	Huffman 树的形态是()。		
	A、唯一的 B、不定的 C、不唯一的 D、以上说法都不对		
7. 非空二叉树的前序序列和后序序列正好相反,则二叉树一定是()的二			
叉树。			
	A、空或只有一个结点 B、高度等于其结点数		
	A、空或只有一个结点 B、高度等于其结点数 C、任一结点无左孩子 D、任一结点无右孩子		
8.	已知某二叉树的后序遍历序列是 dabec,中序遍历序列是 debac,它的先序遍历序		
列是()			
	As acbed Bs decab Cs deabc Ds cedba		
9.	树的基本遍历策略分为先根遍历和后根遍历;二叉树的基本遍历策略可分为先序		
	遍历、中序遍历和后序遍历。结论()是正确的。		
	A、树的先根遍历序列与其对应的二叉树的先序遍历序列相同		
	B、树的后根遍历序列与其对应的二叉树的先序遍历序列相同		
C、树的先根遍历序列与其对应的二叉树的中序遍历序列相同			
	D、以上都不对		


10. 在图的表示法中,表示形式唯一的是()。		
A、邻接矩阵表示法	B、邻接表表示法 D、邻接表和逆邻接表表示法		
C、逆邻接表表示法	D、邻接表和逆邻接表表示法		
11. ()适合用邻接表表示。			
A、稠密图	B、有向完全图		
C、无向完全图	D、稀疏图		
12. 任何一个无向连通图的最小生成树(
	B、有一棵或多棵		
C、一定有多棵	D、可能不存在		
13. 与其他查找方法相比,散列表查找法的			
A、通过关键字比较进行查找			
B、通过关键字计算记录存储地址进行比	大統		
C、通过关键字计算记录存储地址,并通			
	也		
D、按存储顺序查找	10 0) 进行其本列士的批合。它需进		
14. 冒泡排序对关键字序列{18, 16, 14, 12	2,10,8}进行从小到人的排序,所要进		
行的关键字比较总次数为()。			
A, 10 B, 15 C,			
15. 对某无序元素序列进行快速排序时,			
()时,得到的两个子区间是均匀			
A、最大值B			
C、任意值 D	、中间值		
二. 填空题(每小题 3 分,本题共 30 分)			
1. 已知 L 是无头结点的单链表,试从下列提供的答案中选择合适的语句序列,实现			
在表首插入 S 结点的语句序列是			
(1)P->next=S;			
\mathfrak{I}_{-S} ; $\mathfrak{P}_{->ne}$	xt=S->next;		
5S->next= P->next; $6S$ ->nex	xt=L;		
⑦S->next=NULL;	(P->next!=Q) P=P->next;		
<pre> 9while (P->next!=NILL) P=P->next;</pre>			
2. 设栈 S 和队列 Q 的初始状态为空,元素 a、b、c、d、e、f 依次通过栈 S,一个元			
素出栈后即进入队列 Q。若这 6 个元素出队列的顺序是 b、d、c、f、e、a,则栈 S			
的容量至少应该是。			
3. 设串 s1='ABCDEFG', s2='PQRST', 函数	数 Concat(x,y)返回 x 串和 y 串的连接串,		
Substr(s,i,j)返回串 s 从序号 i 开始的 j 个字符组成的子串, Length(s)返回串 s 的长度,			
则 Concat(Substr(s1,2,Length(s2)),Substr(s1,Length(s2),2))的结果串为。			
4. 二维数组 A[10][5]采用行序为主序方式存储,每个元素占 4 个存储单元,并且			
A[5][3]的存储地址是 1000,则 A[8][2]的地址是。			
5. 设广义表 A=(x,((a,b),c,d)),则 Head(Head(Tail(A)))=。			
6. 假定一棵树的广义表表示为 A (B (C, D)			

点数有 个。			
7. 具有 n 个结点的二叉树中,有			
8. 已知一棵深度为 6 的完全二叉树的第 6 层有 7 个叶子结点,则该完全二叉树总共			
有个叶子结点。			
9. 设有一个有序文件,各记录的关键字为{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47},			
当用折半查找算法查找关键字为7的记录时,比较次数为。			
10. 用			
三. 设一个长度大于 1 的循环单链表中,既无头结点也无头指针, p 为指向该链表中			
某个结点的指针,写一个删除该结点直接前驱结点的算法。(本题 12 分)			
四. 设有头指针为 head 的单链表,写算法在链表中查找出所有按先后顺序出现的元			
素 x 和 y, 并将 x 和 y 之间的所有结点(不含 x 和 y)全部删除之。(本题 12 分)			
五. 设一棵二叉树以二叉链表为存储结构,写一个计算二叉树中全部叶子结点数的			
算法。(本题 12 分)			
六. 算法填空(填空位置在下划线处): 设二叉树以二叉链表为存储结构,以下是一			
个对二叉树进行中序遍历的非递归算法。(每空3分,本题共12分)			
Status inordertraverse(BiTree t,Status(*Visit)(TelemType e)) {			
//对以二叉链表为存储结构的二叉树 t, 采用非递归算法进行中序遍历			
InitStack(s);			
(一); //根指针进栈			
while(!StackEmpty(s))			
{while (&&p)			
Push(s,p->lchild); //向左走到尽头			
(三); //空指针退栈			
if (!StackEmpty(s))			
{ Pop(s,p);			
if(!)			
return error;			
Push(s,p->rchild);			
}//if			
}//while			
return OK;			
}//inordertraverse			
七. 算法填空(填空位置在下划线处): 以下是一个建立有向图邻接表的算法, 结点			
偶对由用户输入,以(0,0)结束,每条边上无信息。(每空3分,本题共12分)			
Status CreateDG(ALGraph &G) {			
//采用邻接表表示法,构造有向图 G			
scanf (&G. vexnum, &G. arcnum);			

```
(-)
   for (i=0; i <
                               ;++i)
                                           //建立顶点信息
      {scanf(&G.vertices[i].data): G.vertices[i].firstarc=NULL:}
   scanf(&v1, &v2); //输入一个偶对
   while (v1!=0\&\&v2!=0)
                         //建立邻接表
   { i=LocateVex(G, v1); j= LocateVex(G, v2);
   s=(ArcNode *) malloc(sizeof(ArcNode));
   s->adjvex=_____;
   s->nextarc= G. vertices[i]. firstarc;
   G. vertices[i]. firstarc=
    scanf(____(四)
}//CreateDG
```

八. 证明题: 任意一棵有 n 个结点的二叉树,已知它有 m 个叶子结点,试证明非叶 子结点中有(m-1)个度为2,其余度数为1。(本题10分)

九. 用深度优先搜索和宽度优先搜索对下图所示的无向图进行遍历(从顶点1出发), 给出遍历序列。(本题 10 分)

十. 以关键码序列(50,08,51,06,90,17,89,27,50,42)为例,按升序手工执行以下排序 算法: (每小题 5 分, 本题共 10 分)

(1) 希尔排序(增量序列为 5, 3, 1) (2) 快速排序。