穿墙雷达中基于最小生成树的 建筑物内部结构重构技术

陈 波1,金 添1,陆必应1,周智敏1,吴文浩2,3

(1.国防科技大学电子科学与工程学院,湖南长沙 410073; 2.北京航空航天大学电子信息工程学院,北京 100191;3.国家飞行流量监控中心,北京 100094)

摘 要: 本文旨在通过穿墙雷达图像对建筑物内部结构进行重构,提出了一种利用图理论中的最小生成树 (Minimum Spanning Tree, MST)对建筑物结构进行重构的方法.文中基于建筑物内部墙-墙-地板构成的三面角给出了建筑物布局图模型,并定义了节点集合和边集合,随后给出了图当中任意两个节点之间所连边的权重定义.最后,利用 MST 方法对建筑物内部结构进行重构,仿真结果和暗室测量结果验证了该方法的有效性.

关键词: 穿墙雷达图像;最小生成树;建筑物布局图;图理论 中图分类号: TN957 **文献标识码:** A **文章编号:** 0372-2112 (201

电子学报 URL: http://www.ejournal.org.cn

文章编号: 0372-2112 (2015)09-1682-07 DOI: 10.3969/j.issn.0372-2112.2015.09.002

Building Interior Structure Reconstruction from Through-the-Wall Radar Image Using MST-Based Method

CHEN Bo¹, JIN Tian¹, LU Bi-ying¹, ZHOU Zhi-min¹, WU Wen-hao^{2,3}

(1. College of Electronic Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073, China;

2. School of Electronic Information Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;

3. State Air Traffic Flow Management Center, Beijing 100094, China)

Abstract: In order to deduce the building interior structure from through-the-wall radar image, this paper proposes a MST (Minimum Spanning Tree, MST)-based method which relates to graph theory. The building layout graph model is established using the wall-wall-floor trihedrals inside the building. The vertex set and the edge set including the weight between any two nodes within the graph are defined afterwards. Finally, the MST-based method is used to deduce the building interior structure. Simulation results and darkroom measurement results show the effectiveness of the MST-based method.

Key words: through-the-wall radar image; minimum spanning tree (MST); building layout graph; graph theory

1 引言

穿墙感知是近年来兴起的一项新技术,基于电磁波 穿透原理的穿墙雷达成像(TWRI)是进行穿墙感知的有 效手段.TWRI在反恐、消防、灾难救援、监视以及部队快 速反应等众多领域都有着广泛的应用^[1,2].目前,大多 数 TWRI系统都需要离墙体距离较近或者直接贴墙使 用,并且 TWRI的应用大多集中在墙后目标成像.这类 系统往往只具备单堵墙穿透能力,用于提供墙后目标的 距离、方位以及运动信息等^[3~5].

近年来,美国、欧洲的一些研究机构对具备建筑物 内部结构重构功能的穿墙雷达系统也进行了研究,此类 系统将会极大提高消防、司法等行动过程中的安全性, 缩短反应时间,增加隐蔽性和可靠性.典型系统包括荷 兰应用科学机构(TNO)的 SAPPHIRE 系统和美国国防高 级研究计划署(DARPA)的 Visibuilding 计划.SAPPHIRE 系统的工作原理在于检测并识别建筑物内部的典型散 射体结构,进而对其内部结构进行重构^[3,4].Visibuilding 计划则利用基于模型的信号处理方法对建筑物内部结 构进行重构.作为 Visibuilding 计划的一部分,文献[6]利 用基于一致衍射理论(UTD)的电磁仿真软件 NEC-BSC 对建筑物进行成像,并在暗室中构造缩比模型来验证电 磁计算方法的正确性,但该文重在分析 UTD 方法在建 筑物电磁建模中的适用性.此外,美国的陆军装备研究

收稿日期:2013-11-08;修回日期:2014-11-17;责任编辑:梅志强 基金项目:国家自然科学基金(No.61271441);国家自然科学基金(No.61372161)

1683

实验室(ARL)开展了外场试验来对一座废弃的兵营进 行成像,试验中雷达系统沿着建筑物相互垂直的两条 边进行观测然后融合成像并重构内部结构^[7,8].文献 [9,10]利用格林函数分别对简单建筑物结构进行二维 成像和多层墙后目标进行三维成像,并利用 NEC-BSC 电磁仿真软件进行电磁计算,验证了成像算法的有效 性.国内对于穿墙雷达用于建筑物重构的研究刚刚起 步,电子科技大学的相关学者将多视角成像与图像融 合算法用于建筑物结构成像,但仅研究了四堵墙构成 的简单结构建筑物^[11].

上述研究大部分都集中在如何采用合理的电磁计 算方法进行仿真以及如何对测量数据进行处理得到质 量较好的穿墙雷达图像.对于具体的建筑物内部结构 重构方法,从目前已有的文献来看分为两大类:一类是 通过对建筑物多视角观测后进行图像级融合得到其内 部结构,如上面提到的 ARL 的试验系统;第二类则是通 过对穿墙雷达图像进行分析提取建筑物内部典型散射 体,也即获得内部墙-墙-地板构成的三面角位置和朝向 等属性信息之后,通过合理的重构方法即可得到内部 结构布局,如 SAPPHIRE 系统.与第一类方法相比,其优 点是充分利用了典型散射体的电磁散射特性,克服杂 波以及建筑物内部多径效应的影响,鲁棒性更强^[12].此 类方法的重构流程如图1所示.

文献[13]介绍了一种三面角属性获取方法,该文通 过虚拟孔径成像模型得到穿墙雷达图像中所有三面角 的朝向信息,且其估计精度满足建筑物内部结构重构 的要求,因此本文研究的重点集中在重构算法的设计 上.文献[3,14]认为在得到了建筑物内部墙体构成的三 面角节点的位置和朝向信息后,通过单次人工判读即 可直接得到建筑物的内部结构,但其基于仿真数据,且 自动化程度不高.

单次人工判读重构方法存在的主要问题是重构的 准确度高度依赖雷达图像的信噪比,一旦存在干扰目 标或者三面角未被检测出来的情况,则重构的结果与 真实的布局便会存在误差,不够精细,因此有学者也提 出了基于模型的预测-检验的迭代重构流程,如图2. 上述迭代流程中的预测阶段即相当于单次重构的 过程,根据预测的结构布局,利用电磁建模方法可得到 预测图像.检验阶段则将实测雷达图像与预测图像进 行比对,最后更新预测模型得到建筑物结构更准确的 描述.每一次迭代都可以增添缺失的墙体或者删减多 余的墙体,这样可以保证每一次迭代之后,布局相比前 一次迭代结果会更为逼近真实的内部结构,进而通过 墙体参数补偿方法获取更准确的墙体三面角位置^[15], 提高重构的准确性.为了提高迭代修正的重构方法的 运算效率,避免重构过程中的人工干预,实现在线计 算,需要对建筑物内部结构设计合适的自动重构算法.

不失一般性,本文重构的对象是矩形结构建筑物, 即建筑物的内墙与外墙相互平行或垂直且建筑物剔除 掉外部边框以后不允许有其他封闭结构存在.本文提 出的基于图理论的重构方法来源于 Lavely 等学者关于 建筑物结构估计的研究成果.他们对内部结构估计问 题建模时利用了图理论中的相关模型^[16],该文中墙体 的存在与否代表图的边,墙体的位置和长度代表图的 节点及其属性,不过其最后对建筑物结构的估计结果 与真实布局之间存在一定误差.此外,文献[17]基于图 理论中的有向无环图和邻接矩阵将矩形建筑物的布局 估计问题转换成一个线性模型的最优化问题,但其假 定建筑物内部的房间数目事先已知,这并不符合实际 情况.本文借鉴上述文献的建模思路,提出了基于最小 生成树(MST)的建筑物结构自动重构方法,并借助仿真 和暗室测量数据验证了其有效性.

2 建筑物布局图(BLG)建模

本文考虑的建筑物内部结构重构方法基于图理论中的 MST.在本节中,我们将会定义 BLG 中的元素并且建立建筑物内部结构重构问题与 MST 之间的关系.

2.1 BLG 中的元素及 MST

实际上,如果将墙体抽象为节点之间的连线,可将 建筑物内部结构布局抽象成一个赋权无向图,下文中 我们将此图称为建筑物布局图,也即 BLG.图理论中通 常用 *G*(*V*,*E*)来表示一个图,其中 *V*表示节点集合(或 者顶点集合),而 *E*表示用于连接各节点带权重的边集 合.BLG 的节点集合、边集合及相关术语定义如下:

节点:建筑物内部的墙-墙-地板构成的三面角作为 图的节点;

边:连接两个相邻节点的墙体,在 BLG 中,所有的

边都是无向的;

度:用来描述节点.它表示与当前的三面角节点相 关的边的数目,对于无向图来说,出度和入度无区别,

阶:用来描述图,它表示 BLG 当中节点的数目,记 作|V|.

墙-墙-地板构成的三面角二维坐标位置和朝向表 示节点集的属性信息.如果从穿墙雷达图像中得到了 所有三面角节点及其属性信息,我们就能够建立一个 赋权完全无向图来表示建筑物的内部结构布局.如何 得到这些属性信息已经在文献[13]中详细讨论过,本文 不再赘述.

如果一个图中的每一对节点都至少有一条边连 接,则称该图为连通图.在完全图当中,任意两个节点 之间都有边相连,因此,一个赋权完全无向图 G(V,E)必定是连通图. 假定该连通图的阶数为 |V| = N, 若图 G的子图含有G的全部节点且属于没有圈(包括没有 平行边和自环)的连通图,则该子图便是图 G的生成 树,连接这些节点的所有生成树的数目为 N^{N-2} , MST 是 所有生成树当中权值和最小的树.

前面已经提到,在由典型散射体构成的雷达测量 图像中,我们将墙-墙-地板构成的三面角当做图的节 点,将水平或者垂直的墙体当做连接各节点的边,依据 当前节点预测的建筑物各种可能的布局都对应着赋权 完全无向图 BLG 的一棵生成树.通过合理的权值定义, 可以实现建筑物真实结构布局对应的生成树的权值和 最小,于是便实现了将建筑物内部结构的自动重构过 程转换为寻找该赋权完全无向图的 MST 过程,因此,如 何构造边的权值是重构过程中的关键问题.

2.2 BLG 中边的权重

权值构造的目的是使得正确的建筑物结构布局与 BLG的 MST 对应,在构造边的权值之前,我们先给出 BLG 中每个三面角节点的角度范围定义.下图给出了 BLG 节点的度分别为 2,3,4 时的角度范围定义. θ 。表示 节点的起始角,θ。表示节点的终止角,角度范围记作 $\begin{bmatrix} \theta_{a}, \theta_{a} \end{bmatrix}$.

接下来,我们将构造一对三面角节点之间边的权 值.为了保证正确的建筑物内部结构布局与 BLG 的 MST 对应起来,节点 v_i 和节点 v_i 之间的权值 d(i, j)需 满足如下条件:

条件1 两节点所连边的角度若越接近起止角范 围内的水平或者垂直方向,则其对应的权值要越小,反 之,则该边对应的权值越大,这样可以满足建筑物的矩 形结构:

条件2 两条边所对应的角度相同时,若一条边的 欧氏距离大干另一条边的欧氏距离,则该边的权值也 应大干另一条边的权值,即权值随欧氏距离的单调变 化特性应得以保持:

条件3 若构造的是指数形式的函数,则底数不能 为1,指数不能为0,否则用于惩罚的权值对于角度和欧 氏距离大小都无区分性:

条件4 考虑到根据雷达图像提取的节点位置存 在误差,此误差会影响节点与节点之间的连接关系,进 而破坏重构的建筑物内部结构,因此所定义的权值必 须对此误差具有一定的容错能力.

从上述四个条件可以看出,为了保证 BLG 的 MST 与建筑物的正确布局等价,两个节点之间边的权值构 造不仅仅要考虑欧氏距离的影响还需要考虑边所对应 的角度约束,条件2是为了保证若存在三个或者三个以 上的墙角节点处于同一条直线上时, MST 中的任何一 条边(对应某堵墙)只可能由两个相邻的节点相连,而 不会跨越某个节点,由于简单形式的权值函数(如累加 或者连乘)满足不了条件1和条件2,因此我们考虑构 造指数形式的权值函数,而针对这一具体形式,其指数 和底数必须满足的约束便体现在条件3中,条件4是考 虑到实际测量中墙角节点存在定位误差,保证 MST 具 备一定的稳健性而提出的.

若构造出的权值可以满足上述条件,则可以将建 筑物内部结构的自动生成过程转换为寻找 BLG 的 MST 问题.因此,对于位置属性分别为 (x_i, y_i) 和 (x_i, y_i) 的节 点 v_i和节点 v_i,其权值构造如下:

$$d(i,j) = \left(\frac{l_{ij}}{L}\right)^{\gamma(\theta_i,\theta_j)} \tag{1}$$

其中, l_{ii}表示节点 v_i和节点 v_i之间的欧氏距离:

$$U_{ii} = \sqrt{(x_i - x_i)^2 + (y_i - y_i)^2}$$
(2)

 $\gamma(\theta_i, \theta_i)$ 表示权值的幂指数项,其中 θ_i, θ_i 表示的是节 点 i 与节点 j 所连的边 $e_{ii} = (v_i, v_j)$ 对应的角,其定义如 图 4 所示. L 表示的是建筑物外部轮廓线的周长且为先 验已知,此参数的引入是为了防止底数为1而造成权值 与指数无关的特殊情况,满足条件3,否则用于惩罚的 权值对于欧氏距离大小无区分性.

综合图4所示的任意两个节点之间的几何关系,节 D(v) = 3D(v) = 2D(v) = 4π $\left[\begin{array}{c} 0, \frac{\pi}{2} \end{array} \right]$ [0, π] $[0, 2\pi]$ $\frac{\pi}{2}, \pi$ $\left[\pi, \frac{3\pi}{2}\right]$ $[\pi, 2\pi]$ $- \left[0, \frac{\pi}{2}\right] \cup \left[\frac{3\pi}{2}, 2\pi\right]$

 $\boxed{\frac{3\pi}{2}, 2\pi}$

点对应的角度可以表示为:

$$\begin{cases} \theta_i = \pi + \operatorname{sgn}(y_i - y_j) * \operatorname{arccos} \frac{x_i - x_j}{l_{ij}} \\ \theta_j = \theta_i - \operatorname{sgn}(y_i - y_j) * \pi \end{cases}$$
(3)

其中, sgn(y) = $\begin{cases} 1, & y \\ -1, & y < 0 \end{cases}$

上述定义中,对指数形式的权值 $a^x(0 < a < 1)$ 进行 分析如下:若 $0 < a_2 < a_1 < 1$,且幂指数 x > 0,在 x 相等的 情况下,有 $a_2^x < a_1^x$,满足了起始角范围内欧氏距离与权 值之间的单调性;又由于 $a^x(0 < a < 1)$ 是一个随 x 递减 的函数,若要保证 MST 与正确布局能一一对应,需要使 得幂指数 $\gamma(\theta_i, \theta_j)$ 在 $0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi$ 处取得最大值即可, 这样可以使得两节点之间权值最小,因此我们考虑了三 角函数作为幂指数 $\gamma(\theta_i, \theta_j)$ 的基本形式,以满足条件 1.

考虑对权值函数的四个限制条件,在起止角范围内,对 d(i,j)中的幂指数用下式表述:

 $\begin{cases} \gamma(\theta) = -|\sin(2\theta)| + \beta, \ (\theta \in [\theta_s, \theta_e], \beta > 1) \\ \gamma(\theta_i, \theta_j) = \gamma(\theta_i) + \gamma(\theta_j) \end{cases}$ (4)

上述幂指数 $\gamma(\theta_i, \theta_j)$ 定义当中有一个可变参数 β . 参数 β 的引入是为了保证 θ_i 和 θ_j 两者都在起止角范围 之内时,幂指数大于 0,这样可以保证权值 d(i,j)随着 欧氏距离 l_{ij} 的增大而增大,满足条件 2.

此外,权值必须在起止角范围之外也保持对称性, 以满足条件4.结合式(4),考虑了如图5所示的幂指数 定义,以起始角 $\theta_s = \pi/2$,终止角 $\theta_e = 3\pi/2$ 为例,起止角 范围内为三角函数形式,起止角范围外为抛物线形式, 其他情况与之类似.

2.3 MST 搜索算法

考虑上述条件构造出合理的权值之后,可以将建筑物内部结构的自动生成过程转换为寻找 BLG 的 MST 的过程.常用的 MST 搜索算法有 Kruskal 算法和 Prim 算法^[18~20].这两种算法虽然源于贪婪思想,但可以保证都是全局最优解,而不会陷入局部最优.两种算法中, Kruskal 算法只需对边的权值进行一次排序,但是 Prim 算法则需要对边的权值进行多次排序,因此为了提高 计算效率,我们选择 Kruskal 算法作为 MST 的求解方法. 该方法用于建筑物内部结构重构的具体步骤如下:

步骤1利用第2节构造的权值,将所有的边按照 权值进行升序排列;

步骤2 令 i=1并且初始边 $E_0 = \emptyset$;

步骤3 取一条不在 E_{i-1} 当中且具有最小权值的 边 e_i 使得 $T_i = \langle E_{i-1} \cup \{ e_i \} \rangle$ 为非环形,并且定义 $E_i = E_{i-1} \cup e_i$,如果不存在这样的边,令 $T = \langle E_i \rangle$ 且停止;

步骤4 用 *i*+1 替代 *i*,转到步骤3.

经过 *N*-1 次迭代后(其中 *N* 表示 BLG 的阶数), 完整的 MST 即可找到,建筑物的内部结构也自然可以 得到,下面给出仿真结果和实测结果.

3 实验结果

3.1 仿真结果

本文针对 MST 用于建筑物结构重构开展了一些仿 真并且得到了一些有意义的结果.我们仿真了两种不 同结构的建筑物,其内部布局在下面会有图例说明.

首先仿真了一个由四个房间组成的简单结构的建 筑物来验证本文提出的基于 MST 方法的有效性.建筑 物尺寸为 20m×20m,每个房间的尺寸为 10m×10m,图 6 给出了其结构图.

图 7(*a*)给出了包含所有墙-墙-地板所构成的三面 角节点的仿真结果(β取值 1.1),黑线表示基于这些节 点生成的 MST.图 7(*b*)给出了剔除掉外部轮廓线上的 节点之后的仿真结果.从图 7(*a*)与图 7(*b*)的对比可以 看出,若想获得准确的内部结构,不能将所有三面角节 点都包含进来构造赋权完全图,合理的处理方式是根

图6 田字型房间结构

据建筑物的外部轮廓信息(假定为先验已知)剔除掉通 过这些轮廓线即可确定的三面角节点,本文将这些节 点称为先验节点,所有的先验节点都处于外部轮廓线 上.剔除掉这些先验节点后,再对剩余的所有节点构造 赋权完全图,该赋权完全图的 MST 即代表了建筑物的 内部结构.由于建筑物为矩形结构,其内部的三面角朝 向被分成四个象限,下图中的加粗部分代表不同的象 限,虚线代表了建筑物的外部轮廓.

此外,我们也仿真了如图8所示的较复杂的某居民 小区的户型图.仿真过程中我们去除掉外部轮廓线上 的7个先验节点,在此基础上进行的仿真结果如图9所 示,图中的虚线代表了建筑物的外部轮廓.

上述仿真结果已经证明基于 MST 的重构算法能够 得到正确的矩形建筑物内部结构.如果建筑物的外框 信息为先验已知,那么便可得到整栋建筑物结构,而外 框信息先验已知的假设在实际测量中是合理的.

3.2 暗室试验结果

为了验证上述 MST 方法在实际雷达测量数据中的 重构效果,我们在暗室里基于网络分析仪和喇叭口天 线构建了一套雷达测量系统,其详细的系统配置如图 10 所示.

图 11(*a*)给出了暗室测量场景的光学照片,测量对 象为一个简易结构的建筑物.安装于运动航车上的雷 达天线由左至右移动形成 3.8m 长的孔径,方位向采样 间隔为 0.05m,雷达测量系统的工作频率为 2~4GHz, 频率步进间隔为 2MHz.图 11(*b*)是对矢网采集得到的 雷达回波运用后向投影(Back Projection, BP)成像算法处 理后的结果. 对图 11(b)所示的建筑物雷达图像运用经典的 CFAR 方法检测^[21]并进行形态学操作^[22],可得到其中 的典型散射体区域(主要是墙角和墙面).至此,我们得 到了 BLG 中的所有节点及其位置属性.由于建筑物为 规则的矩形结构,其内部的墙体三面角只有四种朝向, 若已得到三面角节点的位置属性,则其朝向信息即可 确定.下面是根据图 11(b)所示的雷达图像提取出所有 节点及其属性信息后(不含先验节点),利用经典的 Kruskal 算法得到的 MST 如图 12 所示.

上图的结果代表了正确的暗室建筑物内部结构, 结合先验已知的外框信息(图中虚线所示),便可得到 整个建筑物的结构布局图.

4 结论

本文提出的基于 MST 的建筑物内部结构重构方法 在处理仿真和实验数据时都获得了正确的内部布局, 验证了其有效性.同时,应用该方法的前提是假设已经 获取了完备的三面角节点位置和朝向信息,但实际测 量中节点及其属性信息有可能不全甚至缺失,基于这 些可能受污染的完备或者不完备信息如何进一步借助 图论方法自动获取准确的建筑物内部结构,还有待后 续研究.

参考文献

- Baranoski E J. Through wall imaging: historical perspective and future directions [A]. International Conference on Acoustics, Speech and Signal Processing [C]. Las Vegas, NV: IEEE, 2008.5173 – 5176.
- [2] Borek S E. An overview of through the wall surveillance for homeland security [A]. Proceedings of the 34th Applied Imagery and Pattern Recognition Workshop [C]. Washington, DC: IEEE, 2005.1-6.
- [3] Wit J J M, Rossum W L, Smits F M A. SAPPHIRE-a novel building mapping radar[A]. Proceedings of the 39th European Microwave Conference[C]. Roma, Italy: IEEE, 2009. 1896 – 1899.
- [4] Wit J J M, Anitori L, Rossum W L, et al. Radar mapping of buildings using sparse reconstruction with an overcomplete dictionary[A]. Proceedings of the 8th European Radar Conference
 [C]. Manchester, UK: IEEE, 2011.9 – 12.
- [5] Soldovieri F, Solimene R. Through-wall imaging via a linear inverse scattering algorithm [J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(4):513 – 517.
- [6] Chang P C, Burkholder R J, Volakis J L, et al. High-frequency EM characterization of through-wall building imaging[J]. IEEE Trans on Geoscience and Remote Sensing, 2009, 47(5):1375 – 1387.
- [7] Le C, Dogaru T, Nguyen L, et al. Ultrawideband (UWB) radar imaging of building interior: measurements and predictions[J].

IEEE Trans on Geoscience and Remote Sensing, 2009, 47(5): 1409 – 1420.

- [8] Dogaru T, Sullivan A, Kenyon C, et al. Radar signature prediction for sensing-through-the-wall by Xpatch and AFDTD[A].
 DoD High Performance Computing Modernization Program Users Group Conference[C]. San Diego, CA: IEEE, 2009. 339 343.
- [9] Zhang W, Hoorfar A, Thajudeen C. Building layout and interior target imaging with SAR using an efficient beamformer[A]. International Symposium on Antennas and Propagation [C]. Spokane, WA: IEEE, 2011.2087 – 2090.
- [10] Zhang W, Hoorfar A. Three-dimensional synthetic aperture radar imaging through multilayered walls[J]. IEEE Trans on Antennas and Propagation, 2014, 62(1):459 – 462.
- [11] 贾勇.穿墙雷达成像技术研究[D].成都:电子科技大学, 2010.63-64.
- [12] Ertin E, Moses R L. Through-the-wall SAR attributed scattering center feature estimation [J]. IEEE Trans on Geoscience and Remote Sensing, 2009, 47(5):1338 – 1348.
- [13] Chen B, Jin T, Zhou Z M, et al. Estimation of pose angle for trihedral in ultrawideband virtual aperture radar[J]. Progress in Electromagnetics Research, 2013, 138:307 – 326.
- [14] Chang P C. Near Zone Radar Imaging and Reature Capture of Building Interiors[D]. Columbus: The Ohio State University, 2008.53 – 81.
- [15] 金添,孙鑫,李欣,等. SAR 穿墙成像中墙体影响图像域 补偿方法[J].电子学报,2012,40(7):1423 – 1428.
 Jin Tian, Sun Xin, Li Xin, et al. A method to compensate wall effects in the image domain for SAR through-the-wall imaging
 [J]. Acta Electronica Sinica, 2012, 40(7): 1423 – 1428. (in Chinese)
- [16] Lavely E M, Zhang Y, Hill III E H, et al. Theoretical and experimental study of through-wall microwave tomography inverse problems[J]. Journal of the Franklin Institute, 2008, 345 (6):592 617.
- [17] Hickman G, Krolik J L. A graph-theoretic approach to constrained floor plan estimation from radar measurements [J].
 IEEE Trans on Signal Processing, 2009, 57(5):1877 1888.
- [18] Allison R J, Goodwin S P, Parker R J, et al. Using the minimum spanning tree to trace mass segregation[J]. Monthly Notices of the Royal Astronomical Society, 2009, 395: 1449 – 1454.
- [19] Sundar S, Singh A. A swarm intelligence approach to the quadratic minimum spanning tree problem [J]. Information Sciences, 2010, 180: 3182 – 3191.
- [20] Campana R, Massaro E, Gasparrini D. A minimal spanning tree algorithm for source detection in γ-ray images [J]. Monthly Notices of the Royal Astronomical Society, 2008, 383:1166 – 1174.

- [21]何友,关键,彭应宁.雷达自动检测与恒虚警处理[M]. 北京:清华大学出版社,1999.
- [22] 刘志敏,杨杰.基于数学形态学的图像形态滤波[J].红 外与激光工程,1999,28(4):10-15.
 Liu Zhi-min, Yang Jie. Image morphological filter based on

mathematical morphology [J]. Infrared and Laser Engineering, 1999, 28(4): 10 – 15. (in Chinese)

作者简介

陈 波 男,1985年9月出生于湖北荆州, 博士研究生,研究方向为电磁建模,雷达成像及 目标检测等. E-mail;chenbo_nudt@163.com

陆必应 男,1976年12月出生于安徽六安, 副教授,研究方向为新体制雷达技术. E-mail:lubiying@nudt.edu.cn

周智敏 男,1957年2月出生于河北易县, 教授,博士生导师,研究方向为新体制雷达技术 与系统设计、实时信号处理等. E-mail:zhouzhimin@nudt.edu.cn

金 添 男,1980年2月出生于湖北武汉, 博士,教授,研究方向为合成孔径雷达成像算法、 目标检测技术、目标电磁建模、机器学习等. E-mail;tianjin@nudt.edu.cn

吴文浩 男,1985年9月出生于山西万荣, 博士研究生,研究方向为交通信息工程及控制、 现代空中交通管理.

E-mail:wuwenhao@buaa.edu.cn