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Effect of non-Kolmogorov turbulence on fluctuations
in angle of arrival of starlight
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Abstract: Based on a power spectrum of non-Kolmogorov turbulence developed by A S Gurvich et al,
the variance of angle-of-arrival (AOA) fluctuations was derived. The concise closed-form expression was
obtained and used to analyze the joint influence of Kolmogorov tropospheric turbulence and non-
Kolmogorov stratospheric one on the fluctuations in the angle of arrival (AOA) of starlight. It is shown
that the AOA fluctuations of starlight were mainly determined by Kolmogorov tropospheric turbulence.
And the non-Kolmogorov stratospheric turbulence was responsible for 5-14 percent of the total of AOA
fluctuations for different receiver apertures in weak fluctuations regime. In addition, the AOA fluctuations
induced by non-Kolmogorov turbulence depended on the receiver aperture and the outer scale and the
intensity of non-Kolmogorov turbulence.
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0 Introduction

In recent years, laser has been used to extend
radio-frequency (RF) atmospheric communication to
the optical-frequency band. Free space laser optics
communication (FSO) has some potential advantages
than conventional RF communications, including high
data rate, the low probability of detection, low weight
and volume, etc. Modulation of the laser signal by
optical turbulence is a major factor for communication
links that traverse atmospheric paths. Optical turbulence
is an important atmospheric phenomenon that adversely
affects optical wave propagation. It is brought about
by fluctuations in the atmosphere's refractive index
due to inhomogeneities in temperature and pressure
caused by solar heating and wind. When laser light,
which is simply one form of optical wave, propagates
through the atmosphere, optical turbulence distorts the
optical path and further induces fluctuations in its
amplitude and phase!™. These effects can severely affect
the performance of FSO systems!®-,

For a long time, the Kolmogorov model for
atmospheric turbulence has been extensively accepted
and applied widely in the researches of light wave
propagation in the atmosphere™-*! and further estimate
the performance of FSO systems®, Although Kolmogorov
model has been confirmed by results of numerous
experiments, both theoretical ™ and experimental
works® concerning non-Kolmogorov turbulence over
the past 10 -15 years have shown that Kolmogorov
model is not the only possible one in the atmosphere.
This also has prompted the investigations on the effect
of non-Kolmogorov turbulence on optical wave
propagation®-=1,

A S Gurvich and M S Belen’ kii, based on
experimental data from in situ measurements in the
stratosphere and on a theory of saturated internal
gravity waves, have developed a model for the power
spectrum of non-Kolmogorov turbulence and researched
the effects of non-Kolmogorov stratospheric turbulence
on the scintillation and the coherence of starlight, as

well as on the degradation of star image®®. Later M. S.

Belen’kii investigated the influence of non-Kolmogorov
stratospheric turbulence on star image motion again®.
In this paper, considering a power spectrum of
non-Kolmogorov turbulence introduced in ref[24], the
variance of AOA fluctuations has been derived. The
concise closed-form expression is obtained and used to
analyze the effect of non-Kolmogorov stratospheric
turbulence on the AOA fluctuations of starlight.

1 Joint power spectrum for refractive-
index fluctuations

To analyze the joint influence of non-Kolmogorov
stratospheric turbulence and Kolmogorov tropospheric
one on the fluctuations in the AOA of starlight, the
three-dimensional power spectrum model @®,(k,z) for the
refractive-index fluctuations developed by A S Gurvich
et al is used™, which has this form:

®(k,2)=D, (1,2)+ D, (k.2) (1)
where (I)i(x,z) characterizes the refractive - index
fluctuations for Kolmogorov turbulence in the troposphere,
while (Pi(x,z) describes the inhomogeneities of refractive

index for non-Kolmogorov turbulence in the stratosphere.

(Di(x,z) has the form:

2 -11/3

@ (k,2)=0.033C_ (2) Kz+:§] )

where C:(z) is the refractive-index structure parameter

of Kolmogorov turbulence with units m?* and « is the
magnitude of spatial frequency vector, rad/m. It is noted
that, considering that the outer scale of atmospheric
turbulence L, (z) is an important relevant parameter
for high resolution

angular imaging !, we

introduced it in Eq.(2) by adding a term KZ/a2 based
on the work of H Trinquet et al in 2008. Here «k=2m/
Lo(z) and 1/a’=6.2x103,

@:(K,z) has the form:
-5/2

K
vy ®

ON

@, (x2)=C, ()"

where 6:(2) is the index-of-refraction structure parameter

of non-Kolmogorov turbulence with units m - and
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Koy =27/Lgy, With Ly being the outer scale of non-
~2
Kolmogorov stratospheric turbulence. C (z) uses the

following representation:

~2 ~2 [ 2(z-Hy)
C=C,, | A

C.(2)=0,2<Hs 4)
where éio (z) represents the structure characteristic of

non-Kolmogorov turbulence at the altitude of tropopause,
H, is the atmospheric scale height H,=6 000 m and Hg
is the starting altitude of non-Kolmogorov turbulence
and is equal to 10 km.

2 Angle-of-arrival fluctuations of starlight

As a star is observed on the ground, the starlight
may be considered as a plane wave. Following the
same procedure discussed in Ref[1], substituting Eq.(1)
into the conventional formula for the AOA fluctuations
variance of plane wave (obtained using the Rytov

approximation) yields:

2 2 2
O-pl (Z):o-pl(Tr)(Z)-'-Upl(S()(Z) (5)
where cr;,(m(z) and (r;(so(z) are the components of the

variance of AOA fluctuations induced by Kolmogorov
and non-Kolmogorov turbulence, respectively. They

have the following representations:
1/3

Ty (2)=0.03372 [ OH C.@| 2] x

0.058 4D’

7.
u(g,g, 10 |da (6)

2
where U(a;c;x) is the confluent hypergeometric function
of the second kind. Since the above
obtained using the geometrical approximation, the

2 L2 -1 1 2
crp,(m(z)z%ﬂzcno Hocp, U 212-10.058 4D%c,, | (7)

results are

receiver aperture D satisfies the condition, D>>V/L/k ,
where \/L/k is the Fresnel zone(L is the length of the
optical path and k is optical wave number). Moreover,
the valid
refractive-index fluctuations imposes the constraints

range of the power spectrum of the

La>>D and Ly>>D on them again.
From Eq. (5) that the
fluctuations in the AOA of starlight in the plane of a

it can be concluded

ground-based telescope are determined by both the
troposphere and the stratosphere. As a result, an
expression for the variance of the AOA fluctuations of
starlight contains two terms, each depending on different
characteristics of the atmosphere. The tropospheric

component of the AOA fluctuations of starlight a;(m(z)

is determined by the optical turbulence intensity of

2

troposphere C_, the outer scale of the tropospheric

n?

turbulence L,, and the telescope diameter D, whereas

the stratospheric component O'szn(z) depends on the optical

2

- the outer scale

turbulence intensity of stratosphere c
of the stratospheric turbulence Ly on the altitude of
tropopause, and the telescope diameter D. In addition,
it is noted that the stratospheric component is a

concise closed-form expression.

3 Simulation and discussions

To estimate quantitatively the contribution of
non-Kolmogorov  stratospheric to AOA
the v ariance of AOA
fluctuations UZ, (z), the tropospheric component o;(m(z),

turbulence
fluctuations of starlight,

. 2 .
and stratospheric one o,,(z) at the zenith are computed

using Eq. (5) -(7), respectively. In addition, the

variance of AOA fluctuations o;(c)(z) based on the
conventional Kolmogorov theory is also computed
for comparison. Table 1 summarizes the rms oi,(c)(z),
T (@), Oy (D), 0 (@) and oy, (2)] 0, (2) (the ratio
AOA

of stratospheric component to the total

fluctuations) for different receiver apertures.
For the C:(z) profile in the troposphere, the most

widely used Hufnagel-Valley model is chosen as:
2

C . (2)=0.005 94(2"77) (10—52)1oexp( 1660 )+
2.7x10-1sexp( 1;_)60 )“'Ci(O)exp( 660 ) (8)

with the wind speed v=21m/s and C_ (0)=1.7x10%m.

For the L{z) profile in the troposphere, following Ref[29],
the function in the boundary layer is chosen, Ly(z)=3.21x
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z7%% while the Coulman-Vernin model is use Ly(z)=
4/{1+[(z-8500)/2500]°} in the free atmosphere.

For the parameters of stratospheric turbulence,
based on ref [27], C ., =4.5x10"°m~ and Lg=100 m

are taken.

As it is shown in Tab.1, the joint model theoretical
predictions for the AOA fluctuations are smaller than
the conventional ones. Furthermore, by comparing the
Kolmogorov AOA
fluctuations, the conclusion can be drawn that the
AOA fluctuations are determined primarily by the
lower layer Kolmogorov turbulence near the receiver,

component with the total

namely, the conventional point of view is tenable for
the joint model theory. At last, the tropospheric
component, the stratospheric component, and the total
AOA fluctuations decrease with the increase of the
receiver aperture owing to averaging of the phase
fluctuations by the receiver aperture, and the stratospheric
non-Kolmogorov turbulence accounts for 5-14 percent
of the total fluctuations in the AOA of starlight for
different receiver apertures.

Tab.1 Ratio of stratospheric component of RMS
AOA fluctuations to total RMS for

different receiver aperture

D/m one/prad oym/prad oye/prad  op/prad oy 0w/ %

0.1 13.687 9.647 0.531 9.661 5.49
0.2 10.446 7.364 0.530 7.383 7.17
0.4 7.327 5.166 0.528 5.193 10.16
0.6 5.621 3.964 0.525 4.000 13.14

To find out specially the effect of the receiver
aperture on rms a;,m)(z), a;(so(z), 0'; (z), their variations
with D are plotted in Fig.1. From this figure it is
apparent that the AOA fluctuations induced by non-
Kolmogorov stratospheric turbulence lightly (almost
appear a horizontal line) fall off linearly with the
receiver aperture, while the AOA fluctuations induced
by Kolmogorov tropospheric turbulence firstly fall off
more quickly and then more slowly with the receiver
aperture. This leads to the similar variations of the
total RMS variance with the receiver aperture to the

tropospheric component.

3 2.0<10° N Rms of Kolmogorov component of
S R AOA fluctuations

E --Rms of non-kolmogorov component
B 1.5x10°F of AOA fluctuations

2 [ —Rms of the total AOA fluctuations
B

é Sk

<« 1.0x10

o]

<

G

© 0.5x10°T

2

Fig.1 Kolmogorov component non-Kolmogorov one, and total
RMS AOA fluctuations for different receiver apertures
To investigate the effect of tropospheric and
stratospheric turbulent strength on the AOA fluctuations,
the variations of RMS AOA fluctuations with Kolmogorov

tropospheric turbulent strength KTTS Ci(O) on the ground
for different non-Kolmogorov stratospheric turbulent

strength NSTS 6:0 at the altitude of tropopause are

plotted in Fig.2, taking D=0.2 m. As it is shown in
Fig.2, the AOA fluctuations increase with KTTS and
the variations of NSTS results in the smaller increase
of the AOA fluctuation due to the smaller contribution
of stratospheric turbulence to the total AOA

fluctuations.

E

5

§ 2x107

Q

B

<

2 104 .- NSTS=le-14m™>
“ - NSTS=le-15 m™
« — NSTS=le-16 m™
2 a -~ NSTS=le-18m*

% 0.4x10™" 0.8x10"
KTTS/m™*

Fig.2 Variations of total RMS AOA fluctuations with KTTS
for different NSTS

To study the effect of the outer scale on the
AOA fluctuations of starlight, the variations of RMS
AOA fluctuations with outer scales are plotted in Fig.3.
As it is shown that the RMS AOA fluctuations increase
with increase in the outer scale, i.e., it is physically
correct. In fact, the AOA, like the beam wander, is
caused mostly by turbulence cells;
therefore, when the outer scale assumes high values,

large-scale

the optical wave meets a large number of large-scale
turbulence cells along its propagation length, and these
cells lead to a higher AOA value with respect to the

case of a low outer scale value.
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