基底均匀掺杂下EBAPS 电荷收集效率的模拟研究

宋德1,2,石峰1,李野2

(1. 微光夜视技术重点实验室,陕西 西安 710065; 2. 长春理工大学 理学院,吉林 长春 130022)

摘 要:对P型基底均匀掺杂的情况下电子轰击有源像素传感器(EBAPS)的电荷收集效率进行了理 论模拟研究,依据低能电子与固体的相互作用模型结合 Monte-Carlo 计算方法模拟了光电子入射到 死层和倍增层中的运动轨迹,并分析了经过死层后的能量损失率所受影响因素;依据半导体理论研究 了P型基底掺杂浓度、膜厚、入射电子能量对电荷收集效率的影响因素。最终获得的电荷收集效率理 论模拟结果与已报道的(4 keV,均匀掺杂的 EPAPS)实测的结果较为相符,表明此文的模拟结果可以 为高增益的 EBAPS 的制作提供理论指导。

关键词: 电子轰击有源像素传感器; 能量损失率; 电荷收集效率; 死层 中图分类号: TN223 文献标志码: A DOI: 10.3788/IRLA201645.0203002

Simulation of charge collection efficiency for EBAPS with uniformly doped substrate

Song De^{1,2}, Shi Feng¹, Li Ye²

(1. Science and Technology on Low-Light-Level Night Vision Laboratory, Xi'an 710065, China;

2. School of Science, Changchun University of Science and Technology, Changchun 130022, China)

Abstract: The charge collection efficiency of electron bombarded active pixel sensor (EBAPS) was simulated while the EBAPS with uniformly doped P type substrate. The photoelectron scatting trajectories in dead layer and electron multiplier layer were simulated based on the low-energy electron-solid interaction model and Monte Carlo method. Meanwhile the influence factors how affecting the energy loss rate were studied. According to semiconductor theory, the influence factors(B atoms doping concentration, film thickness and the incident electron energy) how affecting the charge collection efficiency were studied. The final charge collection efficiency's simulation results are consistent with the reported (4 keV, uniformly doping) measured results, which means the simulation result can provide theoretical guidance for the fabrication of high gain EBAPS.

Key words: EBAPS; energy loss rate; charge collection efficiency; dead layer

收稿日期:2015-11-05; 修订日期:2015-12-14

基金项目:高等学校博士学科点专项科研基金(20112216120008);吉林省科技厅重大科技攻关项目(2014020318GX) 作者简介:宋德(1981-),男,博士,主要从事微光成像技术方面的研究。Email:songde614@163.com

0 引 言

微光图像数字化是微光夜视技术的发展趋势, 目前实现微光数字化主要有 ICCD、EBCCD、 EMCCD、EBCMOS 等途径^[1-4]。EBAPS(图 1(a))采用 近贴聚集结构,光电阴极做阴极,背面轰击型 APS 阵列传感器(BSB-APS)作为阳极。BSB-APS 作为阳 极取代了 ICCD 中微通道板、荧光屏和纤维光学耦 合器件。光电阴极发射的光电子经近贴聚焦系统被 高压加速轰击入射到 BSB-APS¹⁵。图 1(b)给出了 BSB-APS 结构和入射光电子轰击 BSB-APS 背部衬 底时电子倍增及电荷收集过程的示意图。从图中可 见入射的光电子进入到 P 硅基底后入射电子能量被 硅原子吸收而产生电子空穴对,每个电子空穴对的 产生大概消耗 3.6 eV 能量。由于倍增电子浓度梯度 引起的倍增电子扩散运动使电子在 P 型硅基基底中 向图像传感器中的 N 阱一侧运动并被收集,最后被 读出电路读出而实现微弱信号的放大。电子轰击半 导体的电子增益可用公式(1)计算得出[4],

$$G = \varepsilon (E_0 - E_{\text{Dead}}) \tag{1}$$

式中:G为增益倍数;E。为入射光电子能量;E_{Dead}为 经过死层(电子与空穴完全复合区)损耗的能量;ε为 电荷收集效率。目前国外对电荷收集效率的研究主 要是通过实验测量的方式完成,电荷收集效率的大 小主要受入射光电子能量、死层厚度和P型基底结 构影响,但相关理论模型的建立未见报道。

图 1 EBAPS 结构和 BSB-APS 中电子倍增及电荷收集过程 Fig.1 Structure of EBAPS and electrons' multiplication and collection in the BSB-APS

文中对 P 型基底均匀掺杂的情况下 EBAPS 的 电荷收集效率的影响因素进行了理论模拟研究。首 先依据低能电子与固体间相互作用模型结合蒙特卡 罗方法模拟了大量光电子入射到 P 型基底中的电子 运动轨迹,并分析了经过死层后的能量损失率所受 影响因素。然后依据半导体理论研究了 P 型基底掺 杂浓度、膜厚、入射电子能量对电荷收集效率的影 响。最终获得的电荷收集效率理论模拟结果与已报 道的(4 keV,均匀掺杂的 EPAPS)实测的结果较为相 符,表明文中的模拟结果可以为高增益的 EBAPS 的 制作提供理论指导。

入射光电子在电子倍增层处的运动轨迹 模拟

低能电子入射到BSB-APS 时,透过死层后在电 子倍增层处发生电子倍增,倍增过程中入射光电子 伴随着散射。散射主要包括弹性散射和非弹性散射。 在电子发生弹性散射时,一般只改变了电子运动的 方向,而能量损失的较少,损失的能量远远小于其自 身的能量。在非弹性散射的情况下,相继碰撞时能量 是连续减少的,能量损失符合修正的 Bethe 的失能 定律。当入射电子入射到 BSB-APS 并在死层和电子 倍增层中运动时,不能预知某一个电子是如何运动 的,这是由于其运动规律具有随机性。选用 Monte Carlo 模拟的方法,对大量入射光电子在电子倍增层 中的运动轨迹进行模拟¹⁶。由于入射光电子能量低于 20 keV 且随着其在倍增层散射而能量减少,因此电 子与原子散射截面(σ₁)需采用修正的卢瑟福散射截 面公式(2)^[7]。整个公式适用 0.1~30 keV 范围的低能 入射电子的散射,其中Z为原子序数,E为电子能量。

 $3.0 \times 10^{-18} Z^{1.7}$

 $\sigma_{7} = \frac{3.0 \times 10^{-2} Z}{(E+0.005Z^{1.7}E^{0.5}+0.000\ 7Z^{2}/E^{0.5})} \,\mathrm{cm}^{2} \tag{2}$

同时考虑到电子倍增层中硼(B)原子掺杂浓度 低于 10¹⁹ 个/cm³ 时,掺杂原子浓度相对硅原子浓度 比低于 1:5 000,所以入射光电子在 BSB-APS 中运 动轨迹模拟只考虑硅原子对电子散射的影响。对不 同入射光电子能量、死层厚度和入射电子束直径对 电子运动轨迹和能量损失率的影响进行了模拟。根 据电子运动轨迹模拟结果结合光电子在散射过程中 能量损失转变为二次电子(电子倍增),可以确定倍增 区域内倍增电子的分布情况。图 2 给出了入射光电 子能量 4 keV 时,大量入射光电子在 BSB-APS 衬底 中运动轨迹和能量损失的模拟结果 (内图)。可见倍 增区的大量电子运动轨迹形成的区域近似球形且入 射深度在 150 nm 左右。

- 图 2 入射光电子能量 4 keV 时,大量入射光电子在 BSB-APS 中 散射轨迹模拟(内图:入射光电子能量随深度变化)
- Fig.2 Simulation of electron scatting trajectories in the BSB-APS for a large number of photoelectrons when incident photoelectron energy is 4 keV (insert figure: photoelectrons' energies varied depending on the photoelectron incident depth)

1.1 入射光电子能量与能量损失率的关系

图 3 给出了入射光电子能量和能量损失率的关 系图。模拟条件:死层厚度 60 nm,入射电子束直径 20 nm,P型基底厚度 10 µm,B 掺杂浓度 10¹⁵ 个/cm³。 从图可见:当入射电子能量小于 2 keV 时,光电子能 量在死层全部损耗,只有能量高于 2 keV 时,光电子能 过死层进行电子倍增。当入射能量为 4 keV 时,透过 死层的能量损失率在 46.5%,当入射电子能量高于 8 keV 后,透过死层的能量损失率小于 10%,可见入 射光电子能量的增加对提高电子增益作用明显。但过 高的入射光电子能量也会引起暗电流的增加,因此有 必要进一步研究死层厚度对能量损失率的影响。

图 3 入射光电子能量损失率随入射光电子能量变化的曲线 Fig.3 Curve of the incident photoelectron energy loss varied depending on the incident photoelectron energy

1.2 死层厚度与能量损失率的关系

图 4 给出了死层厚度和能量损失率的关系。模拟条件为入射光电子能量 8 keV,入射电子束直径

20 nm, P型基底厚度 10 μm, B 掺杂浓度 10¹⁵ 个/cm³。 从图中可见:能量损失率随入射深度增加呈线性增加,之后能量损失慢慢减小至全部损耗。由于电子与 固体碰撞产生的电子空穴对在死层区会完全复合而 不发生电子倍增,可见死层对 EBAPS 的增益影响较 大。因此尽量降低死层厚度对在相同入射光电子能 量的情况下提高 BSB-APS 的增益具有重要意义。

1.3 入射光电子束直径与能量损失率的关系

图 5 给出了入射光电子束直径和能量损失率的 关系。模拟条件为入射光电子能量 8 keV,死层厚度 60 nm,P型基底厚度 10 μm,B 掺杂浓度 10¹⁵ 个/cm³。 从图中入射光电子束直径对能量损失率没有影响。

2 均匀掺杂下电荷收集效率的模拟

根据图 2 入射光电子运动轨迹的模拟结果可见 入射光电子束直径 20 nm 且能量为 4 keV 时,大量入 射光电子在倍增区内形成的倍增电子主要集中直径 为 200 nm 左右的球形区域(图 6 中半球形区域)。倍 增区域内倍增电子的坐标分布满足下式:

$$\begin{vmatrix} x = \frac{D}{2} \sqrt{-\ln R_1} \cos(2\pi R_2) \\ y = \frac{D}{2} \sqrt{-\ln R_1} \sin(2\pi R_2) \\ z = L \cdot R_3 \end{aligned}$$
(3)

式中:D为倍增电子在XOY面上分布直径;L为入射光 电子深度;R₁、R₂和R₃为(0,1)内均匀分布的随机数。

Fig.6 Secondary electrons transport model for uniformly doped substrate

图 6 为 BSBAPS 基底均匀掺杂时倍增电子的输运模型。假定入射光电子束的电子密度保持恒定,则 其在倍增区域形成倍增电子(大量二次电子)可视为 稳态的非平衡载流子的注入。当倍增区域内二次电 子的浓度为 Δn₀,边界条件 r 无穷大时二次电子浓度 为 Δn=0,则根据载流子扩散方程可知稳态无电场时 电子的扩散速度方程为:

$$v_{d(r)} = -\left[\frac{D_n}{r} + \frac{D_n}{L_n}\right] \tag{4}$$

式中: D_n 为电子扩散系数; $L_n = \sqrt{D_n \tau_n}$ 为扩散长度; μ_n 为非平衡少数载流子的迁移率; $V_{d(r)}$ 为距中心 r处电子扩散速度。

则任意一段深度Li处二次电子运动轨迹满足:

$$\begin{vmatrix} t_{(i)} = L_i / v_{(z)} \\ x_{(i)} = v_{(x)} \cdot t + x_{(i-1)} \\ y_{(i)} = v_{(y)} \cdot t + y_{(i-1)} \end{vmatrix}$$
(5)

其中,xyz方向上的电子运动速度分别为:

$$v_{(x)} = v_{d(r)} \cdot \sin \theta_i \cdot \cos \phi$$

$$v_{(y)} = v_{d(r)} \cdot \sin \theta_i \cdot \sin \phi$$

$$v_{(z)} = v_{d(r)} \cdot \cos \theta_i$$
(6)

式中: $\theta=\pi \cdot R_1$ 和 $\phi=2\pi \cdot R_2, R_1, R_2$ 为(0,1)内均匀分布 的随机数。

耗尽区对应的电子扩散速度方程为:

$$v_{d(r)} = -\left[\frac{D_n}{r} + \frac{D_n}{2L_n^2} \cdot \left(\sqrt{L_n^2(E) + 4L_n^2} - L_n(E)\right)\right]$$
(7)

其中, $L_n(E)=\frac{\mu_n E \tau}{\cos \theta_i}$ 。

耗尽区的二次电子的运动轨迹与公式(5)一致, 但 z 方向由于有内建电场作用使电子多出漂移速度 (*v_{E(z)}*)。则其中 *xyz* 方向上的电子运动速度分别为:

$$\begin{vmatrix} v_{(x)} = v_{d(r)} \cdot \sin \theta_i \cdot \cos \phi \\ v_{(y)} = v_{d(r)} \cdot \sin \theta_i \cdot \sin \phi \\ v_{(z)} = v_{d(r)} \cdot \cos \theta_i + v_{E(z)} \end{vmatrix}$$
(8)

其中, $v_{E(z)} = \mu_n \cdot E_o$ 若在 PN 结耗尽区处二次电子漂移 速度($v_{E(z)}$)远远大于此处二次电子扩散速度($v_{d(r)}$),则 此处 xy 方向上 $v_{(x)}$ 和 $v_{(y)}$ 相对 z 方向上的 $v_{(z)}$ 可以忽 略,否则不可忽略。

根据二次电子运动轨迹的模拟,计算出单位时间 内到达像素(第*i,j* N 阱)内的电子数 N(*i*,*j*),并考虑到 少数载流子运动过程中复合引起收集电子的减少,可 以计算出到任意像素单位时间内的接收的电荷收集 数目(公式(9)),其中 τ_i为任意一点的少子寿命。

 $N_{\psi_{\#}} = (N_{ij}) \cdot [\exp(-t_1/\tau_1) \cdots \exp(-t_i/\tau_i) \cdots \exp(-t_m/\tau_m)] (9)$ 则电荷收集效率(CCE)满足公式:

$$CCE = N_{\psi_{\#}} / N_{\dot{\&}} \tag{10}$$

图 7 给出了入射光电子能量为 4 keV、电子束直 径为 20 nm、死层厚度为 60 nm、P 型外延层厚度为 10 µm、B 掺杂浓度为 10¹⁵ 个/cm³,整体为均匀掺杂时 对应的 5×5 像素区域内的电荷收集效率。由半导体 理论可知耗尽区厚度、非平衡电子迁移率、扩散系 数、少数载流子寿命等参数,最终获得的 5×5 像素区 域内的电荷收集效率为 40.4%。

图 7 5×5 像素区域内的电荷收集效率 Fig.7 CCE of 5×5 pixel region

2.1 掺杂浓度与电荷收集效率的关系

表1给出了P型基底掺杂浓度与电荷收集效率 (5×5像素区域内)的关系。模拟条件为入射光电子能 量4keV,死层厚度60nm,P型基底厚度10μm。数 据表明随着掺杂浓度的提高电荷收集效率降低,这 主要是由于少数载流子寿命降低引起的像素 N 阱收 集电子数目降低(公式(9))。

表1掺杂浓度与电荷收集效率的关系

Tab.1 Relationship between the doping concentration and CCE

Doping concentration /10 ¹⁵ cm ⁻³	1	10	100	500	10 ³	10^{4}
CCE	40.4	39.3	37.9	31.5	25.9	2.3

2.2 基底厚度与电荷收集效率关系

表2给出了P型基底厚度与电荷收集效率(5×5 像素区域内)的关系。模拟条件为入射电子能量4 keV, B掺杂浓度10¹⁵个/cm³,死层厚度为60 nm。数据表 明随着基底厚度的增加电荷收集效率降低,原因是 随着厚度的增加,大量的倍增电子被5×5 像素外的 收集阱吸收,可见厚度的增加会降低图像的分辨力。

表 2 基底厚度与电荷收集效率的关系

Tab.2 Relationship between the substrate thickness

and	CCE
-----	-----

P substvate thickness	5	7	9	11	13	15	20
CCE	46.5	44.4	42.8	39.9	36.2	33.3	26.2

2.3 入射电子能量与电荷收集效率关系

对不同入射电子能量的电荷收集效率进行模拟, 入射电子能量分别为 4keV 和 8keV,入射电子束直径 为 20nm,P型基底厚度为 10μm,掺杂浓度10¹⁵ 个/cm³。 通过图 8 可知随着入射电子能量从 4 keV 增加到 8 keV,入射深度从 120 nm 而增大到 430 nm,进而引

depending on the incident depth

起公式(3)中的 L 发生变化。模拟计算获得 5×5 像素 区域内的电荷收集效率从 40.4%增加到 41.0%。因此 入射电子能量的增加能一定程度提高电荷收集效率。

3 结 论

文中依据低能电子与固体间相互作用原理并结 合 Monte-Carlo 计算方法对入射光电子在 EBS-APS 电子倍增层中的电子轨迹进行了理论模拟,根据模 拟结果确定了电子倍增层中二次电子的分布情况。 然后结合半导体理论中非平衡载流子输运机理建立 了基底均匀掺杂时 EBAPS 的电荷收集效率模型,并 对不同的 EBAPS 电荷收集效率的进行了模拟研究。 模拟结果表明:(1) 入射光电子透过死层的能量损失 受入射光电子能量、死层厚度影响而与入射光电子 束直径无关;(2) EBAPS 的电荷收集效率随基底掺 杂浓度和基底厚度的降低而提高,随入射光电子能 量增加而提高。

参考文献:

- Mackay C D, Tubbs R N, Bell R, et al. Sub-electron read noise at MHz pixel rates(A)[C]//Proceedings of SPIE, 2001, 4306:289-298
- [2] Xin Fuxue. Optical fiber coupling technique of ICCD [J]. *Infrared and Laser Engineering*, 2001, 30(3): 210–213. (in Chinese)
- [3] Benussi L, Fanti V, Frekers D, et al. A multichannel singlephoton sensitive detector for high-energy physics: the megapixel EBCCD[J]. *Nuclear Instruments and Methods in Physics Research A*, 2000(442): 154–158.
- [4] Barbier R, Cajgfinger T, Calabria P, et al. A single-photon sensitive ebCMOS camera: The LUSIPHER prototype [J]. *Nuclear Instruments and Methods in Physics Research A*, 2011, 648(1): 266–274.
- [5] Song De, Piao Xue, Bai Xiaofeng, et al. Simulation research of electrostatic field of MCP input in proximity image intensifier [J]. *Infrared and Laser Engineering*, 2015, 44 (10): 2981–2986. (in Chinese)
- [6] Wang Yi, Yang Pingli, Zhu Weijie, et al. Study of parallel computing of a Monte Carlo programs [J]. Nuclear Electronics & Detection Technology, 2001, 21(1): 31–33.(in Chinese)
- [7] Browning R, Li T Z, Chui B, et al. Empirical forms for the electron/atom elastic scattering cross sections from 0.1 to 30 LeV [J]. *Journal of Applied Physics*, 1994, 76: 2016– 2022.