•研究论文•

DOI: 10.16801/j.issn.1008-7303.2016.0047

超高效液相色谱-串联质谱法测定土壤中 硝磺草酮及其代谢物残留

邓立刚^{1,3}, 陈业兵³, 李增梅³, 赵善仓³, 王文正³, 郭长英³, 王 磊³, 秦宏伟³, 路福绥^{*,2}

(1. 山东农业大学 植物保护学院,山东 泰安 271018; 2. 山东农业大学 化学与材料科学学院,山东 泰安 271018;3. 山东省农业科学院 农业质量标准与检测技术研究所/山东省食品质量与安全检测技术重点实验室,济南 250100)

摘要:建立了土壤中硝磺草酮及其代谢物 4-甲砜基-2-硝基苯甲酸 (MNBA) 和 2-氨基-4-甲砜 基苯甲酸 (AMBA) 残留的超高效液相色谱-串联质谱 (UPLC-MS/MS) 分析方法。样品用 0.1% 氨 水-乙腈溶液提取后,经 Cleanert PAX 固相萃取柱净化,以乙腈和 0.3% 甲酸水为流动相, Acquity HSS T3 色谱柱梯度洗脱,电喷雾负离子多反应监测模式 UPLC-MS/MS 检测。结果表 明:在 0.3~50 µg/kg 添加水平下,硝磺草酮、MNBA 和 AMBA 的平均添加回收率在 73%~97% 之间,相对标准偏差在 2.4%~12.9% 之间,该方法的检出限分别为 0.1、0.3 和 0.2 µg/kg,定量 限分别为 0.3、1.0 和 0.6 µg/kg。应用该方法对室内模拟试验的红土样品进行了分析,结果表 明,硝磺草酮在红土中的消解半衰期为 4.0 d,土壤中降解产物 AMBA 残留量高于 MNBA。 关键词:超高效液相色谱-串联质谱;硝磺草酮;代谢物;土壤;残留 中图分类号: 0657.71; TQ450.26 文献标志码: A 文章编号: 1008-7303(2016)03-0344-08

Determination of mesotrione and its metabolite residues in soils by ultra performance liquid chromatography-tandem mass spectrometry

DENG Ligang^{1,3}, CHEN Yebing³, LI Zengmei³, ZHAO Shancang³, WANG Wenzheng³, GUO Changying³, WANG Lei³, QIN Hongwei³, LU Fusui^{*,2}

(1. College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong Province, China;

 College of Chemistry and Materials Science, Shandong Agricultural University, Tai'an 271018, Shandong Province, China;
 Institute of Agricultural Quality Standards and Testing Technology Research, Shandong Academy of Agricultural Sciences/Key Laboratory of Test Technology on Food Quality and Safety of Shandong Province, Ji'nan 250100, China)

Abstract: A comprehensive analytical method has been developed for the simultaneous determination of mesotrione and its metabolites (4-methylsulfonyl-2-nitrobenzoic acid (MNBA), 2-amino-4- (methylsulfonyl) benzoic acid (AMBA)) in soils by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-ESI-MS/MS). The soil samples were extracted with 0.1% ammonium hydroxide solution/acetonitrile and an aliquot of the extract was cleaned-up by a solid-phase extraction

收稿日期: 2015-11-19; 录用日期: 2016-03-28.

基金项目:山东省大型科学仪器设备升级改造技术研究专项 (2013SJGZ06).

作者简介:邓立刚,男,博士研究生,**E-mail:** deng_ligang@163.com; *路福绥,通信作者 (Author for correspondence),男,教授,研究 方向为农药学,**E-mail:** lfs@sdau.edu.cn

Cleanert PAX cartridge. The chromatographic separation was performed on an Acquity HSS T3 column with gradient elution using acetonitrile and 0.3% formic acid in water. The analytes were measured by multiple reaction monitoring (MRM) in the electrospray negative ionization mode. The recoveries were 73%-97% with the relative standard deviation from 2.4% to 12.9% for spiked soil samples at 0.3 μ g/kg-50 μ g/kg. The limits of detection of mesotrione, MNBA and AMBA in soils were 0.1, 0.3 and 0.2 μ g/kg, and the limits of quantifications of mesotrione, MNBA and AMBA were 0.3, 1.0 and 0.6 μ g/kg. The analytical method has been employed in the simulation experiments with the red soil samples. The result showed that the half-life of mesotrione was 4.0 days in the red soil and the residue amounts of AMBA were higher than MNBA.

Keywords: ultra performance liquid chromatography-tandem mass spectrometry; mesotrione; metabolites; soil; residue

硝磺草酮 (mesotrione,图式 1) 为三酮类除草 剂,是一种能够抑制杂草体内羟基苯基丙酮酸酯 双加氧酶 (HPPD) 的苗前、苗后广谱、选择性除草 剂,可以有效防除玉米田主要的阔叶杂草和一些 禾本科杂草,已在中国得到广泛应用^[1-3],但其大 规模的使用或滥用也会对农产品质量安全、后茬 作物及其他非靶标生物带来潜在的危害^[4-3],美国 俄亥俄州、加拿大安大略省以及中国都曾出现过 硝磺草酮对玉米后茬作物如四季豆、大白菜及向 日葵等产生药害的问题,导致作物减产,最严重 的减产高达 50%^[6-7]。目前中国已制定硝磺草酮在 玉米中的最大残留限量 (MRL) 值为 0.01 mg/kg^[8], 欧盟规定了硝磺草酮及其代谢物 4-甲砜基-2-硝基 苯甲酸 (4-(methylsulfonyl)-2-nitrobenzoic acid, MNBA) 的 MRL 值为 0.05 mg/kg^[9]。微生物的分解 作用是硝磺草酮降解的主要途径之一,其降解产 物主要为 MNBA和2-氨基-4-甲砜基苯甲酸 (2amino-4-(methylsulfonyl) benzoic acid, AMBA)(图 式 1)^[10],部分代谢物表现出比母体化合物更高的 毒性和环境持久性^[11]。Bonnet 等^[12]的研究表明, AMBA 毒性高于硝磺草酮,可能会严重干扰土壤 生物群落结构,影响土壤功能;而 MNBA 毒性低 于硝磺草酮。因此,硝磺草酮及其代谢物在土壤 中的残留行为是其环境评价的主要内容。但目前 尚未见同时测定土壤中硝磺草酮及其代谢物残留 方法的研究报道。

图式 1 硝磺草酮 (A) 及其代谢物 MNBA (B)、AMBA (C) 的化学结构式 Scheme 1 Molecular structures of mesotrione (A), MNBA (B) and AMBA (C)

硝磺草酮、AMBA 和 MNBA 均易溶于水,具 有难挥发和热不稳定性,无法进行气相色谱分 析。目前,对硝磺草酮的分析多采用高效液相色 谱法 (HPLC) 和超高效液相色谱-质谱联用法 (UPLC-MS/MS)。其中,HPLC选择性差,灵敏度 低^[13-15],而选择 UPLC-MS/MS 测定硝磺草酮的灵 敏度和准确度会更高,但现有的报道仅测定了硝 磺草酮,未涉及其代谢物^[16,17]。因此,本研究以土 壤为研究对象,通过对提取溶液、固相萃取柱净 化条件以及色谱-质谱参数等进行优化,建立了土 壤中硝磺草酮及其代谢物 (AMBA、MNBA) 残留的 UPLC-MS/MS 分析方法。

1 材料与方法

1.1 仪器及试剂

LC-30A 超高效液相色谱系统(日本岛津公司); AB SCIEX Triple Quad 4500 三重四极杆串联 质谱仪及 Analyst 工作站(美国 AB SCIEX 公司); IKA MS3 漩涡混合器(德国 IKA 公司); KQ500E 型超声波清洗器(昆山市超声仪器有限公司); JNC N-EVAPTM112 型氮吹仪 (美国 Organomation 公司); Sigma 3K30 高速冷冻离心机 (德国 Sigma 公司); Milli-Q A10 超纯水系统 (美国 Millipore 公司)。

99% 硝磺草酮 (mesotrione) 和 98% MNBA 标 准品 (德国 Dr. Ehrenstorfer 公司); 94% AMBA 标 准品 (美国 Matrix Scientific 公司); Cleanert PAX 60 mg/3 mL Cartridge 固相萃取小柱 (天津博纳艾 杰尔科技有限公司); 乙酸钠和氨水均为分析纯; 甲酸、甲醇和乙腈均为色谱纯。

1.2 土壤样品前处理

1.2.1 样品提取 准确称取土壤样品 10.0g于 50 mL 具塞塑料离心管中,加入 25 mL V(乙腈): V(0.1% 氨水)=10:90提取液,涡旋混匀后超声提取 10 min, 于 7 000 r/min 下离心 5 min,取上清液经滤纸过滤 至 50 mL 容量瓶中;向残渣中再加入 15 mL 提取 液,重复上述操作。合并两次滤液,并用提取液 定容到 50 mL,待净化。

1.2.2 净化 将 PAX 型 SPE 阴离子交换固相萃取 柱依次用 3 mL 甲醇、3 mL 水活化平衡后加入 25 mL 样品提取溶液,然后依次用 3 mL 50 mmol/L 的乙酸钠水溶液和 3 mL 甲醇淋洗,弃去淋洗液, 抽至近干;用 5 mL V(乙酸乙酯):V(甲醇):V(甲酸) = 87:9:4 的溶液洗脱,收集洗脱液,于 40 ℃ 水 浴下氦气吹至近干;残留物用 V(乙腈):V(水)= 10:90 定容至 1.0 mL,涡旋混匀 1 min,过 0.22 μm 微孔滤膜,待测。

1.3 仪器检测条件

1.3.1 色谱条件 Waters Acquity UPLC HSS T3 色谱柱 (100 mm × 2.1 mm, 1.7 µm); 柱温 40 ℃, 样品室温度 10 ℃; 进样体积 5.0 µL; 流动相 A 为 0.3% 甲酸水溶液, 流动相 B 为乙腈; 流速 0.5 mL/min, 梯度洗脱。洗脱程序: 0~2 min, 95% A; 2~3.5 min, 95% A→80% A; 3.5~7.5 min, 80% A→30% A; 7.5~8.5 min, 30% A; 8.5~9.5 min, 30% A→95% A, 于 95% A 下保持 4 min。

1.3.2 质谱条件 电喷雾离子源 (ESI); 负离子多 反应监测模式 (MRM); 离子源温度 (TEM) 450 ℃; 雾化气压力 (GS1) 344.75 kPa (50 psi); 辅助加热气 压力 (GS2) 344.75 kPa (50 psi); 气帘气压力 (CUR) 103.425 kPa (15 psi); 电喷雾电压 (IS) 4 500 V; 碰 撞气体 (CAD) 48.265 kPa (7 psi); 驻留时间 (dwell time) 50 ms。其他条件参数见表 1 。

化合物 Compound	分子式 Molecular formula	监测离子对 MRM, m/z	去簇电压 DP/V	碰撞能量 CE/V	驻留时间 Dwell time/ms
硝磺草酮 mesotrione	$C_{14}H_{13}NO_7S$	338.0>291.0*	35	11	50
		338.0>212.0	35	38	50
MNBA	C ₈ H ₇ NO ₆ S	243.9>199.9*	35	10	50
		243.9>142.0	35	28	50
AMBA	C ₈ H ₉ NO ₄ S	213.9>170.0*	35	19	50
		213.9>155.0	35	25	50

表 1 硝磺草酮及其代谢物的 ESI-MS/MS 条件参数 Table 1 ESI-MS/MS conditions for the determination of mesotrione and its metabolites

注 (Note): *定量离子 (Quantitative daughter ions)。

1.4 标准溶液配制及标准曲线绘制

分别准确称取 0.01 g (精确至 0.000 01 g) 硝磺 草酮和代谢物 MNBA、AMBA 标准品,用 V(Z h): V(x) = 50:50的溶液溶解并定容至 100 mL,配 制成 100 mg/L 的标准储备液,于 -20 ℃ 避光保 存。分别移取标准储备液 1 mL 至 10 mL 容量瓶 中,用 V(Z h):V(x) = 10:90的溶液稀释,配 成 10 mg/L 的混合标准溶液。用流动相作为稀释 液,分别将混合标准溶液逐级稀释成 0.1~200 µg/L 的系列标准工作溶液;同时称取 10 g 空白土壤样 品,按 1.2 节的前处理步骤提取净化后,与上述混 合标准溶液混匀,配成系列基质匹配标准工作溶 液。以进样质量浓度 (μg/L)为横坐标,定量离子 对的色谱峰面积为纵坐标,获得溶剂/基质标准曲 线,用于考察方法的基质效应和线性关系。

2 结果与分析

2.1 质谱条件的优化

针泵恒流注射进样 1 mg/L 的混合标准工作溶

液,分别在电喷雾正离子模式(ESI⁺)和负离子模式(ESI⁺)下进行扫描。结果表明:硝磺草酮、 MNBA和AMBA在ESI⁺模式下灵敏度较低,而 在ESI⁻模式下具有更高的灵敏度,形成[M-H]⁻准 分子离子峰,这是因为3种化合物均易在水溶液 中发生电离而表现出弱酸性^[14]。确定硝磺草酮、 MNBA和AMBA的母离子分别是*m/z*338.0、*m/z* 243.9和*m/z*213.9。在选定母离子后进行子离子扫 描(production scan),通过优化碰撞能量,可获得 二级特征碎片离子(图1)。其中,硝磺草酮的主要 特征碎片离子为*m/z*291.0、212.0和249.0,依据 键能强弱以及碎片质荷比等信息,推测是丢失了 CO₂和NO₂等碎片而产生的,它们分别代表 [M-H₂NO₂]⁻、[M-H-HNO₂-CH₃SO₂]⁻和 [M-NO₂-CO₂]⁻峰;代谢物 MNBA 的主要特征碎片离子为 *m/z* 200.0、170.0和142.0,主要是丢失 CO₂、CO和NO等中性碎片而产生的,分别代表 [M-H-CO₂]⁻、[M-H-CO₂-NO]⁻和 [M-H-CO₂-NO-CO]⁻峰;代谢物 AMBA 主要的特征碎片离子为 *m/z* 170.0和155.0,主要是丢失 CO₂、CO中性碎片和 CH₃而产生的,分别代表 [M-H-CO₂]⁻和 [M-H-CO₂-CH₃]⁻峰。对去簇电压和碰撞能量等质谱参数进行优化,获得对硝磺草酮、MNBA和 AMBA 最高灵敏度的最佳仪器参数和特征碎片离子如表 1 所示。

Fig. 1 Proposed fragmentation scheme of mesotrione (a), MNBA (b) and AMBA (c)

2.2 液相色谱条件的优化

分别考察了不同色谱柱 [Hypersil GOLD (100 mm × 2.1 mm, 1.9 μm) 和 HSS T3 (100 mm × 2.1 mm, 1.7 μm)] 以及流动相 (乙腈-水、乙腈-5 mmol/L 乙酸铵、乙腈-0.3% 甲酸水) 对测定结果的影响。结果发现:以乙腈-水、乙腈-5 mmol/L 乙酸铵为流动相时,3 种化合物均无保留;而以乙腈-0.3% 甲酸水为流动相时,3 种化合物在 Hypersil GOLD 柱和 HSS T3 柱上均有保留,但 HSS T3 柱的分离 度好于 Hypersil GOLD 柱。这是由于流动相的酸 性环境抑制了3 种化合物的电离,增强了化合物 与色谱柱疏水基团 C₁₈ 链的相互作用,同时 HSS T3 柱又具有保留水溶性的、极性较大的小分子化 合物的特性。综合以上因素,最终选用了 HSS T3 色谱柱,其标准选择离子色谱图见图 2。

2.3 提取条件的优化

土壤中的农药易被有机质和矿物成分所吸附^[18], 因此对提取液的优化至关重要。本研究考察了不

同提取液(水、0.3%甲酸-水、1%甲酸-水、乙腈-水、0.1% 氨水)对土壤中硝磺草酮、MNBA 及 AMBA 回收率的影响。以褐土 (pH 8.1) 为研究对 象,按1.2.1节的方法进行提取,提取液不经净化 处理直接测定。结果(图3)表明:以0.3%甲酸-水和1%甲酸-水溶液为提取液时,硝磺草酮和 AMBA 的回收率均 < 70%, 且随着酸度增大, 回 收率降低,而对 MNBA 的影响较小;以水、0.1% 氨水、乙腈-水为提取液时,硝磺草酮及其代谢物 回收率均 > 90%。由以上结果可知,土壤中有机 质对硝磺草酮及其代谢物的吸附作用取决于土壤 环境中的 pH 值, 且 pH 值越大, 越易淋溶, 这与 文献 [19-20] 报道基本一致。因此, 硝磺草酮及其 代谢物的提取应选择在中性或弱碱性条件下进 行,而具体提取液的选择要在固相萃取柱优化后 方可确定。

2.4 固相萃取柱条件的优化

硝磺草酮、MNBA 及 AMBA 均易电离形成阴

离子,故本研究选用阴离子交换固相萃取柱 (SPE), 并考察了 SPE 洗脱液及样品提取液 [0.1% 氨水、 不同比例 (10%、20%、30%、40%、50%) 乙腈-0.1% 氨水溶液] 对硝磺草酮、MNBA 和 AMBA 回 收率的影响。结果 (图 4~5) 表明:当提取液中乙 腈比例超过 20% 时,硝磺草酮与 AMBA 的回收 率明显降低,而对 MNBA 的影响较小。综合考

虑,最终选择 V(乙腈):V(0.1% 氨水)=10:90 作 为样品提取液,V(乙酸乙酯):V(甲醇):V(甲酸)= 87:9:4 作为 SPE 洗脱液。

3 种化合物在固相萃取柱上的吸附能力和在溶 剂中受到的作用力由其化学结构特征决定。硝磺 草酮由于苯环的共轭作用而可促进其电离; MNBA 邻位硝基由于与苯环的共轭作用及诱导作 用,使其邻位碳原子的电子云密度降低,对羧基

上的电子产生吸引作用,增强了 MNBA 的离解; 而 AMBA 邻位氨基上的氮与羧羟基氢的氢键作用 而最不易解离成酸根。由此可认为,3 种化合物的 酸性从高到低依次为 MNBA > 硝磺草酮 > AMBA,与阴离子固相萃取柱的作用力从大到小 依次为 MNBA > 硝磺草酮 > AMBA,因此,固相 萃取柱的优化既要考虑洗脱液的洗脱强度又要考 虑样品提取液的组成。

2.5 方法的线性范围、基质效应和灵敏度

由表 2 可知: 3 种化合物在试验范围内,其质量浓度与对应的峰面积间呈良好线性关系,r>0.999。基质标准曲线与溶剂标准曲线斜率的比值可反映基质效应的强弱,硝磺草酮、MNBA和AMBA的斜率比值分别为 0.86、0.83 和 0.91,具有一定的基质抑制效应,为使定量分析结果更准确,应采用同等基质配制的标准溶液进行定量分析。

以最小添加水平的 3 倍信噪比设定方法的检 出限,10 倍信噪比设定方法的定量限,硝磺草 酮、MNBA 和 AMBA 检出限分别为 0.1、0.3 和 0.2 μg /kg,定量限分别为 0.3、1.0 和 0.6 μg /kg, 检出限和定量限均低于中国和欧盟的 MRL 值,能 够满足检测要求^[8]。

表 2 硝磺草酮及其代谢物的标准曲线

Table 2	Standard	curves of	f mesotrione	and its	metabolites
---------	----------	-----------	--------------	---------	-------------

化合物 Compound	标准曲线 Standard curve	线性范围 Linearity range/(µg/L)	相关系数 r
7 坐7共 士 至1	溶剂 (Solvent): y = 14 279.4 x + 4 190.7	0.1.200	0.999 9
hfi(明早前) mesourione	基质 (Matrix): y = 12 249.0 x + 1 879.7	0.1~200	0.999 8
	溶剂 (Solvent): y = 3 745.7 x + 4 268.6	1 200	0.999 7
MINBA	基质 (Matrix): y=3 113.4 x+2 794.2	1~200	0.999 1
	溶剂 (Solvent): y = 4 759.9 x + 1 392.2	0.5.200	0.999 8
AMBA	基质 (Matrix): y=4 326.9 x+1 049.8	0.5~200	0.999 7

2.6 方法的准确度和精密度

结果 (表 3) 明: 在 0.3~50 µg/kg 添加水平下, 磺草酮、MNBA 及 AMBA 在土壤中的平均回收率 在 73%~97% 之间,相对标准偏差 (RSD) 在 2.4%~12.9% 之间 (n = 5)。在 10 μg/kg 水平上考察 了该方法在中性和酸性土壤 (黄土 pH 6.4,红土 pH 4.6) 条件下的适用性。结果 (图 6) 表明:其回 收率在 71%~85% 之间,表明该方法能够适用于不

表 3 硝磺草酮及其代谢物在土壤中的回收率和相对标准偏差 (n=5)

tuble 5 Trefuge recoveries and respect of mesodrone and its metabolite nom son (n	able 3	Average recoveries and RSDs	s of mesotrione and	l its metabolite	from soil (n=	=5)
---	--------	-----------------------------	---------------------	------------------	---------------	-----

化合物 Compound	添加水平 Spiked level/(µg/kg)	平均回收率 Average recovery/%	相对标准偏差 RSD/%
硝磺草酮 mesotrione	0.3	78	12.9
	10	83	4.3
	50	82	2.4
MNBA	1.0	94	9.4
	10	97	6.5
	50	93	3.5
AMBA	0.6	74	11.2
	10	75	3.6
	50	73	3.3

Fig. 6 The total ion chromatograms of mesotrione in blank soils (a), spiked soils (b) and the sample (c)

同pH类型土壤中硝磺草酮及其代谢物的测定。

2.7 实际样品测定

采用室内模拟试验研究了硝磺草酮在江西红 土中的代谢规律。将添加了 10 mg/kg 硝磺草酮的 红土置于 35 ℃ 恒温黑暗培养箱中,定期取样,按 1.2~1.3 节的方法进行处理和测定。结果(图 7)表明: 硝磺草酮在红土中的消解规律符合一级动力学方 程 $y = 9.851 9e^{-0.175x}$, r = -0.974 2,消解半衰期为 4.0 d,其代谢物 AMBA 最高值为 1.34 mg/kg (第 10 天),最大转化率为 21.1%; MNBA 最高值为 0.009 mg/kg (第 2 天),转化率低于 0.2%,转化量 非常少。AMBA 在红土中的残留量显著高于 MNBA,说明硝磺草酮优先代谢为 AMBA。

3 结论

硝磺草酮及其代谢物 MNBA 及 AMBA 极性 大小和其在土壤中的吸附性依赖于 pH 环境,其在 中性或弱碱性条件下呈离子状态,而在酸性条件 下则表现出非极性性质。基于以上因素,采用 10% 乙腈-0.1% 氨水溶液提取, PAX 型 SPE 阴离 子交换固相萃取柱净化,建立了土壤中硝磺草酮 及其代谢物 MNBA 及 AMBA 同时测定的 UPLC-MS/MS 方法,该方法简单、灵敏度高,能够满足 土壤中农药痕量分析的需要。同时,在方法优化 试验中,推测出 3 种化合物的酸性从高到低依次 为 MNBA > 硝磺草酮 > AMBA,进而可推断出在 碱性土壤中的吸附能力从大到小依次为 MNBA > 硝磺草酮 > AMBA。所得结果可为进一步研究硝 磺草酮的环境行为和相关产品中硝磺草酮残留控 制提供技术支持。

Vol. 18

参考文献(Reference):

- [1] 张靖, 吕和平, 曹立冬, 等. 六种喷雾助剂提高硝磺草酮防除稗草及反枝苋效果的作用机理初探[J]. 农药学学报, 2015, 17(3): 348-356.
 ZHANG J, LÜ H P, CAO L D, et al. Synergism of six spray adjuvants on mesotrione in controlling *Echinochloa crus-galli* and *Amaranthus retroflexus*[J]. Chin J Pestic Sci, 2015, 17(3): 348-356.
- [2] MITCHELL G, BARTLETT D W, FRASER T E M, et al. Mesotrione: a new selective herbicide for use in maize[J]. Pest Manage Sci, 2001, 57(2): 120-128.
- [3] ŠOJIĆ D V, ORČIĆ D Z, ČETOJEVIĆ-SIMIN D D, et al. Kinetics and the mechanism of the photocatalytic degradation of mesotrione in aqueous suspension and toxicity of its degradation mixtures[J]. J Mol Catal A-Chem, 2014, 392: 67-75.
- [4] CHAABAEN H, VULLIET E, CALVAYRAC C, et al. Behaviour of sulcotrione and mesotrione in two soils[J]. Pest Manage Sci, 2008, 64(1): 86-93.
- [5] MORO C V, BRICHEUX G, PORTELLI C, et al. Comparative effects of the herbicides chlortoluron and mesotrione on freshwater microalgae[J]. Environ Toxicol Chem, 2012, 31(4): 778-786.
- [6] 滕春红, 王金楠, 李晓薇, 等. 硝磺酮对轮作中后茬作物安全性的影响[J]. 现代化农业, 2012(11): 1-2.
 TENG C H, WANG J N, LI X W, et al. Effects and safety of mesotrione on succeding crops[J]. Modern Agric, 2012(11): 1-2.
- [7] ABIT M J M, AL-KHATIB K, REGEHR D L, et al. Differential response of grain sorghum hybrids to foliar-applied mesotrione[J].

Weed Technol, 2009, 23(1): 28-33.

- [8] 食品安全国家标准 食品中农药最大残留限量: GB 2763—2014[S]. 北京: 中国农业出版社, 2014.
 National food safety standard-Maximum residue limits for pesticides in food: GB 2763—2014[S]. Beijing: China Agriculture Press, 2014.
- [9] EU Pesticides database[DB/OL]. [2016-01-20]. http://ec.europa. eu/food/plant/pesticides/eu-pesticides-database/public/?event= pesticide.residue.CurrentMRL&language=EN.
- [10] DURAND S, SANCELME M, BESSE-HOGGAN P, et al. Biodegradation pathway of mesotrione: Complementarities of NMR, LC-NMR and LC-MS for qualitative and quantitative metabolic profiling[J]. Chemosphere, 2010, 81(3): 372-380.
- [11] GIACOMAZZI S, COCHET N. Environmental impact of diuron transformation: a review[J]. Chemosphere, 2004, 56(11): 1021-1032.
- [12] BONNET J L, BONNEMOY F, DUSSER M, et al. Toxicity assessment of the herbicides sulcotrione and mesotrione toward two reference environmental microorganisms: *Tetrahymena pyriformis* and *Vibrio fischeri*[J]. Arch Environ Con Tox, 2008, 55(4): 576-583.
- [13] BENSALAH N, KHODARY A, ABDEL-WAHAB A. Kinetic and mechanistic investigations of mesotrione degradation in aqueous medium by Fenton process[J]. J Hazard Mater, 2011, 189(1-2): 479-485.
- [14] BARCHAANSKA H, BABILAS B, GLUZICKA K, et al. Rapid determination of mesotrione, atrazine and its main degradation products in selected plants by MSPD-HPLC and indirect estimation of herbicides phytotoxicity by chlorophyll quantification[J]. Int J

Environ Anal Chem, 2013, 94(2): 99-114.

- [15] ALFERNESS P, WIEBE L. Determination of mesotrione residues and metabolites in crops, soil, and water by liquid chromatography with fluorescence detection[J]. J Agric Food Chem, 2002, 50(14): 3926-3934.
- [16] 张代辉, 滕国生, 李正强, 等. 高效液相色谱-串联质谱法测定食品 中硝磺草酮[J]. 分析化学, 2012, 40(5): 811-812.
 ZHANG D H, TENG G S, LI Z Q, et al. Determination of mesotrione in food by liquid chromatography tandem mass spectrometry[J]. Chin J Anal Chem, 2012, 40(5): 811-812.
- [17] CHEN X X, LI W M, WU Q, et al. Dissipation and residues of the herbicide mesotrione in maize and soil in open field[J]. Bull Environ Contam Tox, 2012, 88(5): 772-775.
- [18] PIERCE R H, OLNEY C E, FELBECK G T. Pesticide adsorption in soils and sediments[J]. Environ Lett, 1971, 1(2): 157-172.
- [19] DYSON J S, BEULKE S, BROWN C D, et al. Adsorption and degradation of the weak acid mesotrione in soil and environmental fate implications[J]. J Environ Qual, 2002, 31(2): 613-618.
- [20] 孔德洋, 石利利, 单正军, 等. 除草剂甲基磺草酮在土壤中的吸附及 淋溶特性[J]. 中国环境科学, 2008, 28(8): 753-757.
 KONG D Y, SHI L L, SHAN Z J, et al. Adsorption and leaching behavior of herbicide mesotrione in soils[J]. China Environ Sci, 2008, 28(8): 753-757.

(责任编辑: 曲来娥)