# 大陆板内玄武岩数据挖掘:成分多样性及在 判别图中的表现<sup>\*</sup>

王金荣<sup>1</sup> 潘振杰<sup>1</sup> 张旗<sup>2</sup> 陈万峰<sup>1</sup> 杨婧<sup>1</sup> 焦守涛<sup>2</sup> 王淑华<sup>1</sup> WANG JinRong<sup>1</sup>, PAN ZhenJie<sup>1</sup>, ZHANG Qi<sup>2</sup>, CHEN WanFeng<sup>1</sup>, YANG Jing<sup>1</sup>, JIAO ShouTao<sup>2</sup> and WANG ShuHua<sup>1</sup>

1. 兰州大学地质科学与矿产资源学院,甘肃省西部矿产资源重点实验室,兰州 730000

2. 中国科学院地质与地球物理研究所,北京 100029

1. Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, Lanzhou 730000, China

2. Institute of Geology and Geophysics, China Academy of Sciences, Beijing 100029, China

2015-11-26 收稿, 2016-06-14 改回.

# Wang JR, Pan ZJ, Zhang Q, Chen WF, Yang J, Jiao ST and Wang SH. 2016. Intra-continental basalt data mining: The diversity of their constituents and the performance in basalt discrimination diagrams. *Acta Petrologica Sinica*, 32(7):1919–1933

Abstract It is generally considered that continental flood basalts (CFB), rift basalts (CRB), within-plate basalt (WPB) are produced in the plate tectonic setting which is related to the mantle plume activities from the enriched lower mantle, similar to OIB in terms of geochemistry characteristics. In this paper, a GEOROC database of the global CFB, CRB and WPB is used to find that these three categories almost fall in all various basalt tectonic environment areas, some even primarily falls in MORB or IAB, but not in WPB area. This result suggests that the original discriminant function of the basalt discrimination diagrams is still questionable, especially, there exist some problems in most of the discrimination diagrams of continental basalt. All these tremendous changes of CFB, CRB and WPB geochemistry compositions suggest that the source may be strongly heterogeneous; some of CFB, CRB and WPB come from enriched mantle plume with classic characteristics of OIB, some of them derive from MORB source related with the slab-recycled effect, and others from depleted mantle source beneath the island arc lithosphere, characterized by obvious Nb-Ta depletion, similar to island arc basalts. In many places, continental basalts can be divided into two types: low titanium and high titanium. Low-Ti basalts are depleted or strongly depleted, and high-Ti basalts are usually enriched. The study of this paper shows that enriched-type basalts may come from enriched lower mantle, but strongly-depleted-type or depleted-type basalts may derive from the astheospheric mantle characterized by MORB or IAB. The study further points out that the nature of the source may be the main controlling factor of the qualities of continental basalts. Meanwhile, there are many other important factors leading to the diversity of continental basalts, such as the degree of partial melting, melting depth, fractional crystallization, crustal contamination and AFC process.

Key words Continental flood basalt; Rift basalt; Within-plate basalt; Data mining; Depleted mantle; Enriched mantle; Island arc

摘 要 通常认为,大陆溢流玄武岩(CFB)、裂谷玄武岩(CRB)、板内玄武岩(WPB)均产于板内构造环境,其地球化学特征 与OIB 类似,源于富集的下地幔,与地幔柱的活动有关。本文利用 GEOROC 数据库对全球 CFB、CRB 和 WPB 数据进行挖掘, 发现上述三类玄武岩判别图投图几乎落入了全部的构造环境域,有些甚至主要落入 MORB 和 IAB 区,而不是落入 WPB 区。 结果表明原先的玄武岩判别图的判别功能值得商榷,尤其对大陆玄武岩来说,许多判别图都存在问题。全体 CFB、CRB 和 WPB 的地球化学成分变化巨大,暗示其源区具有强烈的不均一性:部分 CFB、CRB 和 WPB 来自富集的地幔柱,仍然具有经典 的 OIB 的特征;部分来自 MORB 的源区,与 MORB 的再循环作用有关;部分来自岛弧岩石圈之下的亏损地幔源区,以强烈亏损 Nb-Ta 为特征,类似岛弧玄武岩的地球化学特征。许多地区的大陆玄武岩可分为低钛和高钛两类,低钛玄武岩大多是亏损或 强烈亏损的,而高钛玄武岩通常是富集型的。本文的研究表明,富集型大陆玄武岩可能来自富集的下地幔,而亏损的和强烈

<sup>\*</sup> 本文受中央高校基本科研业务费项目(Lzu-Jbky-2012-128)及中国地质调查局项目(121201011000150012-02)联合资助.

第一作者简介: 王金荣, 男, 1958 年生, 教授, 博士生导师, 岩石大地构造学专业. E-mail: jrwang@ lzu. edu. cn

亏损的玄武岩可能来自具有 MORB 或岛弧特征的软流圈地幔。进一步指出,源区性质可能是大陆玄武岩多样性的主控因素, 其次为部分熔融程度、熔融深度、结晶分离、陆壳混染以及 AFC 过程。

关键词 大陆溢流玄武岩;裂谷玄武岩;板内玄武岩;数据挖掘;亏损地幔;富集地幔;岛弧中图法分类号 P581; P588. 145

# 1 引言

大陆溢流玄武岩是大陆上分布广,研究最详细的玄武岩 类,巨大规模的大陆溢流玄武岩被称为大火成岩省,如北大 西洋第三纪玄武岩、德干高原玄武岩、Parana 玄武岩、峨眉山 玄武岩等。裂谷玄武岩、板内玄武岩的规模稍逊于大陆溢流 玄武岩,尤其东非裂谷玄武岩,被视为板块扩张的初始阶段 而备受学术界重视。20世纪70~80年代,以Pearce为首的 一批学者(Pearce, 1975, 1976, 1982, 1983; Pearce and Robinson, 2000; Pearce and Cann, 1973; Pearce and Gale, 1977; Pearce and Norry, 1979; Pearce and Peate, 1995; Pearce et al., 1984; Capedri et al., 1980; Glassley, 1974; Harris et al., 1986; Meschede, 1986; Mullen, 1983; Wood et al., 1979; Wood, 1980; Galoyan et al., 2007; Workman and Hart, 2005)致力于玄武岩构造判别图的构建,为板块构造和 大陆造山带研究开辟了新的途径,极大地丰富了玄武岩研究 的内容,将玄武岩构造环境及其形成的地球动力学过程的研 究推向了高峰。然而,随着地球科学技术及仪器设备的发 展,全球火成岩数据库的积累及应用,地质科学家对原先建 立起来的玄武岩判别图进行了重新评估,发现其判别功能存 在诸多缺陷,并初步提出了修正路径(Li et al., 2015; Vermeesch, 2006a, b; Snow, 2006).

本文利用 GEOROC 数据库资料,对全球大陆溢流玄武 岩、裂谷玄武岩和板内玄武岩数据进行了初步的挖掘,发现 早先的玄武岩构造环境判别方法的理论和思路可能存在一 些问题。早先的判别图由于时代、研究区域、研究思路以及 研究手段和分析技术的限制,得出的结论或者取得的认识必 然具有一定的局限性,或存在某些不足的。之前认为,大陆 溢流玄武岩、裂谷玄武岩和板内玄武岩是来自于富集的下地 幔,而通过对全球大陆溢流玄武岩、裂谷玄武岩和板内玄武 岩的数据挖掘、研究发现,多数的样品并非是强烈富集的,部 分样品甚至是亏损的,陆内玄武岩地球化学特征及性质具有 明显的多样性。因此,利用 GEOROC 数据库对大陆溢流玄武 岩、裂谷玄武岩、板内玄武岩进行数据挖掘,探究陆内玄武岩 的源区性质以及构造判别图的可信度、选择可信的判别元素 具有重要的科学意义。本文仅为数据挖掘的尝试性研究,旨 在抛砖引玉的作用。

## 2 研究方法

数据筛选是研究的前提,虽然耗时多,但对保证结果的

精确性和可靠性至关重要。在数据分析分析过程中如发现 问题需重新筛选。筛选数据必须客观,切忌主观臆测。

#### 2.1 数据筛选的原则和主要内容

1) 剔除超镁铁岩、侵入岩、中酸性岩、辉长岩等的数据, 仅保留玄武岩、辉绿岩和粒玄岩的数据;2) 剔除 SiO<sub>2</sub> < 45% 和 SiO<sub>2</sub> > 55% 的数据, 剔除非玄武岩样品; 3) 剔除 TiO<sub>2</sub> < 0.1%的样品,个别玄武质玻璃会出现这种情况;4) 剔除 Mg\* >0.70的样品,根据不同作者的研究,玄武岩原始岩浆的 Mg<sup>#</sup>大体在 0.65~0.72 之间,大于该数值的样品即为堆晶 岩,堆晶岩不能判别构造环境; 5) 剔除 Al<sub>2</sub>O<sub>3</sub> < 10% 和 Al<sub>2</sub>O<sub>3</sub> >18%的样品,个别玄武质玻璃会出现这种情况;6)剔除烧 失量和 H<sub>2</sub>O > 7%、CO<sub>2</sub> > 3% 的数据,挥发分和 H<sub>2</sub>O 含量高, 指示蚀变作用强烈;CO2含量高,指示碳酸盐化、方解石化强 烈;7) 剔除 K<sub>2</sub>O > 8%、Na<sub>2</sub>O > 10% 和 CaO > 20% 的样品,防 止其它类型的样品混入;8)其他可能发生的分析错误的数 据,例如某些元素含量比大多数数据低1~2个数量级的数 据;9)剔除个别数据库本身错误的数据。我们在数据筛选过 程中,发现有一批数据类似岛弧或者弧后的特征(Wang et al., 2007; Maxeiner et al., 2005; Rogers et al., 2006; Dunning et al., 1991; Greene et al., 2009), 通过查看原始文 献,发现原作者研究的确实为岛弧或者数据所在位置确为岛 弧,推测可能是数据录入时误将其列入板内玄武岩。

#### 2.2 作图

1)区分大陆溢流玄武岩、裂谷玄武岩、板内玄武岩,考察 它们之间是否存在差异,及其在判别图中的分布;2)查阅判 别图原始文献,了解判别图的数据来源、原作者的思路和结 论;3)对比本次研究,得出相应的结论。

#### 2.3 样品分布

筛选后全部大陆溢流玄武岩(CFB)、裂谷玄武岩 (CRB)、板内玄武岩(WPB)样品在全球范围内的分布(图1)。

#### 2.4 数据来源与数据量

本文是根据 GEOROC 数据库的资料进行研究的。通过 对筛选后的全部数据进行整理,统计了大陆溢流玄武岩 (CFB)、裂谷玄武岩(CRB)、板内玄武岩(WPB)的数据来源 和数据量(表1)。CRB 和 CFB 是 GEOROC 数据库中固有的 分类,而数据库中的 WPB 据我们推测可能是除了 CRB 和 CFB 之外的具板内玄武岩地球化学特征的大陆玄武岩。

#### 表1 全部 CFB、CRB、WPB 样品的数据来源与数据量统计表

Table 1 The statistical chart of data sources and data volume of all the CFB, CRB and WPB samples

| 大陆溢流玄武岩(CFB)                                    | n    | 板内玄武岩(WPB)                                 | n     |
|-------------------------------------------------|------|--------------------------------------------|-------|
| AUSTRALIA                                       | 175  | ADRIA DOMAIN                               | 22    |
| EMEISHAN                                        | 443  | AMAZONIAN CRATON_PROTEROZOIC               | 66    |
| CENTRAL ATLANTIC MAGMATIC PROVINCE              | 969  | AMUR SUPERTERRANE                          | 21    |
| CHIFENG FLOOD BASALTS                           | 30   | ANATOLIA-IRAN BELT-CENOZOIC/QUATERNARY     | 1485  |
| CHILCOTIN PLATEAU BASALTS/BRITISH COLUMBIA      | 44   | ANDEAN BASINS-MESOZOIC                     | 154   |
| DECCAN                                          | 2043 | ANTARCTICA-PALEOZOIC                       | 83    |
| ETENDEKA PROVINCE                               | 473  | ANTARCTICA/PATAGONIA-MESOZOIC              | 152   |
| FRANKLIN LARGE IGNEOUS PROVINCE                 | 34   | ARABIAN-NUBIAN SHIELD-CENOZOIC             | 754   |
| HIGH ARCTIC LARGE IGNEOUS PROVINCE              | 136  | ARABIAN-NUBIAN SHIELD-MESOZOIC             | 62    |
| HURONIAN FLOOD BASALT PROVINCE                  | 76   | ARABIAN-NUBIAN SHIELD-NEOPROTEROZOIC       | 339   |
| KAROO AND FERRAR PROVINCES                      | 1433 | ARAVALLI CRATON_PROTEROZOIC                | 7     |
| KUZNETSK BASIN (KUZBASS) TRAPS                  | 13   | ARGENTINA-PALEOZOIC                        | 12    |
| MACKENZIE LARGE IGNEOUS PROVINCE                | 211  | ATLAS MOUNTAINS                            | 76    |
| MADAGASCAR FLOOD BASALT                         | 224  | AUSTRALIA                                  | 1378  |
| MARATHON LARGE IGNEOUS PROVINCE                 | 60   | BAIKAL RIFT ZONE_CENOZOIC                  | 240   |
| MIDCONTINENT RIFT SYSTEM-KEWEENAWAN             | 220  | BAIKAL-PATOM REGION_PROTEROZOIC            | 58    |
| NANDALING-YANSHAN BELT                          | 17   | BALTIC SHIELD-PALEOZOIC                    | 21    |
| NILUFER UNIT-YENISEHIR ASSOCIATION-PONTIDES     | 22   | BALTIC SHIELD-PROTEROZOIC                  | 788   |
| NORTH ATLANTIC IGNEOUS PROVINCE (NAIP)          | 2106 | BASTAR CRATON_MESOZOIC                     | 1     |
| PANJAL TRAP                                     | 50   | BERING SEA BASALT PROVINCE-CENOZOIC        | 7     |
| PARANA                                          | 1021 | BIRIMIAN-WEST AFRICA                       | 196   |
| RAJAHMUNDRY TRAPS                               | 26   | CANADIAN SHIELD_MESOZOIC                   | 2     |
| RAJMAHAL-BENGAL-SYLHET                          | 119  | CANADIAN SHIELD_PALEOZOIC                  | 4     |
| SIBERIAN TRAPS                                  | 472  | CANADIAN SHIELD_PROTEROZOIC                | 154   |
| SOUTH TETHYAN SUTURE ZONE-PAKISTAN              | 6    | CARPATHIAN BELT AND PANNONIAN BASIN        | 687   |
| UMKONDO PROVINCE                                | 10   | CAUCASUS                                   | 51    |
| TARIM BASIN                                     | 79   | CENTRAL AFRICAN REPUBLIC                   | 8     |
| VILUY TRAPS                                     | 14   | CENTRAL ASIAN FOLDBELT-CENOZOIC            | 2940  |
| WRANGELLIA                                      | 184  | CENTRAL ASIAN FOLDBELT-MESOZOIC            | 11111 |
| YELLOWSTONE-SNAKE RIVER PLAIN VOLCANIC PROVINCE | 3019 | CENTRAL ASIAN FOLDBELT-PALEOZOIC           | 1325  |
| YEMEN PLATEAU                                   | 94   | CENTRAL ASIAN FOLDBELT-PROTEROZOIC         | 741   |
| 裂谷玄武岩(CRB)                                      | n    | CENTRAL-EAST IRANIAN MICROCONTINENT        | 24    |
| ANTARCTICA                                      | 250  | CIRCUM-PARANA ALKALINE VOLCANIC PROVINCES- | 22    |
| APPALACHIANS                                    | 615  | CENOZOIC                                   | 22    |
| AUSTRALIA                                       | 13   | CIRCUM-PARANA ALKALINE VOLCANIC PROVINCES- | 101   |
| BASIN AND RANGE-GREAT BASIN                     | 823  | MESOZOIC                                   | 191   |
| EAST AFRICAN RIFT                               | 1308 | COLORADO PLATEAU                           | 164   |
| GARDAR PROVINCE-GREENLAND                       | 53   | DARFUR DOME VOLCANIC PROVINCE SUDAN        | 112   |
| GULF OF SUEZ RIFT                               | 13   | DINARIDES                                  | 20    |
| LATE CRETACEOUS IBERIAN IGNEOUS PROVINCE        | 2    | EAST SAHARA SWELL-CRETACEOUS               | 27    |
| MEXICAN BASIN AND RANGE                         | 469  | EASTERN MEDITERRANEAN BELT-CENOZOIC        | 57    |
| MID-AFRICAN RIFT SYSTEM                         | 283  | EASTERN MEDITERRANEAN BELT-MESOZOIC        | 166   |
| NORTHERN VARISCAN FORELAND                      | 19   | ETHIOPIAN PLATEAU                          | 29    |
| OMAN RIFT                                       | 28   | EUROPEAN OROGENIC BELT-CENOZOIC            | 1091  |
| OSLO RIFT                                       | 20   | EUROPEAN OROGENIC BELT-MESOZOIC            | 11    |
| RED SEA RIFT                                    | 128  | EUROPEAN OROGENIC BELT-PALEOZOIC           | 648   |
| RIO GRANDE RIFT                                 | 216  | EUROPEAN OROGENIC BELT-PROTEROZOIC         | 6     |
| ROSS OROGEN-TRANSANTARCTIC MOUNTAINS-CAMBRIAN   | 6    | GUYANA SHIELD-PROTEROZOIC                  | 7     |
| SICILY CHANNEL RIFT                             | 136  | HOGGAR SWELL                               | 40    |
| SIRTE BASIN                                     | 6    | KAAPVAAL CRATON_MESOZOIC                   | 5     |
| SORGENFREI-TORNQUIST ZONE-NORTH SEA VOLCANIC    | 98   | KAAPVAAL CRATON_PROTEROZOIC                | 24    |
| PROVINCE                                        | 20   | KOHISTAN-LADAKH TERRANE (GANGDISE BELT)    | 146   |

#### 续表1

1922

#### Continued Table 1

| MACKENZIE LARGE IGNEOUS PROVINCE                | 5   | RIO DE LA PLATA CRATON                 | 81  |
|-------------------------------------------------|-----|----------------------------------------|-----|
| MADAGASCAR-CENOZOIC                             | 34  | SAO FRANCISCO CRATON_PROTEROZOIC       | 17  |
| MADAGASCAR FLOOD BASALT                         | 2   | SOUTHERN PATAGONIA                     | 10  |
| MESETA DE CANQUEL                               | 10  | SUL RIO GRANDENSE SHIELD_PROTEROZOIC   | 27  |
| MIDCONTINENT US KIMBERLITE-CARBONATITE PROVINCE | 3   | TOCANTINS PROVINCE                     | 32  |
| MUNSTER BASIN                                   | 10  | TRANS-HUDSON OROGEN                    | 239 |
| NAMAQUALAND NATAL BELT_PROTEROZOIC              | 26  | UKRAINIAN SHIELD                       | 2   |
| NEW ZEALAND                                     | 914 | URALS                                  | 46  |
| NORTH AMERICAN CORDILLERA-CENOZOIC-QUATERNARY   | 746 | VERKHOYANSK-CHUKOTKA COLLISION ZONE    | 6   |
| NORTH AMERICAN CORDILLERA-MESOZOIC              | 177 | WEST-AFRICAN COASTAL BELTS-PAN-AFRICAN | 14  |
| NORTH AMERICAN CORDILLERA-PALEOZOIC             | 153 | WYOMING CRATON_CENOZOIC                | 42  |
| NORTH ATLANTIC CRATON_PROTEROZOIC               | 115 |                                        |     |

注:据 GEOROC 数据库,阿拉伯数字为本文采用的经过数据筛选后的样品数量





CFB-大陆溢流玄武岩;CRB-大陆裂谷玄武岩;WPB-板内玄武岩(下同)

Fig. 1 Distribution of all the CFB, CRB and WPB samples in the world (after GEOROC Database)

CFB-Continental Flood Basalts; CRB-Continental Rift Basalts; WPB-Within-Plate Basalts (the same below)

# 3 玄武岩判别图

本次研究采用的 GEOROC 数据库的数据总共 113614 个,经过筛选淘汰数据 76313 个,留下的有效数据 37331 个。 其中大陆溢流玄武岩 14287 个,裂谷玄武岩 4499 个,板内玄 武岩 18545 个。全部数据中,全岩数据 36693 个,玻璃 638 个。玻璃与全岩一样适合用于构造环境判别。我们对全部 全岩与玻璃样品进行投图,结果表明,在数据筛选之后,全岩 和玻璃的地球化学性质大体是相当的,投图得出的结果也大 体是一致的(限于篇幅,文中未列该图)。

(1) FeO<sup>T</sup>-MgO-Al<sub>2</sub>O<sub>3</sub> 图(图 2a)。该图是 Pearce and Gale (1977)设计的,使用了 8400 个数据(包括 1003 个大陆

玄武岩的数据)。本文使用了 14237 个大陆溢流玄武岩数 据、4329 个裂谷玄武岩数据、5090 个板内玄武岩数据,在该 判别图上,样品几乎落入了判别图中各种不同的环境域,说 明该图的判别功能还存在问题。从图 2a 中可以看出,大陆 溢流玄武岩、裂谷玄武岩和板内玄武岩样品的分布范围较一 致,并无明显差别。不同的是 WPB 具富铝的趋势。通常认 为,典型的板内玄武岩是贫铝的,岛弧玄武岩(图 2a 中的造 山带范围)是富铝的(Pearce *et al.*, 1984)。

(2) Ti-Zr-Y 图(图 2b)。该图是 Pearce and Cann (1973) 提出来的。一共使用了 200 多个样品,包括大陆裂谷 玄武岩 35 个。原作者认为,该图最大的优点是能够正确区 分板内玄武岩与来自洋中脊和岛弧的玄武岩。Pearce *et al.* (1984)强调该图区分上述玄武岩的有效率可高达 95% 以 上,认为是地幔不均一性的反映。本次研究使用的 11018 个



图 2 全部 WPB、CFB 和 CRB 样品判别图解

粗棕色点线圈定的是 WPB、CFB 和 CRB 数据的共同密集区(下同)

Fig. 2 All the samples of WPB, CFB and CRB discrimination diagrams

The common dense areas of WPB, CFB and the CRB data is circled by thick brown line (the same below)

大陆溢流玄武岩数据、2980 个裂谷玄武岩数据、11654 个板 内玄武岩数据,也几乎覆盖了所有的构造环境域,提示 Pearce *et al.* (1984)对该图的评价值得商榷。值得注意的 是,有相当多的数据超出了判别图的范围,尤其是板内玄武 岩,Zr 的含量很高,数据向 Zr 端元汇集。

(3) Ti-Zr 图(图 2c, d)。这个图最初是由 Pearce and Cann (1973)提出来的,后来 Pearce 又于 1981 和 1982 年对其 作了修正(Pearce *et al.*, 1981; Pearce, 1982)。图 2c, d 使用 了 11513 个大陆溢流玄武岩数据、3335 个裂谷玄武岩数据、 12291 个板内玄武岩数据,样品投入所有的玄武岩构造环境 域,样品的分布几乎与 MORB 范围完全重叠,许多数据已远 远超出了原判别图的范围,无法区分 OIB、MORB 和 IAL(岛 弧熔岩)。

(4)Ti/Y-Nb/Y图(图2e)。该图是 Pearce 于 1982 年提 出(Pearce, 1982),1984 年修改的(Pearce et al., 1984b)。原 作者认为,Ti/Y 是区分板内玄武岩与其他类型玄武岩最好 的标志。但是,通过对 5304 个大陆溢流玄武岩、1778 个裂谷 玄武岩、8783 个板内玄武岩数据投图,发现样品的分布范围 几乎包括了判别图中的所有区域,提示此图判别板内玄武岩 与其他类型玄武岩的方法也存在问题。

(5) Cr-Y图(图2f)。该图是 Pearce 于 1981, 1982 年提 出来的(Pearce et al., 1981; Pearce, 1982),认为该图主要用 以区分岛弧和非岛弧玄武岩。从 10005 个大陆溢流玄武岩、 2637 个裂谷玄武岩、9982 个板内玄武岩数据投图结果来看, 其判别功能也失去了效果。王金荣等(待刊)的研究表明, MORB和 OIB 基本上不落在岛弧区域,暗示 MORB和 OIB 富 Y 而岛弧贫 Y。在图 2f 中有不少板内玄武岩样品落入了岛 弧域,说明板内玄武岩 Y、Cr 含量变化大,相当一部分贫 Cr 的样品超出了原判别图的范围(图 2f)。

(6) Hf-Th-Nb 图(图 3a, Wood, 1980)。该图的最大特色 是利用岛弧玄武岩 Th > Ta 的特征, 区分岛弧和非岛弧的玄 武岩(Wood, 1980)。本文的 4492 个大陆溢流玄武岩、1479 个裂谷玄武岩、7890 个板内玄武岩数据投图, CFB、CRB、 WPB 的密集区域涵盖了所有的构造环境区域。值得指出的 是, 上述玄武岩有相当一部分的 Th/Ta 比值是大于 3, 类似岛 弧的特征, 其原因我们将在后面详细讨论。

(7)Nb-Zr-Y图(图 3b,Meschede,1986)。该图是基于 N-MORB、P-MORB、WPT、WPA 四种类型的样品数据共 1847 个 而设计的。本文采用的 9993 个大陆溢流玄武岩、2816 个裂 谷玄武岩、11420 个板内玄武岩数据投图,样品落入全部的构 造环境域,可见该图的判别功能值得讨论。

(8)Zr/Y-Zr图(图3c,Pearce and Norry,1979)。该图可鉴别岛弧(或火山弧)玄武岩、MORB和板内玄武岩(邓晋福等,2015)。原作者将Zr/Y=3作为区分板内玄武岩与非板内玄武岩的界线(Pearce,1983; Rollison,1993)。我们将本次研究的11025个大陆溢流玄武岩、2981个裂谷玄武岩、12043个板内玄武岩数据投图,样品大部分进入板内玄武岩

区域,部分进入 MORB 和岛弧区。

(9)Th/Yb-Ta/Yb 图(图 3d, Pearce, 1982)。该图主要根据岛弧和非岛弧Th/Ta 比值的差异设计的。我们使用 4678 个大陆溢流玄武岩数据、1596 个裂谷玄武岩数据、7512 个板 内玄武岩数据的投图表明,大部分样品落入了 VAB 区域,只 有部分样品落入 WPB 区,说明该图在设计时存在明显缺陷。

(10) Y-La-Nb 图(图 3e, Cabanis and Lecolle, 1989)。按 照该图的设计, CFB、CRB、WPB 应该落入 2A 和 3A 区。本文 研究的 7450 个大陆溢流玄武岩、2266 个裂谷玄武岩、9861 个板内玄武岩数据进行投图,虽然 CFB、CRB、WPB 样品的主 要密集区域在 2A、2B、3A 区域,但仍有不少数据落入火山弧 区和弧后区,说明该图也存在较多问题。

(11) Ti-V 图(图 3f, Shervais, 1982)。Shervais(1982)用 Ti/V 值来区分 IAT、MORB 和 OIB。本文将 9612 个大陆溢流 玄武岩、2423 个裂谷玄武岩、9764 个板内玄武岩数据投入该 图,多数落入 MORB 区域,部分投入岛弧和 OIB 区域,提示该 图的判别功能也存在问题。

# 4 讨论

(1)上述研究表明,大陆溢流玄武岩、裂谷玄武岩和板内 玄武岩有很宽的成分变化范围,几乎覆盖了判别图上全部的 构造环境域,说明这些判别图的判别功能存在明显的缺陷, 急需对此作出重新评价。为什么会出现这种情况?可能是 由于受二十世纪研究技术、条件以及学术思想的限制,特别 是当时设计玄武岩判别图时采用的数据量较少或者只是采 用具有典型性的数据。我们采用全体数据投图,避免了"典 型"与抽样的缺陷,因而得出的认识应该是真实的、科学的。 最近,Li et al. (2015)利用 GEOROC 数据库资料检查了不同 构造环境下玄武岩(大陆溢流玄武岩、洋中脊玄武岩、洋岛玄 武岩、大洋高原玄武岩、弧后盆地玄武岩及各种类型的弧玄 武岩)的Zr、Ti、V、Y、Th、Hf、Nb、Ta、Sm和Sc判别图,发现不 同类型的玄武岩之间的重叠区域太大,在所检查的判别图 中,没有一个判别图能够清楚地区分开弧后盆地玄武岩和洋 中脊玄武岩、大陆溢流玄武岩、洋底高原玄武岩以及其它不 同类型的火山弧玄武岩(洋内弧,岛弧和陆缘弧),这与本文 的见解基本一致。

(2)在有些判别图中,上述玄武岩大部分不是落入 OIB 区,而是进入 IAT 和 VAB 区(如 Hf-Th-Nb 图(图 3a)、Nb-Zr-Y 图(图 3b)、Th/Yb-Ta/Yb 图(图 3d)、Y-La-Nb 图(图 3e))。 在图 3A 中,裂谷玄武岩(CRB)大多落入 WPB 区,表明 CRB 的源区可能主要是来自下地幔,是相对富集的,而大陆溢流 玄武岩和板内玄武岩(CFB 和 WPB)样品大部分不在 WPB 区,而是进入 MORB 和岛弧区,暗示 CRB 与后两类玄武岩的 源区可能有区别,也可能后两类玄武岩与 MORB 发生过混合 作用(数据进入 MORB 域)或受到过更多的陆壳混染作用的 影响(数据进入岛弧域)。当然,玄武岩地幔源区高度不均一



图 3 全部 WPB、CFB 和 CRB 样品判别图解

Fig. 3 All the samples of WPB, CFB and CRB discrimination diagrams

性也可能是一个重要的原因。图 3d 的 WPB 区域范围很小, 分布在 Th/Yb > 3 和 Ta/Yb > 3 的区域,上述产于大陆内部的

玄武岩大多投入 MORB、岛弧和陆缘弧区,较少进入 WPB 区。我们怀疑该图在设计时是否存在某种缺陷,或者陆内玄



图 4 全部 WPB、CFB 和 CRB 样品的 Nd-Sr-Pb 同位素图(a-d)及平均值微量元素原始地幔标准化蛛网图(e)和稀土元素球 粒陨石标准化配分图(f)(标准化值据 Sun and McDonough, 1989)

Fig. 4 Nd-Sr-Pb isotopic diagrams (a-d), and primitive mantle-normalized trace element patterns (e) and chondrite-normalized REE patterns (f) (normalization values after Sun and McDonough, 1989) of all the WPB, CFB and CRB samples

武岩源区具有多样性,才导致 WPB 样品不落入 WPB 区域的情况。

(3)按照早先的认识,CFB、CRB、WPB 基本上属于 OIB 类,必然覆盖 OIB 区域,许多判别图确实如此。从<sup>143</sup> Nd/ <sup>144</sup> Nd-<sup>87</sup> Sr/<sup>86</sup> Sr 图(图 4a)看,CFB、CRB、WPB 的样品覆盖了 原始地幔(PM)和 OIB 的几乎全部范围,显示其源区富集的 特征。在<sup>207</sup> Pb/<sup>204</sup> Pb-<sup>206</sup> Pb/<sup>204</sup> Pb 图(图 4b)中,全部样品大体 在富集端元 EMII 和原始地幔(PM)的范围内,也有相当一部 分样品落在 Zindle and Hart (1986)的 MORB 范围,相对于 <sup>207</sup> Pb/<sup>204</sup> Pb 来说,<sup>206</sup> Pb/<sup>204</sup> Pb 的比值略高,也指示了源区地幔 富集<sup>206</sup> Pb/<sup>204</sup> Pb 的特征。在图<sup>143</sup> Nd/<sup>144</sup> Nd-<sup>206</sup> Pb/<sup>204</sup> Pb(图 4c) 和图<sup>87</sup> Sr/<sup>86</sup> Sr-<sup>206</sup> Pb/<sup>204</sup> Pb 图(图 4d)中,富集特征更加明显, 绝大部分样品投到了(原始地幔)PM 和(全硅酸盐地球)BSE 的范围内,部分投入 EMII 的范围内。陆内玄武岩同位素地 球化学特征总体表现为富集的特征。

(4)本文将所研究的玄武岩分析数据进行系统的数据统 计,包括平均值和中位数两个指标(表2),其列出了全部的 CFB、CRB、WPB 的氧化物、微量元素、稀土元素和同位素的 数据量、平均值、中位数、众数和含量范围。由于数据库给出 的数据不全,对个别含量甚微的元素,同时计算了平均值、中 位数和众数值。从表 2 和图 4e, f 可以看出,如果平均值和 中位数值相差不大,平均值是可信的;个别元素二者相差较 大,如全体 WPB 的 Rb 和 Ba 含量,平均值和中位数分别为 32.20、25.09和435、368, 暗示部分样品缺失数据。这时, 中 位数可能是相对可信的,而平均值可能偏高了。众所周知, Sun and McDonough (1989) 在 Wood et al. (1979) 依据元素相 容性排序建立的蜘网图的基础上,进行了全面总结及机制解 释,并从地幔地球化学研究角度,提出了微量元素标准化值 和微量元素原始地幔标准化蛛网图,使这一图件更加规范, 并得到了学术界的广泛引用。本文统计的数据资料(表2), 与原作者建立的图的基本样式是一致的。但是,元素含量具 有明显的变化(图4e, f)。图4e显示,本文统计的CRB大离 子亲石元素平均值相对于 Sun and McDonough (1989)的 OIB 平均值略亏损,而高场强元素则变化不大。说明 CRB 并不 像早先认为的 LREE 和 HREE 都是强烈分离的,而有相当一 部分CRB 是具有 MORB(主要是 E-MORB)的特征,少量 CRB 表现为相对亏损,因此 CRB 的大离子亲石元素的平均值和 中位数略降低。这可能代表了全球各种各样的 CRB 特征, 而不仅仅是典型的大陆裂谷玄武岩的地球化学特征。此外, 本文统计的 WPB、CFB 和 CRB 与 Sun and McDonough (1989) 的 OIB 比较,明显富集 Pb,这是因为 OIB 处于洋壳内部,不 受陆壳的影响,因而 Pb 含量是较低,而大陆玄武岩很难避免 陆壳混染的影响,因为陆壳微量元素中最明显的特征之一就 是富集 Pb;Nb 和 Ta 表现为相对亏损。

对于大陆溢流玄武岩 Pb 富集和 Nb、Ta 亏损的地球化学特征,学术界通常有以下一些解释:(1)来自具有上述地球化 学特征的地幔柱(Wilson, 1997);(2)受到地幔柱和陆壳岩 浆的混染(Arndt et al., 1993);(3)OIB 或软流圈熔体与过碱性的镁铁质岩浆(钾镁煌斑岩,金伯利岩)的混合,后者来自交代的岩石圈地幔,可能随后还受到陆壳的混染(Arndt and Christensen, 1992; Gibson et al., 2006; Heinonen et al., 2010);(4)来自洋底高原玄武岩(OPB型)(Kerr and Mahoney, 2007);(5)OIB,MORB与SCLM(大陆下岩石圈地幔)有关的熔体的三元混合,可能随后有陆壳混染;(6)来自富集不相容元素的(如交代的SCLM)浅部源区的熔融或消减带之上地幔楔的部分熔融(Puffer, 2001; DeMin et al., 2003; Deckart et al., 2005; Dorais and Tubrett, 2008)。由此可见,大陆溢流玄武岩亏损 Nb-Ta 的原因是比较复杂的。

(5) CRB 与 CFB 存在明显的差别(图 4e)。与 CRB 相 比, CFB 相对富 SiO<sub>2</sub>,通常认为是 CFB 受到陆壳混染导致的 (Best and Christiansen, 2001), CRB 的 Th/Ta(3.46) 比值大 于 CFB 的 Th/Ta 比值(1.72)即是证明(见表 2)。但是, CFB 的 K<sub>2</sub>O 含量(0.70%)比 CRB(1.1%)的低(见表 2),似乎与 陆壳混染作用相背离,其原因可能与裂谷玄武岩部分熔融程 度较低有关。CRB 的 P<sub>2</sub>O<sub>5</sub> 含量(0.43%)高于 CFB (0.23%)也可以用部分熔融程度的不同来解释。此外, CRB 比 CFB 更加富集大离子亲石元素(Ba、Th、U、Nb、Ta、La 以及 Sr、Nd、Pb 同位素等,见表 2),也与 CRB 部分熔融程度相对 较低相一致(Best and Christiansen, 2001)。

(6)贫Ti大陆溢流玄武岩。大陆溢流玄武岩往往出现 高钛和低钛两类玄武岩,张招崇等(2001)总结了其成因主要 有:(1)上升的地幔柱不同部位的部分熔融(Campbell and Griffiths, 1990; Arndt et al., 1993)或岩石圈地幔与软流圈组 分不同程度的混合(Piccirillo et al., 1989; Hawkesworth et al., 1988; Peate and Hawkesworth, 1996)并受到不同程度的 地壳混染(Hawkesworth et al., 1988; Petrini et al., 1987); (2)不均一的陆下岩石圈地幔(SCLM)由于地幔柱的加热作 用在"湿"的条件下发生熔融(Gallagher and Hawkesworth, 1992, 1994);(3)来自地幔柱的苦橄质岩浆在上升过程中通 过 SCLM 时与镁质超钾质岩浆(钾镁煌斑质)发生不同程度 的混合(Gibson et al., 1996; Ellam and Cox, 1991; Luttinen and Furnes, 2000);(4)来自地幔柱的 MORB 型拉斑质苦橄 岩浆与来自 SCLM 的高 Ti 和低 Ti 钾质熔体混合,之后又受 到地壳的混染(Gibson et al., 1995)。

著名的 Karoo 大火成岩省玄武岩具有低钛和高钛两类, 二者均具有 Nb-Ta 负异常和 Sr-Nd-Pb 同位素富集的特征 (Cox et al., 1967; Hawkesworth et al., 1984; Ellam and Cox, 1991; Marsh et al., 1997; Elburg and Goldberg, 2000; Eglington et al., 1989; Huang et al., 1995; Cornell et al., 1996; Eglington and Armstrong, 2003; Kampunzu et al., 2003; Lana et al., 2004),被解释为来自岩石圈之下的 MORB 或 OIB 地幔源区的岩浆在深部地壳经历了混染、分离结晶和 AFC 过程,导致具有明显的弧岩浆特征。美国 Oregen 中新 世(8 Ma)高铝橄榄拉斑玄武岩也具有亏损 Nb-Ta-Ti 和富集

| 大学士                                  |                   |                  | Ċ        | B                |                       |           |          | IM        | B       |                       |       |          | C        | RB       |                      |
|--------------------------------------|-------------------|------------------|----------|------------------|-----------------------|-----------|----------|-----------|---------|-----------------------|-------|----------|----------|----------|----------------------|
| A K A                                | 数据量               | 平均数              | 中位数      | 众数               | 主要分布范围                | 数据量       | 平均数      | 中位数       | 众数      | 主要分布范围                | 数据量   | 平均数      | 中位数      | 众数       | 主要分布范围               |
| $SiO_2$                              | 14287             | 50.36            | 50.31    | 49.70            | 45 ~55                | 14690     | 49.45    | 49. 22    | 48.00   | 45 ~55                | 4499  | 48.86    | 48. 59   | 46.10    | 45 ~ 55              |
| $TiO_2$                              | 14237             | 2.02             | 1.89     | 1.06             | $0.2 \sim 4.54$       | 14660     | 1.84     | 1.88      | 2.20    | $0. 1 \sim 4. 08$     | 4408  | 2.19     | 2. 13    | 2.00     | $0.1 \sim 4.43$      |
| $Al_2O_3$                            | 14242             | 14. 35           | 14.26    | 14. 20           | 11. 09 ~ 17. 55       | 14631     | 15.23    | 15.11     | 14.00   | $10.35 \sim 20$       | 4362  | 15.52    | 15.53    | 16.00    | 11.61~19.44          |
| $FeO^{T}$                            | 9732              | 11.88            | 11.79    | 11.70            | $7.01 \sim 16.77$     | 5097      | 9.99     | 10.01     | 10.80   | $3.62 \sim 16.37$     | 4388  | 10.82    | 10.78    | 10.80    | $6.56 \sim 15.07$    |
| MgO                                  | 14268             | 6.01             | 5.92     | 4.90             | $1.72 \sim 10.3$      | 14734     | 6.48     | 6.46      | 6.40    | $0.\ 11 \sim 12.\ 84$ | 4393  | 6.50     | 6. 53    | 4.70     | $1.22 \sim 11.72$    |
| MnO                                  | 13919             | 0.19             | 0.19     | 0.18             | 0. 11 $\sim 0.27$     | 14479     | 0.16     | 0.16      | 0.17    | $0.07 \sim 0.26$      | 4166  | 0.18     | 0.18     | 0.18     | $0.\ 10 \sim 0.\ 26$ |
| CaO                                  | 14244             | 9.60             | 9.76     | 9.76             | $5.67 \sim 12$        | 14638     | 8.50     | 8.64      | 8.50    | $4.01 \sim 12$        | 4346  | 9.27     | 9. 32    | 8.80     | 5.14~11.99           |
| $Na_2O$                              | 14225             | 2.59             | 2.54     | 2.40             | 1. 23 ~ 3. 98         | 14741     | 3.33     | 3.29      | 3.10    | $1.12 \sim 5.58$      | 4372  | 3.31     | 3. 29    | 2.70     | 1. 53 ~ 5. 11        |
| $K_2 O$                              | 14201             | 0.80             | 0.71     | 0.50             | $0.01 \sim 2.31$      | 14965     | 1.39     | 1.25      | 1.00    | $0.001 \sim 4.1$      | 4364  | 1.17     | 1.10     | 1.00     | $0.01 \sim 3.22$     |
| $P_2O_5$                             | 14067             | 0.26             | 0.23     | 0.16             | $0.01 \sim 0.68$      | 14203     | 0.45     | 0.41      | 0.20    | $0.01 \sim 1.23$      | 4308  | 0.46     | 0.43     | 0.20     | $0.01 \sim 1.17$     |
| $C_{s}$                              | 2664              | 0.60             | 0.43     | 0.20             | $0.001 \sim 2.25$     | 4852      | 0.85     | 0.55      | 0.20    | $0.01 \sim 3.75$      | 961   | 0.38     | 0.32     | 0.20     | $0.01 \sim 1.3$      |
| $\operatorname{Rb}$                  | 11148             | 19.19            | 16.00    | 12.00            | $0.08 \sim 61$        | 13777     | 32.21    | 25.09     | 15.00   | $0.01 \sim 111.8$     | 3402  | 23.92    | 21.14    | 17.00    | $0.1 \sim 71$        |
| Ba                                   | 11243             | 275.2            | 219.0    | 160.0            | $1.01 \sim 884$       | 12486     | 435.7    | 368.0     | 280.0   | $0.23 \sim 1422$      | 3019  | 446. 5   | 404.0    | 350.0    | $1.01 \sim 1201$     |
| $_{\mathrm{Th}}$                     | 7129              | 2.68             | 2.25     | 3.00             | $0.08 \sim 8.22$      | 10573     | 4.07     | 3.30      | 3.00    | $0.01 \sim 13.65$     | 2306  | 3.70     | 3. 27    | 4.00     | $0.02 \sim 10.6$     |
| U                                    | 4481              | 0.65             | 0.56     | 1.00             | $0.01 \sim 1.98$      | 8421      | 1.03     | 0.90      | 1.00    | $0.01 \sim 3.25$      | 1531  | 1.06     | 0.95     | 1.00     | $0.02 \sim 2.9$      |
| Nb                                   | 10081             | 11.89            | 10.20    | 10.00            | $1 \sim 32.9$         | 11832     | 27.54    | 19.50     | 6.00    | $0. 1 \sim 101$       | 2877  | 32.23    | 26.00    | 9.00     | $0.3 \sim 110$       |
| $T_{a}$                              | 4818              | 0.82             | 0.65     | 0.60             | $0.03 \sim 2.57$      | 7880      | 1.68     | 1.20      | 0.30    | $0.01 \sim 6$         | 1740  | 2.24     | 1.90     | 2.00     | $0.01 \sim 7$        |
| La                                   | 8432              | 17.31            | 15.00    | 12.00            | $0.1 \sim 48$         | 11208     | 27.47    | 23. 30    | 15.00   | $0.28 \sim 85.2$      | 2805  | 30.11    | 27.50    | 25.00    | $0.24 \sim 83.98$    |
| Ce                                   | 8351              | 39.00            | 34.00    | 21.00            | $1 \sim 103$          | 11170     | 56.94    | 49.80     | 31.00   | $0.52 \sim 166.19$    | 2749  | 63.32    | 58. 23   | 51.00    | $0.5 \sim 164$       |
| $^{\mathrm{Pb}}$                     | 5040              | 4.39             | 3.99     | 5.00             | $0.05 \sim 13.8$      | 8007      | 5.91     | 4.50      | 4.00    | $0.01 \sim 20.76$     | 1350  | 4.76     | 4.00     | 6.00     | $0.2 \sim 13.7$      |
| $\Pr$                                | 3662              | 5.05             | 4.26     | 2.90             | $0.36 \sim 13.4$      | 7352      | 7.13     | 6.43      | 12.00   | $0.16 \sim 19.44$     | 940   | 8.44     | 8.05     | 10.00    | 0. 13 ~19.8          |
| Mo                                   | 480               | 1.09             | 1.07     | 0.70             | $0.1 \sim 2.5$        | 962       | 1.90     | 1.50      | 2.00    | $0.05 \sim 6.1$       | 47    | 1.87     | 1. 15    | 0.44     | $0.24 \sim 6.2$      |
| $\mathbf{Sr}$                        | 11748             | 269.9            | 247.0    | 200.0            | $0.45 \sim 584$       | 14136     | 554.4    | 516.0     | 530.0   | $0.28 \sim 1543$      | 3531  | 531.4    | 497.0    | 104.0    | 0. $16 \sim 1320$    |
| PN                                   | 6705              | 21.18            | 18.62    | 12.00            | $1. 1 \sim 52.49$     | 11529     | 28.97    | 26.30     | 25.00   | $0.34 \sim 76.74$     | 2363  | 32.93    | 30.80    | 30.00    | $0.\ 29 \sim 76.\ 9$ |
| $\mathbf{Sm}$                        | 6117              | 5.35             | 4.80     | 4.10             | $0.52 \sim 12.1$      | 11030     | 6.16     | 5.85      | 5.00    | $0. 1 \sim 14. 14$    | 2365  | 6.84     | 6.50     | 5.80     | $0.\ 27 \sim 14.\ 7$ |
| $\mathbf{Zr}$                        | 11521             | 147.1            | 138.0    | 140.0            | 0. $18 \sim 328$      | 12784     | 178.7    | 168.4     | 140.00  | $0.05 \sim 435$       | 3364  | 187.8    | 178.0    | 125.0    | $1 \sim 418$         |
| JH                                   | 5110              | 3.75             | 3.41     | 2.90             | $0.1 \sim 8.51$       | 8665      | 4.34     | 4.13      | 4.00    | $0.1 \sim 9.95$       | 1885  | 4.60     | 4.40     | 4.00     | $0.2 \sim 9.8$       |
| Eu                                   | 5853              | 1.72             | 1.56     | 1.40             | 0. $17 \sim 3.72$     | 9983      | 1.94     | 1.87      | 1.50    | $0.02 \sim 4.15$      | 2200  | 2.18     | 2.10     | 2.10     | 0. 12 $\sim$ 4. 4    |
| Gd                                   | 4363              | 5.66             | 5.20     | 4.50             | $0. 1 \sim 12.05$     | 8332      | 5.81     | 5.69      | 6.00    | $0.33 \sim 11.7$      | 1193  | 6.74     | 6.51     | 5.70     | 1. 38 ~12. 12        |
| Tb                                   | 5284              | 0.92             | 0.86     | 0.80             | $0.\ 09 \sim 1.\ 85$  | 8909      | 0.87     | 0.86      | 0.80    | 0. $16 \sim 1.6$      | 1886  | 0.97     | 0.95     | 0.70     | $0.14 \sim 1.81$     |
| $\mathbf{D}\mathbf{y}$               | 3958              | 5.34             | 5.04     | 4.00             | $0.61 \sim 10.06$     | 8089      | 4.75     | 4.65      | 4.60    | $1.32 \sim 8.29$      | 1147  | 5.56     | 5.36     | 5.00     | $1.24 \sim 9.9$      |
| Li                                   | 861               | 8.27             | 7.98     | 5.00             | $0.11 \sim 20.9$      | 1641      | 11.24    | 9.00      | 8.00    | $0.8 \sim 30.43$      | 197   | 7.97     | 7.18     | 7.00     | $1.40 \sim 20.14$    |
| Υ                                    | 11107             | 31. 21           | 30.00    | 27.00            | 8. 7 ~ 55. 75         | 12247     | 24.87    | 24.00     | 22.00   | $6.2 \sim 44.37$      | 2997  | 29.52    | 28. 50   | 30.00    | 8~51.31              |
| Ho                                   | 3481              | 1.08             | 1.04     | 0.80             | $0.22 \sim 1.96$      | 7627      | 0.90     | 0.87      | 0.80    | $0.26 \sim 1.57$      | 917   | 1.07     | 1.03     | 1.00     | $0.38 \sim 1.78$     |
| Er                                   | 3913              | 2.88             | 2.76     | 2.30             | $0.78 \sim 5.08$      | 8018      | 2.37     | 2.28      | 2.00    | $0.58 \sim 4.21$      | 1111  | 2.76     | 2. 69    | 2.60     | $0.95 \sim 4.63$     |
| Tm                                   | 3283              | 0.41             | 0.40     | 0.36             | $0.1 \sim 0.74$       | 6880      | 0.34     | 0.31      | 0.30    | $0.07 \sim 0.62$      | 700   | 0.38     | 0.38     | 0.40     | $0.13 \sim 0.64$     |
| $\mathbf{Y}\mathbf{b}$               | 5909              | 2.65             | 2.57     | 3.00             | $0.72 \sim 4.63$      | 9887      | 2.06     | 1.94      | 1.90    | 0. $19 \sim 4$        | 2150  | 2.43     | 2. 36    | 2.20     | $0.76 \sim 4.17$     |
| Lu                                   | 5721              | 0.40             | 0.38     | 0.30             | 0. 11 $\sim$ 0. 7     | 9554      | 0.30     | 0.29      | 0.30    | $0.03 \sim 0.62$      | 2049  | 0.37     | 0.35     | 0.30     | $0.1 \sim 0.64$      |
| <sup>143</sup> Nd⁄ <sup>144</sup> Nd | 1985              | 0.51257          | 0.512568 | 0.51248          | 0.51181 ~0.513183     | 5520      | 0.70504  | 0. 704489 | 0.7042  | 0.70171 ~0.71076      | 979   | 0.51276  | 0.512808 | 0. 51295 | 0.51209 ~0.51337     |
| $^{87}{ m Sr}/{ m ^{86}{ m Sr}}$     | 2360              | 0. 705973        | 0.70565  | 0.704            | $0.7018 \sim 0.71233$ | 5241      | 0.512667 | 0.51273   | 0.5128  | 0.70171 ~0.71076      | 1147  | 0.704362 | 0.70393  | 0.70369  | $0.702 \sim 0.70809$ |
| $^{206}{ m Pb}/^{204}{ m Pb}$        | 1269              | 18.3648          | 18.42    | 17.93            | 16. 542 ~20. 154      | 2392      | 18. 5589 | 18.66     | 18.573  | $16.851 \sim 20.2773$ | 626   | 18.958   | 18.9864  | 18.93    | 17. 324 ~20. 428     |
| $^{207}{ m Pb}/^{204}{ m Pb}$        | 1268              | 15.5517          | 15.566   | 15.53            | 15. 215 ~ 15. 872     | 2392      | 15.5809  | 15.594    | 15.61   | 15.341 ~15.81         | 626   | 15.6021  | 15.6     | 15.66    | 15.424~15.784        |
| $^{208}{ m Pb}/^{204}{ m Pb}$        | 1269              | 38.4342          | 38.43    | 38. 37           | 36. 915 ~ 39. 955     | 2394      | 38. 5762 | 38. 67    | 38.85   | 36.71~40.3342         | 626   | 38.8797  | 38.88    | 38.8     | 37.553 ~40.19        |
| 注:计算先采J<br>点头中总数 、                   | 用箱型图去<br>12数据 = 4 | :除异常值,<br>通数时 44 | ,只保留和(   | 61(下四分<br>異始っ 今業 | ▶位数)-1.51QR(四分        | 位距)到<br>* | Q3(上四分   | 位数)+1.    | siQR 之间 | 的数据,然后求其平             | ≤均值、中 | 位数和众数    | 的当数据量    | 为奇数时,    | 处于中间位置的数             |
| <b>値</b> 万甲 \                        | 当致排重へ             | 11周致时,处          | いたい同位す   | 重的 2 小変          | (值的半玛釵万十匹亥            | X         |          |           |         |                       |       |          |          |          |                      |

Table 2 Major element ( wt% ), rare earth element (  $\times 10^{-6}$  ) and isotope contents table from all the CFB, CRB and WPB 全部的 CFB、CRB、WPB 样品的主量元素(w<sup>4%</sup>)、微量元素、稀土元素(×10<sup>-6</sup>)和同位素含量表

表 2

1928



图 5 墨西哥西部科利马地堑位置图(a,引自 Allan and Carmichael, 1984 的图 1)及裂谷形成示意图(b,引自 Verma and Nelson, 1989 的图 11)

Fig. 5 Colima graben location map (a, after the Fig. 1 of Allan and Carmichael, 1984) and rift valley form diagram (b, after the Fig. 11 of Verma and Nelson, 1989) in western Mexico

Sr-Nd-Pb 同位素的特征,被认为是具有陆壳的特征,暗示了 存在浅部地壳物质的再循环(Kelemen et al., 1993; Plank, 2005)。据对北大西洋第三纪大火成岩省的研究,渐新世的 British Isles 熔岩是亏损 Nb 的, Fitton et al. (1997)和 Kent and Fitton(2000)认为其来自一个 N-MORB 的源区。格陵兰 东南沿海的裂谷玄武岩也是亏损 Zr、Nb、Ti 的,被认为是来 自亏损的地幔源岩(Philipp et al., 2001; Larsen et al., 1999)。Greene et al. (2009)对加拿大 Yukon 地区三叠纪的 大陆溢流玄武岩研究表明,低 Ti 玄武岩明显亏损 Nb 等 HFSE,推测其与消减带物质的带入有关(Pearce, 2008)。在 冰岛和格陵兰地区,低 Ti 熔岩通常被认为是来自亏损的 MORB 源区 (Ellam and Stuart, 2000)。 Søager and Holm (2011)对冰岛 Faroe 溢流玄武岩的研究表明,那里存在类似 大西洋 MORB 的低钛玄武岩,暗示有来自上地幔的组分的加 入。低钛玄武岩的地球化学特征类似 MORB,不同于占主导 地位的高钛玄武岩。稀土元素指示其来源于比 N-MORB 更 加亏损的源区,推测是尖晶石相和石榴石相地幔经历多次熔 融的结果(Larsen et al., 1999b; Callegaro et al., 2013)。

(7)贫 Ti 大陆裂谷玄武岩。大陆裂谷的形成通常与地 幔隆升、岩石圈伸展作用有关,故有主动裂谷和被动裂谷之 分。裂谷作用形成的典型岩石主要为拉斑玄武岩、碱性玄武 岩以及与其相伴的中酸性岩组合共同组成的双峰式火山岩 系列。在裂谷早期阶段,一般发育以碱性玄武岩为主的岩石 组合,随着裂谷的拉伸,软流圈进一步发展,大陆最终被拉开 有新洋壳形成时,可形成大量的拉斑玄武岩。然而,在 GEOROC数据库中,裂谷构造背景下形成的岩石却不乏具有 MORB 以及 IAB 特征的低 Ti 玄武岩。由此可见,裂谷玄武岩 的源区及岩浆作用的过程具有高度的不均一性,例如,美国 加利福尼亚和内华达大盆地西部的玄武岩,明显富集大离子 亲石元素和亏损高场强元素,在微量元素蛛网图中出现 Nb-Ta 负异常,暗示玄武岩岩浆源区受到来自俯冲带岩石圈的 影响(Davis and Hawkesworth, 1995);新特提斯洋在二叠纪拉 开的裂谷阶段出现三组岩浆系列:第一组是低 Ti 拉班玄武 岩;第二组是碱性玄武岩,类似 OIB 的特征;第三组是由拉班 玄武岩和碱性玄武岩交替组成,第一组低钛玄武岩的源岩被 认为是来自亏损和富集地幔的混合(Lapierre et al., 2004); 埃塞俄比亚 Afar 低钛玄武岩可能与东非裂谷地幔柱组分中 再循环的古老洋壳有关(Barrat et al., 2003);墨西哥古近纪 晚期和第四纪裂谷玄武岩,即是在太平洋板块向东消减时在 消减带上盘形成的(Verma and Nelson, 1989; Allan and Carmichael, 1984; Wallace and Carmichael, 1992; Nelson and Carmichael, 1984; Orozco-Esquivel et al., 2007; Hasenaka et al., 1994; Siebe et al., 2004); 加拿大纽芬兰奥陶纪的 Wild Bight 组火山岩具有岛弧的地球化学痕迹,被认为是在岛弧 背景上伸展作用下形成的(Swinden et al., 1990)。因此,许 多研究者认为,低钛玄武岩可能是在裂谷阶段受到来自消减 带物质的影响(Köhler et al., 2009; West et al., 2004; Davis and Hawkesworth, 1995; Camiré et al., 1995; Cousens, 1996; Gazel et al., 2012; Verma and Nelson, 1989; Wallace and Carmichael, 1992; Orozco-Esquivel et al., 2007; Siebe et al., 2004),有点类似弧后盆地形成的模式(West et al., 2004; Gazel et al., 2012; Verma and Nelson, 1989)(图5)。

上述的实例表明,陆内玄武岩均表现出成分及成因的多 样性,反映出其源区组分的变异性和不均一性,以及岩浆形 成、演化过程中的影响因素的复杂性。早先建立的构造判别 图就显得过于简单化和理想化。因此,我们应基于 GEOROC 数据库这个平台,对岩石分析数据进行科学的、严谨的筛选, 采用数理统计的方法优选出最佳的元素组合及判别标准,结 合地质实际,构建新的构造环境判别图。运用数理统计的方 法将 GEOROC 数据库中筛选后的数据由低维向高维选择不 同维度的数据组合,总结不同类型玄武岩元素的特征,选取 有效的判别元素,构建高置信度的各类玄武岩构造判别的最 优元素组合及分类标准,完善玄武岩构造判别图的理论与实 践,提升岩石构造的研究水平。

# 5 结论

(1)全体数据在早先的构造判别图上的投图结果表明, CFB、CRB、WPB 几乎落入了各种玄武岩构造环境域,在有些 判别图上大部分样品甚至落入 MORB 和岛弧区,而不是落入 WPB 区,说明许多玄武岩判别图的判别功能值得商榷,尤其 是若干主元素判别图。

(2)CFB、CRB、WPB的源区复杂多样,有强烈富集的,也 有亏损的。富集型玄武岩可能来自富集的下地幔,而亏损的 玄武岩来自具有 MORB 或岛弧特征的软流圈地幔,后者表现 为明显亏损 Nb-Ta 为特征。低钛玄武岩大多是亏损或强烈 亏损的,而高钛玄武岩则通常是富集型的。低程度部分熔 融、在较浅深度的部分熔融、结晶分离作用、陆壳混染作用以 及 AFC 过程亦可形成 Nb-Ta 亏损的大陆玄武岩,尤其是低钛 玄武岩。

(3)大量数据的挖掘研究表明,各种构造环境下形成的 玄武岩均表现出成分及成因的多样性,反映出其源区组分的 变异性和不均一性,以及岩浆形成、演化过程中的影响因素 的复杂性。因此,早先建立的构造判别图就显得过于简单化 和理想化。鉴此,我们在研究岩石形成的构造背景及其地球 动力学过程时,应注重岩石地球化学特征与其源区、岩浆作 用过程的内因外因的成因联系,注重岩石组合在野外产出的 时空关系,紧密结合野外地质实际及区域大地构造演化史, 之后对岩石形成的构造动力学过程作出合理的解释。

(4)尽管从全体数据的研究中发现早先的判别图存在许 多缺陷,但也不能因此而全盘否定判别图的理论和方法,判 别图毕竟还有其合理的内核。因此,我们应基于 GEOROC 数 据库这个平台,对岩石分析数据进行严谨的筛选,采用数理 统计的方法优选出最佳的元素组合及判别标准,结合地质实 际,构建新的构造环境判别图。

**致谢** 本文成文过程中得到张岱、苗秀全、杜君和杜雪亮 同学的帮助,特别是三位匿名审稿人对本文的评论和建议, 使文章质量得以提高,在此深表感谢!

### References

Allan JF and Carmichael ISE. 1984. Lamprophyric lavas in the Colima

graben, SW Mexico. Contributions to Mineralogy and Petrology,  $88\ (3): 203-216$ 

- Arndt NT and Christensen U. 1992. The role of lithospheric mantle in continental flood volcanism: Thermal and geochemical constraints. Journal of Geophysical Research, 97(B7): 10967 – 10981
- Arndt NT, Czamanske GK, Wooden JL and Fedorenko VA. 1993. Mantle and crustal contributions to continental flood volcanism. Tectonophysics, 223(1-2): 39-52
- Barrat JA, Joron JL, Taylor RN, Fourcade S, Nesbitt RW and Jahn BM. 2003. Geochemistry of basalts from Manda Hararo, Ethiopia: LREEdepleted basalts in Central Afar. Lithos, 69(1-2): 1-13
- Best MG and Christiansen EH. 2001. Igneous Petrology. Malden, MA: Blackwell Science
- Cabanis B and Lecolle M. 1989. Le diagramme La/10-Y/15-Nb/8: Un outil pour la discrimination des séries volcaniques et la mise en évidence des processus de mélange et/ou de contamination crustale. Comptes Rendus de l'Académie des Sciences. Série 2, 309(20): 2023 2029
- Callegaro S, Marzoli A, Bertrand H, Chiaradia M, Reisberg L, Meyzen C, Bellieni G, Weems RE and Merle R. 2013. Upper and lower crust recycling in the source of CAMP basaltic dykes from southeastern North America. Earth and Planetary Science Letters, 376: 186-199
- Camiré G, La Fléche MR and Jenner GA. 1995. Geochemistry of pre-Taconian mafic volcanism in the Humber Zone of the northern Appalachians, Québec, Canada. Chemical Geology, 119(1-4): 55-77
- Campbell IH and Griffiths RW. 1990. Implications of mantle plume structure for the evolution of flood basalts. Earth and Planetary Science Letters, 99(1-2): 79-93
- Capedri S, Venturelli G, Bocchi G, Dostal J, Garuti G and Rossi A. 1980. The geochemistry and petrogenesis of an ophiolitic sequence from Pindos, Greece. Contributions to Mineralogy and Petrology, 74 (2): 189 – 200
- Cornell DH, Thomas RJ, Bowring SA, Armstrong RA and Grantham GH. 1996. Protolith interpretation in metamorphic terranes: A back-arc environment with Besshi-type base metal potential for the Quha Formation, Natal Province, South Africa. Precambrian Research, 77 (3-4): 243-271
- Cousens BL. 1996. Magmatic evolution of Quaternary mafic magmas at Long Valley Caldera and the Devils Postpile, California: Effects of crustal contamination on lithospheric mantle-derived magmas. Journal of Geophysical Research: Solid Earth, 101(B12): 27673 – 27689
- Cox KG, Macdonald R and Hornung G. 1967. Geochemical and petrographic provinces in the Karroo basalts of Southern Africa. American Mineralogist, 52: 1451 - 1474
- Davis JM and Hawkesworth CJ. 1995. Geochemical and tectonic transitions in the evolution of the Mogollon-Datil Volcanic Field, New Mexico, U.S.A. Chemical Geology, 119(1-4): 31-53
- Deckart K, Bertrand H and Liégeois JP. 2005. Geochemistry and Sr, Nd, Pb isotopic composition of the Central Atlantic Magmatic Province (CAMP) in Guyana and Guinea. Lithos, 82(3-4): 289 -314
- DeMin A, Piccirillo EM, Marzoli A, Bellieni G, Renne PR, Ernesto M and Marques L. 2003. The Central Atlantic Magmatic Province (CAMP) in Brazil: Petrology, Geochemistry, <sup>40</sup> Ar/<sup>39</sup> Ar ages, paleomagnetism and geodynamic implications. In: Hames WE, McHome JG, Renne PR and Ruppel C (eds.). The Central Atlantic Magmatic Province: Insights from Fragments of Pangea. New York: American Geophysical Union, 136: 209 – 226
- Deng JF, Liu C, Feng YF, Xiao QH, Di YJ, Su SG, Zhao GC, Duan PX and Dai M. 2015. On the correct application in the common igneous petrological diagrams: Discussion and suggestion. Geological Review, 61(4): 717-734 (in Chinese with English abstract)
- Dorais MJ and Tubrett M. 2008. Identification of a subduction zone component in the Higganum dike, Central Atlantic Magmatic province: A LA-ICPMS study of clinopyroxene with implications for

flood basalt petrogenesis. Geochemistry, Geophysics, Geosystems, 9 (10), doi: 10.1029/2008GC002079

- Dunning GR, Swinden HS, Kean BF, Evans DTW and Jenner GA. 1991. A Cambrian island arc in Iapetus: Geochronology and geochemistry of the Lake Ambrose volcanic belt, Newfoundland Appalachians. Geological Magazine, 128(1): 1-17
- Eglington BM, Harmer RE and Kerr A. 1989. Isotope and geochemical constraints on Proterozoic crustal evolution in South-East Africa. Precambrian Research, 45(1-3): 159 – 174
- Eglington BM and Armstrong RA. 2003. Geochronological and isotopic constraints on the Mesoproterozoic Namaqua-Natal Belt: Evidence from deep borehole intersections in South Africa. Precambrian Research, 125(3-4): 179-189
- Elburg M and Goldberg A. 2000. Age and geochemistry of Karoo dolerite dykes from Northeast Botswana. Journal of African Earth Sciences, 31(3-4): 539-554
- Ellam RM and Cox KG. 1991. An interpretation of Karoo picrite basalts in terms of interaction between asthenospheric magmas and the mantle lithosphere. Earth and Planetary Science Letters, 105 (1 – 3): 330 – 342
- Ellam RM and Stuart FM. 2000. The sub-lithospheric source of North Atlantic basalts: Evidence for, and significance of, a common endmember. Journal of Petrology, 41(7): 919-932
- Fitton JG, Saunders AD, Norry MJ, Hardarson BS and Taylor RN. 1997. Thermal and chemical structure of the Iceland plume. Earth and Planetary Science Letters, 153(3-4): 197-208
- Gallagher K and Hawkesworth C. 1992. Dehydration melting and the generation of continental flood basalts. Nature, 358(6381): 57 – 59
- Gallagher K and Hawkesworth C. 1994. Mantle plumes, continental magmatism and asymmetry in the South Atlantic. Earth and Planetary Science Letters, 123(1-3): 105-117
- Galoyan G, Rolland Y, Sosson M, Corsini M and Melkonyan R. 2007. Evidence for superposed MORB, oceanic plateau and volcanic arc series in the Lesser Caucasus (Stepanavan, Armenia). Comptes Rendus Geoscience, 339(7): 482 – 492
- Gazel E, Plank T, Forsyth DW, Bendersky C, Lee CTA and Hauri EH. 2012. Lithosphere versus asthenosphere mantle sources at the Big Pine Volcanic Field, California. Geochemistry, Geophysics, Geosystems, 13(6), doi: 10.1029/2012GC004060
- Gibson SA, Thompson RN, Dickin AP and Leonardos OH. 1995. High-Ti and low-Ti mafic potassic magmas: Key to plume-lithosphere interactions and continental flood-basalt genesis. Earth and Planetary Science Letters, 136(3-4): 149-165
- Gibson SA, Thompson RN, Dickin AP and Leonardos OH. 1996. Erratum to "High-Ti and low-Ti mafic potassic magmas: Key to plume-lithosphere interactions and continental flood-basalt genesis" [Earth Planet. Sci. Lett. 136 (1995) 149 - 165]. Earth and Planetary Science Letters, 141(1-4): 325 - 341
- Gibson SA, Thompson RN and Day JA. 2006. Timescales and mechanisms of plume-lithosphere interactions: <sup>40</sup> Ar/<sup>39</sup> Ar geochronology and geochemistry of alkaline igneous rocks from the Paraná-Etendeka large igneous province. Earth and Planetary Science Letters, 251(1-2): 1-17
- Glassley WE. 1974. Geochemistry and tectonics of the Crescent volcanic rocks, Olympic Peninsula, Washington. Geological Society of America Bulletin, 85(5): 785-794
- Greene AR, Scoates JS, Weis D and Israel S. 2009. Geochemistry of Triassic flood basalts from the Yukon (Canada) segment of the accreted Wrangellia oceanic plateau. Lithos, 110(1-4): 1-19
- Harris NBW, Pearce JA and Tindle AG. 1986. Geochemical characteristics of collision-zone magmatism. In: Coward MP and Ries AC (eds.). Collision Tectonics. Geological Society, London, Special Publications, 19(1): 67-81
- Hasenaka Y, Ban M and Granados HD. 1994. Contrasting volcanism in the Michoacán-Guanajuato volcanic field, central Mexico: Shield volcanoes vs. cinder cones. Geofísica Internacional, 33(1): 125 -138
- Hawkesworth CJ, Marsh JS, Duncan AR, Erlank AJ and Norry MJ.

1984. The role of continental lithosphere in the generation of the Karoo volcanic rocks: Evidence from combined Nd- and Sr-isotope studies. In: Erlank AJ (eds). Petrogenesis of the Volcanic Rocks of the Karoo Province. The Geological Society of South Africa, 13: 341 -354

- Hawkesworth CJ, Mantovani M and Peate D. 1988. Lithosphere remobilization during Paraná CFB magmatism. Journal of Petrology, (1): 205 – 223
- Heinonen JS, Carlson RW and Luttinen AV. 2010. Isotopic (Sr, Nd, Pb and Os) composition of highly magnesian dikes of Vestfjella, western Dronning Maud Land, Antarctica: A key to the origins of the Jurassic Karoo large igneous province? Chemical Geology, 277(3 – 4): 227 – 244
- Huang YM, Van Calsteren P and Hawkesworth CJ. 1995. The evolution of the lithosphere in southern Africa: A perspective on the basic granulite xenoliths from kimberlites in South Africa. Geochimica et Cosmochimica Acta, 59(23): 4905 - 4920
- Kampunzu AB, Tombale AR, Zhai M, Bagai Z, Majaule T and Modisi MP. 2003. Major and trace element geochemistry of plutonic rocks from Francistown, NE Botswana: Evidence for a Neoarchaean continental active margin in the Zimbabwe craton. Lithos, 71(2 – 4): 431 – 460
- Kelemen PB, Shimizu N and Dunn T. 1993. Relative depletion of niobium in some arc magmas and the continental crust: Partitioning of K, Nb, La and Ce during melt/rock reaction in the upper mantle. Earth and Planetary Science Letters, 120(3-4): 111-134
- Kent RW and Fitton JG. 2000. Mantle sources and melting dynamics in the British Palaeogene Igneous Province. Journal of Petrology, 41 (7): 1023 - 1040
- Kerr AC and Mahoney JJ. 2007. Oceanic plateaus: Problematic plumes, potential paradigms. Chemical Geology, 241(3-4): 332-353
- Köhler J, Schönenberger J, Upton B and Markl G. 2009. Halogen and trace-element chemistry in the Gardar Province, South Greenland: Subduction-related mantle metasomatism and fluid exsolution from alkalic melts. Lithos, 113(3-4): 731-747
- Lana C, Reimold WU, Gibson RL, Koeberl C and Siegesmund S. 2004. Nature of the Archean midcrust in the core of the Vredefort Dome, Central Kaapvaal Craton, South Africa. Geochimica et Cosmochimica Acta, 68(3): 623 – 642
- Lapierre H, Samper A, Bosch D, Maury RC, Béchennec F, Cotten J, Demant A, Brunet P, Keller F and Marcoux J. 2004. The Tethyan plume: Geochemical diversity of Middle Permian basalts from the Oman rifted margin. Lithos, 74(3-4): 167-198
- Larsen LM, Waagstein R, Pedersen AK and Storey M. 1999a. Trans-Atlantic correlation of the Palaeogene volcanic successions in the Faeroe Islands and East Greenland. Journal of the Geological Society, 156(6): 1081-1095
- Larsen LM, Fitton JG and Saunders AD. 1999b. Composition of volcanic rocks from the Southeast Greenland Margin, Leg 163: Major and trace element geochemistry. Proceedings of the Ocean Drilling Program, 163: 63 – 75
- Li C, Arndt NT, Tang QY and Ripley EM. 2015. Trace element indiscrimination diagrams. Lithos, 232: 76-83
- Luttinen AV and Furnes H. 2000. Flood basalts of Vestfjella: Jurassic magmatism across an Archaean-Proterozoic lithospheric boundary in Dronning Maud Land, Antarctica. Journal of Petrology, 41 (8): 1271 – 1305
- Marsh JS, Hooper PR, Rehacek J, Duncan RA and Duncan AR. 1997. Stratigraphy and age of the Karoo basalts of Lesotho and implications for correlations within the Karoo igneous province. In: Mahoney JJ and Coffin MF (eds.). Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. New York: American Geophysical Union, 100: 247 – 272
- Maxeiner RO, Corrigan D, Harper CT, MacDougall DG and Ansdell K. 2005. Paleoproterozoic arc and ophiolitic rocks on the northwestmargin of the Trans-Hudson Orogen, Saskatchewan, Canada: Their contribution to a revised tectonic framework for the orogeny. Precambrian Research, 136(1): 67 - 106

- Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56(3-4): 207-218
- Mullen ED. 1983. MnO/TiO<sub>2</sub>/P<sub>2</sub>O<sub>5</sub>: A minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letters, 62(1): 53 – 62
- Nelson SA and Carmichael ISE. 1984. Pleistocene to recent alkalic volcanism in the region of Sanganguey volcano, Nayarit, Mexico. Contributions to Mineralogy and Petrology, 85(4): 321-335
- Orozco-Esquivel T, Petrone CM, Ferrari L, Tagami T and Manetti P. 2007. Geochemical and isotopic variability in lavas from the eastern Trans-Mexican Volcanic Belt: Slab detachment in a subduction zone with varying dip. Lithos, 93(1-2): 149-174
- Pearce JA and Cann JR. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19(2): 290 – 300
- Pearce JA. 1975. Basalt geochemistry used to investigate past tectonic environments on Cyprus. Tectonophysics, 25(1-2): 41-67
- Pearce JA. 1976. Statistical analysis of major element patterns in basalts. Journal of Petrology, 17(1): 15-43
- Pearce JA and Gale GH. 1977. Identification of ore-deposition environment from trace-element geochemistry of associated igneous host rocks. In: Volcanic Processes in Ore Genesis. Geological Society, London, Special Publications, 7: 14 – 24
- Pearce JA and Norry MJ. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47
- Pearce JA, Alabaster T, Shelton AW and Searle MP. 1981. The Oman ophiolite as a Cretaceous arc-basin complex: Evidence and implications. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 300(1454): 299 -317
- Pearce JA. 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed.). Orogenic Andesites and Related Rocks. Chichester, England: John Wiley and Sons, 525 -548
- Pearce JA. 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ and Norry MJ (eds.). Continental Basalts and Mantle Xenoliths. Nantwich, Cheshire; Shiva Publications, 230 – 249
- Pearce JA, Lippard SJ and Roberts S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Gass IG, Lippard SJ and Shelton AW (eds.). Ophiolites and Oceanic Lithosphere. Geological Society, London, Special Publications, 16: 77-94
- Pearce JA and Peate DW. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251-285
- Pearce JA and Robinson RB. 2000. Strategic Management: Formulation, Implementation and Control. 7<sup>th</sup> Edition. Boston: Irwin/ McGraw-Hill
- Pearce JA. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1-4): 14-48
- Peate DW and Hawkesworth CJ. 1996. Lithospheric to asthenospheric transition in low-Ti flood basalts from southern Parana, Brazil. Chemical Geology, 127(1-3): 1-24
- Petrini R, Civetta L, Piccirillo EM, Bellieni G, Comin-Chiaramonti P, Marques LS and Melfi AJ. 1987. Mantle heterogeneity and crustal contamination in the genesis of low-Ti continental flood basalts from the Paraná plateau (Brazil): Sr-Nd isotope and geochemical evidence. Journal of Petrology, 28(4): 701-726
- Philipp H, Eckhardt JD and Puchelt H. 2001. Platinum-group elements (PGE) in basalts of the seaward-dipping reflector sequence, SE Greenland coast. Journal of Petrology, 42(2): 407 – 432
- Piccirillo EM, Civetta L, Petrini R, Longinelli A, Bellieni G, Comin-Chiaramonti P, Marques LS and Melfi AJ. 1989. Regional variations within the Paraná flood basalts (southern Brazil): Evidence for

subcontinental mantle heterogeneity and crustal contamination. Chemical Geology, 75(1-2); 103-122

- Plank T. 2005. Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. Journal of Petrology, 46(5): 921 – 944
- Puffer JH. 2001. Contrasting high field strength element contents of continental flood basalts from plume versus reactivated-arc sources. Geology, 29(8): 675 – 678
- Rogers N, van Staal CR, McNicoll V, Pollock J, Zagorevski A and Whalen J. 2006. Neoproterozoic and Cambrian arc magmatism along the eastern margin of the Victoria Lake Supergroup: A remnant of Ganderian basement in central Newfoundland? Precambrian Research, 147(3-4): 320-341
- Rollinson HR. 1993. Using Geochemical data: Evaluation, Presentation, Interpretation. Harlow: Longman Scientific & Technical
- Shervais JW. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters, 59(1): 101 – 118
- Siebe C, Rodr í guez-Lara V, Schaaf P and Abrams M. 2004. Geochemistry, Sr-Nd isotope composition, and tectonic setting of Holocene Pelado, Guespalapa and Chichinautzin scoria cones, south of Mexico City. Journal of Volcanology and Geothermal Research, 130(3-4): 197-226
- Snow CA. 2006. A reevaluation of tectonic discrimination diagrams and a new probabilistic approach using large geochemical databases: Moving beyond binary and ternary plots. Journal of Geophysical Research: Solid Earth, 111(B6), doi: 10.1029/2005JB003799
- Søager N and Holm PM. 2011. Changing compositions in the Iceland plume: Isotopic and elemental constraints from the Paleogene Faroe flood basalts. Chemical Geology, 280(3-4): 297-313
- Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42: 313 - 345
- Swinden HS, Jenner GA, Fryer BJ, Hertogen J and Roddick JC. 1990. Petrogenesis and paleotectonic history of the Wild Bight Group, an Ordovician rifted island arc in central Newfoundland. Contributions to Mineralogy and Petrology, 105(2): 219 – 241
- Verma SP and Nelson SA. 1989. Isotopic and trace element constraints on the origin and evolution of alkaline and calc-alkaline magmas in the Northwestern Mexican Volcanic Belt. Journal of Geophysical Research: Solid Earth, 94(B4): 4531-4544
- Vermeesch P. 2006a. Tectonic discrimination of basalts with classification trees. Geochimica et Cosmochimica Acta, 70(7): 1839 – 1848
- Vermeesch P. 2006b. Tectonic discrimination diagrams revisited. Geochemistry, Geophysics, Geosystems, 7 (6), doi: 10. 1029/2005GC001092
- Wallace P and Carmichael SE. 1992. Alkaline and calc-alkaline lavas near Los Volcanes, Jalisco, Mexico: Geochemical diversity and its significance in volcanic arcs. Contributions to Mineralogy and Petrology, 111(4): 423-439
- Wang YJ, Zhao GC, Fan WM, Peng TP, Sun LH and Xia XP. 2007. LA-ICP-MS U-Pb zircon geochronology and geochemistry of Paleoproterozoic mafic dykes from western Shandong Province: Implications for back-arc basin magmatism in the Eastern Block, North China Craton. Precambrian Research, 154(1-2): 107 - 124
- West DP, Coish RA and Tomascak PB. 2004. Tectonic setting and regional correlation of Ordovician metavolcanic rocks of the Casco Bay Group, Maine: Evidence from trace element and isotope geochemistry. Geological Magazine, 141(2): 125-140
- Wilson M. 1997. Thermal evolution of the Central Atlantic passive margins: Continental break-up above a Mesozoic super-plume. Journal of the Geological Society, 154(3): 491-495
- Wood DA, Joron JL and Treuil M. 1979. A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth and Planetary Science Letters, 45(2): 326 – 336

- Wood DA. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11-30
- Workman RK and Hart SR. 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231(1-2): 53-72
- Zhang ZC, Wang FS, Fan WM, Deng HL, Xu YG, Xu JF and Wang YJ. 2001. A discussion on some problems concerning the study of the Emeishan basalts. Acta Petrologica et Mineralogica, 20(3): 239 - 246 (in Chinese with English abstract)

Zindler A and Hart SR. 1986. Chemical geodynamics. Annual Review of

Earth and Planetary Sciences, 14(1): 493-571

#### 附中文参考文献

- 邓晋福,刘翠,冯艳芳,肖庆辉,狄永军,苏尚国,赵国春,段培新, 戴蒙. 2015. 关于火成岩常用图解的正确使用:讨论与建议.地 质论评,61(4):717-734
- 张招崇,王福生,范蔚茗,邓海琳,徐义刚,许继峰,王岳军. 2001. 峨眉山玄武岩研究中的一些问题的讨论. 岩石矿物学杂志,20 (3):239-246