doi:10.11887/j.cn.201501029

http://journal. nudt. edu. cn

多目标多决策者环境下防空反导装备体系资源分配与优化。

张 骏,姜 江,陈英武

(国防科技大学信息系统与管理学院,湖南长沙 410073)

摘 要:作战体系具有层次高、规模大,各作战分系统间协调配合密切的特征。在作战任务中,这种多层次、多系统、多决策者、多目标的结构使得对各作战子系统的武器装备分配变得更为复杂。为解决此类复杂结构的优化问题,在层次化多目标分析方法基础之上,将层次系统的风险管理引入到模型中来,形成多目标多决策者资源分配模型,用以解决在不确定风险环境下进行多目标资源分配的问题。利用 MOMDRA 模型建模空袭风险下防空反导体系的武器装备分配问题,在求解该模型的过程中采用系统分解的思路,利用权重法,站在不同决策者的角度得到该体系的 Pareto 最优资源分配方案,并通过一个实例来说明此方法的可行性。

关键词:防空反导体系;多目标;武器装备分配;最优解 中图分类号:N945.25 文献标志码:A 文章编号:1001-2486(2015)01-171-08

Air defense and anti-missile weapons allocation in hierarchical systems under multi-objectives and multi decision-makers condition

ZHANG Jun, JIANG Jiang, CHEN Yingwu

(College of Information System and Management, National University of Defense Technology, Changsha 410073, China)

Abstract: Combat system is an aggregation of various relatively independent subsystems, organizing in a large-scale hierarchical structure. The structure with multilevel, multisystem, multi decision-makers and multi-objectives complicated the allocation process of weapons and equipment to each subsystem when facing an attack. For optimizing the complicated structure, a model with multi-objectives and multi-decision-makers based on risk management was built, which could deal with the hierarchical couplings between subsystems and conflicts between multi-objectives, especially in uncertain situations. In order to solve the air defense and anti-missile weapons allocation problem of the MOMDRA model, the idea of system decomposition and weighting method are used to generate Pareto optimal allocation solutions from the aspect of different decision-makers' concerns. In the end, the feasibility of this method is illustrated by an example.

Key words: air defense and anti-missile system; multi-objective; weapons allocation; optimal solutions

相较于传统单个作战单元的战斗模式,防空 反导体系具有更强的作战效能,文献[1]分析了 美国防空反导体系一体化作战能力,介绍了由于 构建体系作战结构所带来的一体化火控能力、超 视距拦截能力和传感器全面联网能力等发展趋 势。文献[2]从战场感知能力、制导覆盖能力及 拦截弹毁伤能力三个指标角度对防空反导系统的 抗击能力进行了量化建模,为提高抗击能力提供 了途径。

复杂结构会涉及多方利益的权衡,若不处理 好这类结构系统的管理问题,将会使其作战效能 大打折扣,文献[3-5]提出了基于混合粒子、 Hopfield 网络、遗传算法和 BP 神经网络的优化求 解方法,试图尽量缩短求解时间,提高分配效率。 从系统工程的角度,考虑空袭风险下总部对防空 反导体系中各作战单元进行武器装备分配的问 题,这对作战部队、单元进行装备部署、对防空反 导效能有着重要意义。由于国家的武器装备总量 是固定的,分配给体系中各作战单位的武器装备 数量是有限的,这对其作战能力有直接影响。由 于约束的存在,对于作战体系结构,想要得到武器 装备资源的优化配置相较于传统的分配问题更为 复杂。类似系统问题在其他领域已经逐渐开始有 所研究,如利用多准则设计优化方法来解决多子 系统间多目标的优化问题[6-7],但目前仍鲜有 统一有效的方法来求解该类风险环境下含约束多

^{*} 收稿日期:2014-03-18 基金项目:国家自然科学基金资助项目(71201168)

基金项目: 国家自然科学基金页切项目(71201108) 作者简介:张骏(1990一),男,北京人,博士研究生,E-mail:uknowgod@gmail.com; 陈英武(通信作者),男,教授,博士,博士生导师,E-mail:ywchen@nudt.edu.cn

系统多目标多利益决策者混合型优化问题。

多目标优化方法如多目标遗传算法、权重系 数变化法等[8] 虽可以解决互相冲突的多目标问 题,也有相当多模型框架来解决风险环境下的多 目标优化问题,如文献[9]在研究军事能力分配 问题时,就考虑了风险情况下的两个目标的优化, 但是当这些方法面对复杂的多层次多系统决策者 的结构时就显得无能为力了。对于多层次结构, 传统的层次分析法的思想是将具有复杂层次结构 的系统分解成分别"独立"的子系统,分层次分别 解决各层次中各子系统的优化问题^[10]。Haimes 则将多目标与多层次两因素有机结合起来提出层 次多目标分析 (Hierarchical Multiple Objective analysis, HMO)^[11-13],用以解决大型层次结构中 的多目标问题。近些年,HMO 被广泛地应用在各 种领域,如文献[14]利用 HMO 方法分析了广州 市水资源的最优分配,文献[15]利用 HMO 分析 法解决了公司简单的优化投资政策的问题。 Haimes 在 HMO 的基础之上将层次系统的风险管 理引入进来,提出了多目标多决策者资源分配模 型(Multi-Objectives Multi-Decisionmakers Resource Allocation, MOMDRA)模型并分析了新奥尔良地 区在飓风事件中排水能力的分配^[16]。本文基于 MOMDRA 来建模作战体系中的防空反导装备体 系资源分配与优化问题,论述了其可行性。

1 MOMDRA 模型框架

图 1 所示框架是一个具有两层结构的 MOMDRA 模型,低层系统包含 $N \uparrow F_S \pounds, N \ge$ 2,每个子系统所处状态为 S_i 。为了简便,这里将 S_i 简化为二元状态向量 $S_i = (S_i^0, S_i^1)$ 。即 S_i^0 代 表风险发生前的系统状态向量, S_i^1 代表风险发生 后的系统状态向量。更一般的,在实际情况中对 于动态系统 S_i 可以定义为随时序发展的一系列 状态变量。 a_i 代表可能发生在子系统 i上的风 险。 m_i 代表针对子系统 i上的风险所做出的风 险管理措施向量,如分配 $q_i(m_i)$ 数量的资源于子 系统 i。风险发生后系统的状态与风险发生的概 率、抵御风险的措施以及系统初始状态有关,换言 之,定义状态转移函数 $I_i(\cdot)$ 表示风险 a_i 发生后 子系统 i状态的变化,那么 $S_i^1 = I_i(S_i^0, a_i, m_i), i =$ 1,…, N_o

DM 代表各子系统的决策者,其中 DM_i (i=1, ...,N) 为低层子系统的决策者, DM_0 是顾全整个体系的高层决策者。决策者们关注的是风险事件 给各自所关心的系统所带来的影响。定义 f^i =

图 1 两层结构的 MOMDRA 框架

Fig. 1 MOMDRA framework with a two-level structure

 $(f_1^i, \dots, f_n^i)^{\mathrm{T}}$ 为第i个系统的决策者 DM_i 关心的 所有n个风险管理所需达到的目标,其中 $f_j^i = f_j^i(S_i, a_i, m_i), j = 1, \dots, n_o$ 假设所有子系统所考 虑的目标数量相同,用 $f = (f^1, \dots, f^N)$ 表示所有 低层系统的目标向量。进一步,用 $F(f) = (F_1(f), \dots, F_n(f))^{\mathrm{T}}, F_j(f) = F_j(f_j^1, \dots, f_j^N)$ 表示 高层系统决策者关心的整个体系在经过风险管理 后所需要达到的全局目标。通常来说,需要考虑 的目标函数包括人员伤亡、财产经济损失、生产力 损失等,这类目标函数具有线性可加性,则可粗略 认为全局目标函数就是体系内部各子系统目标函 数的总和,更复杂地,可以研究非线性结构的目标 函数。

综上,基于风险的 MOMDRA 模型框架可以 概括成有约束的最小化规划问题模型:

$$DM_{0}: \text{minimize} \begin{cases} F_{1}(f_{1}^{1}, \dots, f_{1}^{N}) = \sum_{i=1}^{N} l_{1}^{i} \cdot f_{1}^{i}(\boldsymbol{S}_{i}^{0}, \boldsymbol{S}_{i}^{1}, a_{i}, \boldsymbol{m}_{i}) \\ \vdots \\ F_{n}(f_{n}^{1}, \dots, f_{n}^{N}) = \sum_{i=1}^{N} l_{n}^{i} \cdot f_{n}^{i}(\boldsymbol{S}_{i}^{0}, \boldsymbol{S}_{i}^{1}, a_{i}, \boldsymbol{m}_{i}) \end{cases}$$

$$(1)$$

$$DM_{1}: \text{minimize} \begin{cases} f_{1}^{(1)} (f_{1}^{(1)}, S_{1}^{(1)}, a_{1}, m_{1}) \\ f_{n}^{(1)} (S_{1}^{(0)}, S_{1}^{(1)}, a_{1}, m_{1}) \\ \vdots \end{cases}$$
(2)

$$DM_{N}: \text{minimize} \begin{cases} f_{1}^{N}(\boldsymbol{S}_{N}^{0}, \boldsymbol{S}_{N}^{1}, \boldsymbol{a}_{N}, \boldsymbol{m}_{N}) \\ \vdots \\ f_{N}^{N}(\boldsymbol{S}_{N}^{0}, \boldsymbol{S}_{1}^{1}, \boldsymbol{a}_{N}, \boldsymbol{m}_{N}) \end{cases}$$
(3)

s. t.
$$S_i^1 = I_i(S_i^0, a_i, m_i), i = 1, \dots, N$$
 (4)

$$\sum_{i=1}^{n} q_i(\boldsymbol{m}_i) \leq \boldsymbol{b} \tag{5}$$

 $g_i(\boldsymbol{S}_i^0, \boldsymbol{S}_i^1, \boldsymbol{a}_i, \boldsymbol{m}_i) \leq 0, i = 1, \cdots, N$ (6)

式(1)中*lⁱ*为利用低层目标函数构成高层目标函数时的线性系数,其意义可解读为子系统*i*受到风险打击的相对概率。一般地,风险发生的

准确概率在现实情形中很难获得,可以用各子系统之间的相对概率来代替。可以看到, l_j^i 对于低层子系统的目标求解是无影响的,而对于高层决策者,正是由于 l_j^i 的存在,需要对资源分配决策做出权衡。从优化的角度看,相对概率可以看作各子系统在全局风险损失中所贡献的权重,因此用来替代绝对概率是合理的。那么 l_j^i 和参数j无关, $l_1^i = l_2^i = \cdots = l_n^i = l^i$, $i = 1, \cdots, N$ 。式(5)给出对整个体系的资源约束,即分配给各子系统的资源 总量不能超过b,这使得各子系统的目标利益无法独立得到优化,彼此之间会存在相互制约相互影响。式(6)为各子系统自身内部对资源分配的条件约束,可根据实际情况确定。

可以看出,风险因素在模型中的表现为:1) 风险 a_i 发生在子系统 i 上的概率,由模型中的 l^i 表示;2)风险 a_i 发生后成功对子系统 i 造成伤害 的概率,这里用 ω 来表示;3)风险 a_i 对子系统 i造成的影响体现在目标函数 f 中。由于 f 是关于 S_i 的函数,风险对系统的影响亦可反映在系统状态的变化,可以用风险前后系统状态的变化来度 量。假设风险事件 a 发生了但没有对系统造成影 响,则系统的状态不发生改变,仍保持 $S^1 = S^0$ 不 变;a 成功,则 S^1 是一个随机变量,其各取值的概 率分布函数由 $P(S^1 | a$ 成功)来表示,

同时, f 是关于 m_i 的函数, 对 f 进行优化的 过程就是寻找使风险伤害最小化的 m_i 的组合, 就 是风险管理的过程。综上, MOMDRA 模型将风险 因素有效地结合了进来。

2 基于 MOMDRA 的防空反导装备体系资 源分配

2.1 防空体系的 MOMDRA 模型

防空反导体系中的武器装备问题可简单抽象 为以下描述:某国为了防范一定范围区域内可能 面临的空中袭击,部署了具备不同军事力量的 N 个防空基地 D_i,分别承担其周边城市的空中袭击 防御任务,保护其重要政治、经济、军事目标。在 经过多次防空袭演练后,根据其实际表现,总部需 对各防空基地额外增加分配防空打击和防御武器 装备以增强其应对突袭时的表现,包括情报预警 装备和拦截武器装备等,如图2所示。由于资源 总量有限,需对其优化分配使得各城市在空袭中 目标损失尽可能达到最小。

图 2 防空反导体系示意图 Fig. 2 Air defense and anti-missile weapons system

基于 MOMDRA 模型对防空反导体系进行分析:整个体系包含 N 个子系统 D_i ,用 S_{ij} 表示子系统 D_i 内城市 j 的状态, $i = 1, \dots, N, j = 1, \dots, n,$ 这里可 以考虑其含义为城市的完好程度, 空袭前城市状态 为 S_{ij}^0 , 空袭后城市状态为 S_{ij}^1 。该问题中现面临的 风险 a_i 为敌方的空中袭击。 ω_{ij} 表示空袭成功的概率。 m_{ikj} 代表总部分配给子系统 D_i 用以保护城市 j 的第 k 种武器装备的数量, $k = 1, \dots, n_o$ 每个子系统有 n 个待优化的作战目标, 如使袭击损失最小等, 用 f_i^i 来表示子系统 D_i 的第 s 个目标函数, $s = 1, \dots, n,$ 有 $f^i = (f_1^i, \dots, f_n^i)^T$ 为子系统 D_i 的所有目标函数, 用 $f = (f^1, \dots, f^N)$ 表示所有子系统的目标 向量。进一步, 高层全局目标函数为

$$F_{s} = \sum_{i=1}^{n} l_{s}^{i} \cdot f_{s}^{i},$$

$$F(f) = (F_{1}(f), \cdots, F_{n}(f))^{\mathrm{T}}$$

各子系统的指挥官希望通过利用自己所拥有 的武器装备使得子系统的目标函数最优;总部高层 指挥官希望整个区域的全局目标函数达到最优。

其数学描述如下

$$DM_{0}:\text{minimize}\begin{cases} F_{1}(f_{1}^{1},\cdots,f_{1}^{N}) = \sum_{i=1}^{N} l_{1}^{i} \cdot f_{1}^{i}(\boldsymbol{S}_{i}^{0},\boldsymbol{S}_{i}^{1},a_{i},\boldsymbol{m}_{i}) \\ \vdots \\ F_{n}(f_{n}^{1},\cdots,f_{n}^{N}) = \sum_{i=1}^{N} l_{n}^{i} \cdot f_{n}^{i}(\boldsymbol{S}_{i}^{0},\boldsymbol{S}_{i}^{1},a_{i},\boldsymbol{m}_{i}) \end{cases}$$

$$(7)$$

$$\left[f_{1}^{1}(\boldsymbol{S}_{1}^{0},\boldsymbol{S}_{1}^{1},a_{1},\boldsymbol{m}_{1}) \right] \end{cases}$$

$$DM_1: \text{minimize} \begin{cases} \vdots & (8) \\ f_n^1(\boldsymbol{S}_1^0, \boldsymbol{S}_1^1, \boldsymbol{a}_1, \boldsymbol{m}_1) \end{cases}$$

$$DM_{N}: \text{minimize} \begin{cases} f_{1}^{N}(\boldsymbol{S}_{N}^{0}, \boldsymbol{S}_{N}^{1}, \boldsymbol{a}_{N}, \boldsymbol{m}_{N}) \\ \vdots \\ f_{1}^{N}(\boldsymbol{S}_{N}^{0}, \boldsymbol{S}_{N}^{1}, \boldsymbol{a}_{N}, \boldsymbol{m}_{N}) \end{cases}$$
(9)

s. t.
$$S_i^1 = I_i(\mathbf{S}_i^0, a_i, \mathbf{m}_i), i = 1, \dots, N$$
 (10)

$$\sum_{i=1}^{N} q_i(\boldsymbol{m}_i) \leq \boldsymbol{b} \tag{11}$$

 $m_{ikj} \ge 0, i = 1, \dots, N, k, j = 1, \dots, n$ (12) 其中,所涉及的向量

$$S_{i}^{0} = (S_{i1}^{0}, \dots, S_{in}^{0})^{\mathrm{T}}, S_{i}^{1} = (S_{i1}^{1}, \dots, S_{in}^{1})^{\mathrm{T}},$$

$$m_{i} = (m_{i11}, \dots, m_{i1n}, m_{i21}, \dots, m_{i2n}, \dots, m_{in1}, \dots, m_{inn})$$

$$b = (b_{1}, \dots, b_{n})_{\circ}$$

对于子系统 *D_i* 中城市 *j*,可以得到在武器装备 *m_{iij}*保障条件下,空袭发生后状态 *S¹_i*的概率:

$$P(S_{ij}^{1}) = \begin{cases} 1 - \omega_{ij} & S^{1} = S^{0} \\ \\ \omega_{ij}P(S_{ij}^{1} | a \text{ \text{id}} \ \textbf{y}) & \text{ \text{ \text{tw}}} \end{cases}$$

这里取其期望来表示 S_{ij}^{1} 的取值 $E(S_{ij}^{1}) = (1 - \omega_{ij})S_{ij}^{0} + \omega_{ij} \cdot E(S_{ij}^{1}|a 成功)$ 。其中, $E(S_{ij}^{1}|a 成功)$ 可以通过演练和以往数据以及专家评估的方法得到,它是关于武器装备 *m* 的函数,即受到打击后,系统的完好程度由系统所具备的防御能力相关,而防御能力决定于系统所拥有的武器装备 水平。

2.2 武器装备分配问题的求解

由于整个体系涉及多个决策者,需从不同决 策者需求的角度考虑:1)从 N 个子系统指挥官角 度考虑,使各子系统达到 Pareto 最优状态,即求目 标函数 f 的 Pareto 最优解,不考虑全局目标;2)同 时站在子系统指挥官和总部领导的角度考虑,使 各子系统同全局目标达到 Pareto 最优状态,即求 目标函数(F,f) 的 Pareto 最优解,在满足各子系 统达到最优状态的前提下使全局目标也达到最 优;3)单独从总部领导的角度考虑,仅使全局目 标达到 Pareto 最优,不考虑各子系统,即求目标函 数 F(f) 的 Pareto 最优解。

2.2.1 系统分解

因为资源总量是有限的,使得子系统之间存 在相互联系。如果顺序从系统1到系统N考虑 资源分配的过程,即分配完系统1后再分配系统 2接着系统3,以此类推,在两个相邻系统之间存 在类似输出 – 输入的联系,一个系统的输入为在 此之前已被分配过资源的所有系统所占有的资源 总合,输出为包含此系统在内的所有系统所分配 到的所有资源。将上述关系用数学语言描述:对 于子系统*i*,*i*=1,2,…,*N*,定义输出变量 *y_i*,表示 子系统1,2,…,*i*已利用的资源总量;定义输入变 量 *x_i*,表示子系统1,2,…,*i*-1已利用的资源总 量,易知 $y_{i-1} = x_i$ 。那么分配给子系统的资源 $q_i(m_i)$ 可以由 $y_i - x_i$ 求得。引入这两个变量之 后,模型数学表达中的约束式(11)可以改写成下 列表达式

$$y_i = q_i(m_i) + x_i, i = 1, \cdots, N$$
 (13)

$$x_i = y_{i-1}, i = 1, \cdots, N$$
 (14)

$$x_1 = 0$$
 (15)

$$y_N \leqslant b$$
 (16)

图 3 对子系统引入输入输出变量

Fig. 3 Introducing input-output couplirgs into subsystems

再引入辅助固定变量 $p_{i,k}$, $i = 1, 2, \dots, N-1$, $k = 1, \dots, n_o$ 令 $y_{i,k} = p_{i,k}$, 则 $x_{i,k} = y_{i-1,k} = p_{i-1,k}$ 转 变为固定变量,这样一来,分配给每个子系统的资 源数量就是确定的,那么整个体系就可以分解为 N个独立的子系统,对于子系统 $i, i = 2, \dots, N-1$, 该系统的规划问题为

$$DM_{i}: \text{minimize} \begin{cases} f_{1}^{i}(\boldsymbol{S}_{i}^{0}, \boldsymbol{S}_{i}^{1}, \boldsymbol{a}_{i}, \boldsymbol{m}_{i}) \\ \vdots \\ f_{n}^{i}(\boldsymbol{S}_{i}^{0}, \boldsymbol{S}_{i}^{1}, \boldsymbol{a}_{i}, \boldsymbol{m}_{i}) \end{cases}$$
(17)

s. t.
$$m_{ikj} \ge 0, i = 1, \dots, N, k, j = 1, \dots, n$$
 (18)

$$\boldsymbol{y}_i = \boldsymbol{q}_i(\boldsymbol{m}_i) + \boldsymbol{x}_i \tag{19}$$

$$-y_i + p_i = 0 \tag{20}$$

$$-x_i + p_{i-1} = 0 \tag{21}$$

对于子系统 1,只需将式(21) 替换为式 (15);对于子系统 N,只需将式(20) 替换为式 (16)即可。

$x_1=0$ \overrightarrow{f} q_1	系统1 <u>y</u> (m ₁)	$\xrightarrow{1=P_1} \xrightarrow{x_2=P_1}$	子系统2 q ₂ (m ₂)	$y_2 = P_2$	子系统3 q ₃ (m ₃)	y _s ≤b
------------------------------------	-----------------------------------	---	--	-------------	--	-------------------

图 4 利用变量 p_{i,k}将系统分解

Fig. 4 Decomposing system with variables

通过变化 *p*_{*i,k*}的取值,可以改变分配给每个子 系统的资源,先对每个子系统单独求解。然而每 个子系统的最优解组合起来不一定是同时满足 *N* 个决策者或全局利益的 Pareto 最优解,还需分情 况来考虑。

2.2.2 N个子系统指挥官的角度

现在问题转化为先求得使每个子系统目标 f^{i} 达到最优的解,然后再对这些组合进行筛选,得到 使 $f = (f^{1}, \dots, f^{N})$ 达到最优的 Pareto 前沿。目前 用来求解多目标优化问题 Pareto 最优解的方法有 很多,本文采用的是权重法。在权重法中,对于子 系统 i 有权重系数 $(w^{i})^{T} = (1, w_{2}^{i}, w_{3}^{i}, \dots, w_{n}^{i})$, $w_n^i > 0, 权重法所对应的 Lagrange 为$ $L^i(x_i, \mathbf{m}_i, y_i) = (\mathbf{w}^i)^{\mathrm{T}} f^i(\mathbf{S}_i^0, \mathbf{S}_i^1, a_i, \mathbf{m}_i) + (\boldsymbol{\sigma}^i)^{\mathrm{T}} [y_i - x_i - q_i(\mathbf{m}_i)] + (\boldsymbol{\lambda}^i)^{\mathrm{T}} g_i(\mathbf{S}_i^0, \mathbf{S}_i^1, a_i, \mathbf{m}_i) + (\boldsymbol{\pi}_i^{\mathrm{v}})^{\mathrm{T}} (-y_i + p_i) + (\boldsymbol{\pi}_i^{\mathrm{v}})^{\mathrm{T}} (-x_i + p_{i-1})_{\circ}$

求得的该系统的最优解一定使上式满足 Kuhn-Tucker 条件。若希望各系统的最优解组合起来也 是个系统整体共同的最优解,则需要满足以下 定理。

定理1 假设式(17)~(21)中函数均为凸 函数且连续可微。那么,各子系统使 f^i 达到最优 的解,组合起来也是目标 $f = (f^1, \dots, f^N)$ 的 Pareto 最优解,当且仅当

$$-c_{i} = \frac{\pi_{i,1}^{y}}{\pi_{i+1,1}^{x}} = \frac{\pi_{i,2}^{y}}{\pi_{i+1,2}^{x}} = \dots = \frac{\pi_{i,L}^{y}}{\pi_{i+1,L}^{x}} < 0,$$

$$i = 1, 2, \dots, N-1,$$

 $(\boldsymbol{\pi}_{i}^{\boldsymbol{y}})^{\mathrm{T}} = (\boldsymbol{\pi}_{i,1}^{\boldsymbol{y}}, \cdots, \boldsymbol{\pi}_{i,L}^{\boldsymbol{y}}), (\boldsymbol{\pi}_{i}^{\boldsymbol{x}})^{\mathrm{T}} = (\boldsymbol{\pi}_{i,1}^{\boldsymbol{x}}, \cdots, \boldsymbol{\pi}_{i,L}^{\boldsymbol{x}}),$ *L* 是待分配的资源数量,常数 *c_i* > 0。

2.2.3 N个子系统指挥官和总部领导的角度

上一小节中得到了使目标函数f达到 Pareto 最优的方法,在此基础之上考虑如何利用f的 Pareto 最优解使(F, f)达到 Pareto 最优。

定理2 由式(1-3)、式(6)和式(13-16) 组成的 *N*+1 个决策者的约束优化问题(*F*, *f*)的 最优解,就是 2.2.2 中 *N* 个决策者情况下的 Pareto最优解。

2.2.4 总部领导的角度

定理3 目标 F(f) 达到 Pareto 最优状态的一个必要条件是 f 达到了 Pareto 最优状态。

定理3说明目标f的 Pareto 最优解并非是 F(f)达到 Pareto 最优状态的充要条件,然而使 F(f)达到最优的解亦可使f达到最优。因此需对 目标f的所有 Pareto 最优解集合进行筛选,剔除 掉不满足条件的解,所剩下的就是全局最优解。

对于筛选不满足条件的解的过程, Haimes 提出了利用包络线的方法,介绍如下。

定义 给定一曲线族 *C*_s,若另一条不属于此 曲线族的曲线,与该曲线族内每条曲线都至少有 一点相切,那么这条曲线称为曲线族的包络线。

定理4 一曲线族的单参数函数表达式为 f_1 = $f_1(u,\alpha)$, $f_2 = f_2(u,\alpha)$,其中 u 是函数的自变 量, α 是曲线族的参数。则该曲线组包络线的表 达式可通过以下方程组求得

$$f_1 = f_1(u, \alpha)$$
,

$$\begin{split} f_2 = f_2 \left(u, \alpha \right) \,, \\ \frac{\partial f_1}{\partial u} \right) \left(\frac{\partial f_2}{\partial \alpha} \right) - \left(\frac{\partial f_1}{\partial \alpha} \right) \left(\frac{\partial f_2}{\partial u} \right) = 0_{\circ} \end{split}$$

消去参数 α 即可得到包络线的函数表达式。 以上的定理是定义在二维空间中,同理可以推广 到多维空间中。

定理 5 待优化目标函数族为 $f_1 = f_1(\boldsymbol{u}, \boldsymbol{\alpha})$, $f_2 = f_2(\boldsymbol{u}, \boldsymbol{\alpha}), \dots, f_n = f_n(\boldsymbol{u}, \boldsymbol{\alpha}), \boldsymbol{u} \in \boldsymbol{R}^{n-1}, \boldsymbol{\alpha} \in \boldsymbol{R}^m, n$ 是目标函数数, *m* 是曲线族参数的维数。假设 f_i 对于 $\boldsymbol{u}, \boldsymbol{\alpha}$ 均可微,则其所有 Pareto 最优解全部落 在此函数族的包络线上。

有了以上定理的支撑,可求得全局目标 F 的 Pareto 最优解,步骤如下:

步骤一:通过引入变量 *p_i*,将问题分解成式 (17) ~ (21)所描述的 *N* 个子问题。

步骤二:同 3. 2,利用权重法求得每个独立分问题的含有参数 *wⁱ* 和 *p_i* 的 Pareto 最优解。则

$$\begin{cases} f_{1}^{*i} = f_{1}^{*i}(w^{i}, p_{i}); \\ f_{2}^{*i} = f_{2}^{*i}(w^{i}, p_{i}); \\ \vdots \\ f_{n}^{*i} = f_{n}^{*i}(w^{i}, p_{i})_{\circ} \end{cases}$$
(22)

步骤三:将式(22)代入式(7)中,得到含参数 的全局目标函数 *F*:

$$\begin{cases} F_{1}(f_{1}^{1}, \cdots, f_{1}^{N}) = \sum_{i=1}^{N} l_{1}^{i} \cdot f_{1}^{*i}(w^{i}, p_{i}), \\ \vdots \\ F_{n}(f_{n}^{1}, \cdots, f_{n}^{N}) = \sum_{i=1}^{N} l_{n}^{i} \cdot f_{n}^{*i}(w^{i}, p_{i})_{\circ} \end{cases}$$
(23)

则式(23)是一族含参数的函数, w^i 是函数的自变 量, $i = 2, ..., N, p_i$ 是曲线族的参数,i = 1, 2, ...,N-1。注意到, $w^T = (w^1, w^2, ..., w^N), (w^i)^T =$ $(1, w_2^i, w_3^i, ..., w_n^i)$ 的维数是N(n - 1),不是 (n - 1),故无法直接运用定理5。用 $\theta^T = (1, \theta_2, ..., \theta_n)$ 表示使用权重法求解问题式(5)时的权重 系数,有以下定理描述了w和 θ 之间的关系,应用 此定理对函数F进行变换,就可以借助定理5,筛 选出全局 Pareto 最优解。

定理6 求解子系统*i*时的权重系数*wⁱ*和式 (23)的权重系数之间存在以下关系

$$w_j^i = heta_j \, rac{l_j^i}{l_1^i} \circ$$

若如2.1 节中所讨论 l_j^i 是相对概率,则有 $l_1^i = l_2^i = \cdots = l_n^i = l^i$, $i = 1, \dots, N$,进一步有 $w_j^i = \theta_j$, $i = 1, \dots, N$, $j = 2, \dots, n_o$ 这样,式(23)可以改写成

$$\begin{cases} F_{1}(f_{1}^{1}, \dots, f_{1}^{N}) = \sum_{i=1}^{N} l_{1}^{i} \cdot f_{1}^{*i} \Big(\theta_{2} \frac{l_{2}^{i}}{l_{1}^{i}}, \dots, \theta_{n} \frac{l_{n}^{i}}{l_{1}^{i}}, p_{i} \Big) \\ \vdots \\ F_{n}(f_{n}^{1}, \dots, f_{n}^{N}) = \sum_{i=1}^{N} l_{n}^{i} \cdot f_{n}^{*i} \Big(\theta_{2} \frac{l_{2}^{i}}{l_{1}^{i}}, \dots, \theta_{n} \frac{l_{n}^{i}}{l_{1}^{i}}, p_{i} \Big) \end{cases}$$

$$(24)$$

步骤四:式(24)是含参数曲线族的标准形式,则可以利用定理4求得曲线族包络线,由定理5,此包络线即为全局目标 *F* 的 Pareto 最优前沿。

3 求解算例

利用一个简单的数值示例来说明基于 MOMDRA 模型的武器装备分配问题的求解方法 的可行性。对于具有两个防空基地,每个防空子 系统中含有两个城市,考虑两种目标函数,分配两 种武器装备,即 N = 2, n = 2, k = 2。假设 ω_{ij} 是一 个常数, $\omega_{ij} = 0.8$ 。更复杂地, ω_{ij} 也是随 m_{ikj} 变化 的变量,即空袭成功与否与防空武器装备的水平 有关。各系统的目标函数 $f_1^i \Pi f_2^i$ 可以由 S_{ij}^0 与 $E(S_{ij}^i)表示出来$

$$f_{1}^{1} = 0.5 (m_{111} - 13)^{2} + 0.7 (m_{112} - 7)^{2} + 0.4 (m_{121} - 6)^{2} + 0.9 (m_{122} - 5)^{2} + 20,$$

$$f_{2}^{1} = 40 - m_{111} - 2m_{112} - m_{121},$$

$$f_{1}^{2} = 0.6 (m_{211} - 9)^{2} + 0.5 (m_{212} - 11)^{2} + 0.7 (m_{221} - 5)^{2} + 0.3 (m_{222} - 9)^{2} + 20,$$

$$f_{2}^{2} = 45 - m_{211} - 2m_{221} - m_{222} \circ$$

考虑由于城市所处地理位置以及重要程度不同, 被袭击的可能性也不相同,为简便这里假设各子 系统被空袭的概率相等, $l^1 = l_1^1 = l_2^1 = l_1^2 = l_2^2 = 0.5$ 。则总部全局目标函数为

 $F_1 = 0.5f_1^1 + 0.5f_1^2, F_2 = 0.5f_2^1 + 0.5f_2^2,$ 对武器装备数量的约束为

$$\begin{split} m_{111} + m_{112} + m_{211} + m_{212} \leqslant 8, \\ m_{121} + m_{122} + m_{221} + m_{222} \leqslant 5, \\ m_{111} > 0, m_{121} > 0, m_{211} > 0, m_{221} > 0, \\ m_{112} > 0, m_{122} > 0, m_{212} > 0, m_{222} > 0 \end{split}$$

将整个体系进行分解,对于子系统 *i*、资源 *m_k*,引入输入输出变量 *x_{ik}*,*y_{ik}:*

$$\begin{aligned} x_{11} &= 0, x_{12} = 0, y_{11} = m_{111} + m_{121} + x_{11}, \\ y_{12} &= m_{112} + m_{122} + x_{12}, y_{11} = x_{21}, y_{12} = x_{22}, \\ y_{21} &= m_{211} + m_{221} + x_{21}, y_{22} = m_{212} + m_{222} + x_{22}, \\ y_{21} &= 8, y_{22} = 5_{\circ} \end{aligned}$$

再引入固定变量 $y_{11} = p_1$ 和 $y_{21} = p_2$,则该体系问题的分配可以分解为下面两个子问题:

子系统
$$D_1$$

 $f_1^1 = 0.5 (m_{111} - 13)^2 + 0.7 (m_{112} - 7)^2 + 0.4 (m_{121} - 6)^2 + 0.9 (m_{122} - 5)^2 + 20,$
 $f_2^1 = 40 - m_{111} - 2m_{112} - m_{121},$
s. t. $x_{11} = 0, x_{12} = 0,$
 $y_{11} = m_{111} + m_{121} + x_{11}, y_{12} = m_{112} + m_{122} + x_{12},$
 $y_{11} = p_1, y_{12} = p_2,$
 $m_{111} > 0, m_{121} > 0, m_{112} > 0, m_{122} > 0_{\circ}$
子系统 D_2
 $f_1^2 = 0.6 (m_{211} - 9)^2 + 0.5 (m_{212} - 11)^2 + 0.7 (m_{221} - 5)^2 + 0.3 (m_{222} - 9)^2 + 20,$
 $f_2^2 = 45 - m_{211} - 2m_{221} - m_{222\circ}$
s. t. $x_{21} = p_1, x_{22} = p_2,$

 $y_{21} = m_{211} + m_{212} + x_{21}, y_{22} = m_{221} + m_{222} + x_{22},$ $y_{21} = 8, y_{22} = 5, m_{211} > 0, m_{221} > 0, m_{212} > 0, m_{222} > 0_{\circ}$

利用权重法对子系统 D₁ 的多目标优化问题 进行求解

$$\begin{split} L = 0.5 & (m_{111} - 13)^2 + 0.7 & (m_{112} - 7)^2 + \\ & 0.4 & (m_{121} - 6)^2 + 0.9 & (m_{122} - 5)^2 + 20 + \\ & w_2^1 (40 - m_{111} - 2m_{112} - m_{121}) + \\ & \pi_{1,1}^y (y_{11} - p_1) + \pi_{1,2}^y (y_{12} - p_2) + \\ & \sigma^{11} (y_{11} - m_{111} - m_{112} - x_{11}) + \\ & \sigma^{12} (y_{12} - m_{121} - m_{122} - x_{12}) + \\ & \lambda^{111} (-m_{111}) + \lambda^{121} (-m_{121}) + \\ & \lambda^{112} (-m_{112}) + \lambda^{122} (-m_{122}) , \\ & \boxplus \text{ Kuhn - Tucker }$$

$$\begin{aligned} \frac{\partial L}{\partial m_{ijk}} &= 0, \\ \frac{\partial L}{\partial y_{ik}} &= 0, \\ w^i &> 0, \\ \lambda^{ijk} &\ge 0, \lambda^{ijk} (-m_{ijk}) = 0, m_{ijk} > 0, \\ x_{11} &= 0, x_{12} = 0, \\ y_{11} &= m_{111} + m_{112} + x_{11}, y_{12} = m_{121} + m_{122} + x_{12}, \end{aligned}$$

 $y_{11} = p_1, y_{12} = p_2, \overline{\eta}$ $\pi_{1,1}^{y} = -\sigma^{11} = -0.5833p_1 + 1.4167w_2^1 +$ 11.6666, $\pi_{1,2}^{y} = -\sigma^{12} = -0.5538p_2 + 0.6923w_2^1 +$ 6.0922, 因此 $\begin{cases} m_{111} = 0.5833p_1 - 0.4167w_2^1 + 1.3334 > 0 \\ m_{112} = 0.4167p_1 + 0.4167w_2^1 - 1.3334 > 0 \\ m_{121} = 0.6923p_2 + 0.3846w_2^1 - 1.6154 > 0 \end{cases}$ $m_{122} = 0.3077p_2 - 0.3846w_2^1 + 1.6154 > 0$ w_2^1 取值范围为 max $\{ -p_1 + 3.2, -1.8p_2 + 4.2, 0 \}$ $< w_2^1 < \min\{1.4p_1 + 3.2, 0.8p_2 + 4.2\}, 0 \le p_1 \le 8, 0 \le p_2 \le 5_{\circ}$ 同理,对子系统 D_2 进行求解

即

$$\begin{cases} \pi_{2,1}^{x} = \sigma^{21} = -0.5455p_{1} - 0.4545w_{2}^{2} - 6.5456 \\ \pi_{2,2}^{x} = \sigma^{22} = -0.42p_{2} - 1.3w_{2}^{2} - 3.78 \\ m_{211} = -0.4546p_{1} + 0.4546w_{2}^{2} + 3.5453 > 0 \\ m_{212} = -0.5454p_{1} - 0.4545w_{2}^{2} + 4.4547 > 0 \\ m_{221} = -0.3p_{2} + 0.5w_{2}^{2} + 2.3 > 0 \\ m_{222} = -0.7p_{2} - 0.5w_{2}^{2} + 2.7 > 0_{\circ} \\ w_{2}^{1} \square \square \square \square \square \square max \{ p_{1} - 7.8, 0.6p_{2} - 4.6, 0 \} < w_{2}^{2} \\ < \min \{ -1.2p_{1} + 9.8, -1.4p_{2} + 5.4 \}, 0 \leq p_{1} \leq 8, \end{cases}$$

 $0 \leq p_2 \leq 5_{\circ}$

1) N 个子系统指挥官角度的 Pareto 最优解 由定理 1, 各子系统使 f^i 达到最优的解, 组合

Tab.

起来也是目标 F 的 Pareto 最优解,当且仅当条件

$$-c_i = \frac{\pi_{1,1}^y}{\pi_{2,1}^x} = \frac{\pi_{1,2}^y}{\pi_{2,2}^x},$$

$$-c_1 = \frac{-0.5833p_1 + 1.4167w_2^1 + 11.6666}{-0.5455p_1 - 0.4545w_2^2 - 6.5456}$$
$$= \frac{-0.5538p_2 + 0.6923w_2^1 + 6.0922}{-0.42p_2 - 1.3w_2^2 - 3.78} \circ$$

将符合上式关系的 *p*₁,*p*₂ 代入式(25)、式 (26),变换 *w*ⁱ_j 取值,可以得到目标 *f* 的 Pareto 最 优解。部分解由表 1 所示。

	表1	目标 $f = (f_1^1, f_2^1, f_1^2, f_2^2,)$ 的部分 Pareto 最优解	
1	Part o	of pareto optimal solutions of objective $f = (f_1^1, f_2^1, f_1^2, f_1^2, f_2^2)$	

		-								
w_2^1	w_2^2	p_1	p_2	f_{1}^{1}	f_{2}^{1}	f_{1}^{2}	f_{2}^{2}	c_i		
1	1	6.31	2.37	95.7	31.6	139. 1	39.1	0.9		
1	1	6.81	2.71	90.2	30.6	145.8	39.8	0.85		
2	1	6.64	2.46	93.9	30.2	142.8	39.4	1		

2) N 个子系统指挥官和总部领导角度的 Pareto 最优解

由定理 2 可知,目标 $(f_1^1, f_2^1, f_1^2, f_1^2, f_2^2)$ 的 Pareto 最优解就是目标函数 $(f_1^1, f_2^1, f_1^2, f_2^2, F_1, F_2)$ 的 Pareto 最优解,即考虑整个区域损失的同 时也考虑各防空基地所负责城市的损失,在保证 各子系统达到最优状态的前提下使全剧目标也达 到最优。

3) 总部领导角度的 Pareto 最优解

将式(25)、式(26)代入 F,得到 F 的参数表 达式

$$\begin{cases} F_1 = 0.5f_1^1 + 0.5f_1^2 \\ F_2 = 0.5f_2^1 + 0.5f_2^2 \end{cases}$$
(27)

可以得到含有参数 p_i 、 w_j^i 的参数表达式。根据定理 6, $w_2^1 = w_2^2 = \theta_2$,代人式(27)可得以 p_i 、 θ_2 为参数的表达式。运用定理 4 有下列表达式

$$\left\{ p_2 = -1.0382\theta_2 + 2.7438 \right.$$

将式(28)代入式(25)、式(26)便可得此情况 下的 Pareto 最优解。部分解由表 2 所示。

Tah 2	Part of	nareto	ontimal	solutions	of	objective	F	F_{\cdot}
1 a. 2	1 art or	pareto	opumai	solutions	OI.	objective	I'_1	121

			1 1		5 (1, 2,			
θ	\mathbf{p}_1	\mathbf{p}_2	f_1^1	${f f}_2^1$	f_1^2	${ m f}_2^2$	\mathbf{F}_1	F_2
 0.5	4.96	2.06	108.34	34.12	124.12	38.61	116.23	36.36
0.4	4.88	2.12	108.72	34.27	123.61	38.75	116.16	36.51
0.3	4.79	2.19	109.11	34.42	123.11	38.88	116.11	36.65
0.2	4.71	2.25	109.52	34.58	122.63	39.02	116.08	36.80
0.1	4.62	2.31	109.94	34.73	122.17	39.16	116.05	36.95

计算结果只给出了少数可行解作为示例,决 策者可以根据需求和实际作战中各子系统重要程 度所占权重大小,通过调节 *p* 的取值来调整分配 给各子系统的资源数量;各子系统的指挥官亦可 变换 w 的取值来调整各目标函数的权重,通过增 大相对更关心的目标函数的比重,实现多个相冲 突的目标间的权衡,得到更多 Pareto 最优解用以 辅助决策。众多 Pareto 最优解的选择方法,以及 多目标间的权衡方法与准则还需在后续研究中进 行。通过上述例子可以看到基于 MOMDRA 模型 对于解决作战体系中武器装备分配问题是可行 的,可以降低需要求解的维数,对于具有更多子系 统的复杂结构,降维效果更为显著。

4 结论

作战体系具有大规模、多层次、多系统、多决 策者的结构特点,这样的特点使得体系作战在带 来高效作战能力的同时,也带来了管理上的困难。 本文从风险资源分配的角度,基于 MOMDRA 对 防空反导装备体系资源分配这一风险管理问题进 行了研究,初步构建了具有两层结构的体系在空 袭风险下的资源分配模型。对于该问题的求解, 本文利用了系统分解 - 整合的方法, 先对系统进 行拆分,有效地处理了"多层次、多系统、多决策 者"特点所带来的高维数求解难题。进而再利用 现有的多目标优化方法对分解后的各子系统求 解,本文利用了权重法求解子系统的多目标优化 问题,决策者可以根据问题特征选择其他方法。 最后在整合过程中,分别站在不同决策者的角度, 得到相应情况下的 Pareto 最优解。文章利用一简 单数值示例说明了模型及求解方法的可行性,为 了叙述求解简便,对问题中一些变量的函数表示 与取值做了简化,对于更大型结构的分配问题,其 实际形式可能会更为复杂,求解过程可借助编程 软件编写程序来实现。无论是在初始武器装备部 署阶段,还是在后续作战中武器装备补给阶段,决 策者都可以利用此方法,根据实际需求和利益权 衡来辅助分配方案的决策,从而进一步增强体系 的作战能力。

参考文献(References)

- 施荣,陈兢,辜璐. 美国一体化防空反导系统作战能力分析[J]. 航天电子对抗, 2008, 24(2):1-4.
 SHI Rong, CHEN Jing, GU Lu. Research on the operation capability of US integrated air and missile defense system[J]. Aerospace Electronic Warfare, 2008, 24(2):1-4. (in Chinese)
- [2] 宋志华,张多林,朱法顺,等.一体化防空反导系统抗击能力建模与仿真研究[J]. 军事运筹与系统工程,2009,2: 63-68.

SONG Zhihua, ZHANG Duolin, ZHU Fashun, et al. Modeling and simulation of operational capability of the integrated air and missile defense system [J]. Military Operations Research and Systems Engineering, 2009, 2: 63 - 68. (in Chinese)

[3] 王幸运,陈杰生.基于混合粒子群优化的编队防空目标分

配[J]. 电讯技术, 2013, 53(2): 122-126.

WANG Xingyun, CHEN Jiesheng. Weapon target assignment for air defense based on hybrid particle swarm optimaztion[J]. Telecommunication Engineering, 2013, 53(2): 122 - 126. (in Chinese)

- [4] 方逸洪,李为民,周晓光,等.基于连续 Hopfield 网络的反导火力分配优化[J]. 空军工程大学学报(自然科学版),2011,12(6):32-38.
 FANG Yihong, LI Weimin, ZHOU Xiaoguang, et al. A study of the optimal anti-missile firepower distribution based on continuous hopfield neural networks[J]. Journal of Air Force Engineering University (Natural Science Edition), 2011, 12(6):32-38. (in Chinese)
- [5] 张年春.区域防空导弹反导火力分配研究[J].指挥控制 与仿真, 2007, 12:41-43.
 ZHANG Nianchun. The research of fire allocation for formation area SAM[J]. Command Control & Simulation, 2007, 12:41 -43. (in Chinese)
- [6] Hong Y Z, Zhou Q L, Jia L G, et al. Multidisciplinary design optimization on production scale of underground metal mine[J]. Journal of Central South University, 2013, 20(5): 1332 - 1340.
- [7] Hai D Y, Jia Q, Ting Q. Multidisciplinary design optimization for air-condition production system based on multi-agent technique [J]. Journal of Central South University, 2012, 19(2): 527-536.
- [8] 方诗虹,丁可伟,陈雅茜. 多目标优化方法研究[J].西南 民族大学学报(自然科学版),2012,38(4):658-661.
 FANG Shihong, DING Kewei, CHEN Yaxi. Research on methods of multi-objective optimization [J]. Journal of Southwest University for Nationalities (Natrual Science Edition),2012,38(4):658-661. (in Chinese)
- [9] Bui L T, Barlow M, Abbass H A. A multi-objective risk-based framework for mission capability planning [J]. New Mathematics and Natural Computation, 2009, 5(02):459-485.
- [10] Haimes Y Y. Hierarchical Analyses of water resources systems: modeling and optimization of large-scale systems[M]. New York: McGraw-Hill, 1977.
- [11] Haimes Y Y, Li D. Hierarchical multiobjective analysis for large-scale systems: Review and current status [J]. Automatica, 1988, 24(1): 53-69.
- [12] Haimes Y Y, Tarvainen K, Shima T, et al. Hierarchical multiobjective analysis of large-scale systems[J]. Hemisphere, New York, 1990.
- [13] Haimes Y Y, Li D. A hierarchical-multiobjective framework for risk management [J]. Automatica, 1991, 27 (3): 579 -584.
- [14] Chen Y C, Lai X G, Zeng C. Optimal allocation of water resources in Guangzhou city, south China [J]. Journal of Environmental Science and Health part A-Toxic/Hazardous Substances & Environmental Engineering, 1991, 41 (7) : 1405 - 1419.
- [15] Caballero R, Gomez T, Luque M, et al. Hierarchical generation of Pareto optimal solutions in large-scale multiobjective systems [J]. Computers & Operations Research, 2002, 29(11): 1537-1558.
- [16] Yan Z, Haimes Y Y. Risk-based multiobjective resource allocation in hierarchical systems with multiple decisionmakers. Part I: theory and methodology[J]. Systems Engineering, 2011, 14(1): 1-16.