不同隔板构型下的超声速混合层流场特性*

刘 彧,周 进,晏至辉

(国防科技大学 高超声速冲压发动机技术重点实验室,湖南 长沙 410073)

摘 要:利用实验和数值仿真相结合的方法,对 Ma₁=1.5,Ma₂=2.5,T_{0,1}=300K,T_{0,2}=1200K,压力匹配 (p₁=p₂=86kPa)条件下的超声速混合层在不同隔板构型下的流场特性进行了研究。实验中发现在隔板上开 凹腔对于混合层具有一定的混合增强效果,且凹腔长深比越大,这种效果越显著。对于尾缘交错分布的隔 板,混合层流场显现出强烈的非定常性,且极大地增进了混合。通过相应的数值仿真发现,凹腔隔板的增混 机制在于凹腔剪切层的再附着,而交错隔板则在于促进了大尺度流向涡的产生。

关键词:超声速混合层;混合增强;凹腔剪切层;流向涡

中图分类号: V435.6 文献标志码: A 文章编号: 1001 - 2486 (2013) 05 - 0001 - 05

Study on the flow fields of supersonic mixing layer with splitters of different geometric configurations

LIU Yu, ZHOU Jin, YAN Zhihui

(Science and Technology on Scramjet Laboratory, National University of Defense Technology, Changsha 410073, China) **Abstract:** Through combining an experiment and a numerical simulation, a study was carried out on supersonic mixing layer with splitters of different geometric configurations, which is under the condition of $Ma_1 = 1.5$, $Ma_2 = 2.5$, $T_{0,1} = 300$ K, $T_{0,2} = 1200$ K, and matched pressure $p_1 = p_2$ = 86kPa. In the experiment, it was discovered that the thickness of mixing layer in the flow field with splitters in which a cavity is mounted grows as the ratio of the length to the depth of the cavity becomes larger; Splitters with sawtooth trail show great effect of mixing enhancement and making the flow field highly unsteady. In the numerical study, it was demonstrated that the mixing-enhancement effect of splitters with cavity is due to the cavity shear layer's reattachment to the trail of the splitter, and splitters with sawtooth trail due to induced large-scale streamwise vortexes.

Key words: supersonic mixing layer; mixing enhancement; cavity shear layer; steamwise vortex

人们对混合层的研究已经有较长的历史,因为 其不仅在工程实践中有着巨大应用价值,而且在流 动机理研究中,研究混合层这种典型的自由剪切 流,有助于人们对流动稳定性,层流到湍流的转捩 以及对湍流现象的认知。但由于受实验条件的限 制,人们对混合层的研究长期集中于不可压缩混合 层。对于可压缩混合层,尤其是超声速混合层的研 究,则是最近几十年随着超声速推进技术的不断发 展才逐渐开展起来的^[1]。高超声速推进技术的发 展对混合增强提出了要求。混合层随着可压缩性 的增强,其稳定性提高,增长率受到抑制。为了提 高混合效率,人们提出了多种混合增强措施。按照 这些措施的实施方式,可以将它们分为主动增强和 被动增强。前者是指在混合层中引入各种激励,以 激发混合层的不稳定性,从而使混合层增长率提 高。后者则主要是通过改变流场中的物理构型来 被动激发混合层的不稳定性。主动增强方面,

Chalot 等^[2]通过大涡模拟研究了在混合层一侧入 口施加横向喷流时的混合增强效果。发现横向喷 流能够有效地增加混合层的涡量厚度,从而增进混 合。曹伟和周恒^[3]也通过数值模拟研究了在混合 层入口施加沿流向的振荡和引入 T-S 波的混合增 强作用。结果表明,对于对流马赫数小于1的超声 速混合层,两种方法均可增强混合,而加入振荡比 引入T-S波更为有效。McLaughlin^[4]则通过实验 表明在超声速混合层入口引入电火花激励是增强 混合的一个有效途径。被动增强方面, Fernando 等[5]通过实验研究了不同的小扰动隔板的混合增 强效果,探讨了各种小扰动隔板对流场影响的规 律。但是其缺少对小扰动隔板影响流场的机理性 研究。Raman^[6]在超声速射流中利用声冲击的方 法使声波在流场中形成自持循环,从而实现了混合 增强。本文针对隔板上开凹腔和尾缘交错两种构 型的隔板开展实验和数值仿真研究,探讨了这两种

^{*} 收稿日期:2013-01-27

基金项目:国家自然科学基金资助项目(91016028,91016012) 作者简介:刘彧(1986—),男,河南洛阳人,博士研究生,E-mail:yuesefuliu@sina.com; 周进(通信作者),男,教授,博士,博士生导师,E-mail:zj706@vip.sina.com

隔板增强混合的机理。

1 实验系统及数值仿真方法

1.1 实验系统简介

本文实验是在超声速燃烧机理直连式试验系 统上进行的。直连式试验系统的示意图如图1所 示。该系统是用于模拟超燃冲压发动机燃烧室在 高总温来流条件下燃烧性能的一整套试验系统。 它由火炬、空气加热器、喷管、试验段、扩张段、供 应系统、测控系统组成。观测段长、宽、高分别为 190mm、50mm、78mm。其中上流道高28mm,下流 道高40mm,中间隔板厚度为10mm。采用的混合 增强措施是在隔板上设计不同的几何构型(见表 1)。这些隔板为可拆卸隔板,平放在固定隔板 上,通过螺钉进行固定(如图2所示)。实验观测 利用激光高速纹影仪。

图1 超声速燃烧机理直连式试验系统示意图

隔板类型	构型图	说 明
平板		
凹腔板 (3种)		凹腔深度均为6mm 长深比 <i>L/D</i> =3、7、12 凹腔后沿距隔板后 缘均为20mm
上下交错 尾缘隔板	Contraction of the second seco	上下交错角度为30°
左右交错 尾缘隔板		左右交错角度为60°

表 1 隔板构型列表 Tab. 1 Geometric configurations of splitters

1.2 数值仿真方法

本文的数值仿真基于有限体积法,采用基于 密度的隐式方法,湍流模型为剪切应力输运 (SST)*k*-ω模型,因为该模型更适于剪切流动, 且能够较好地处理剪切应力产生的输运效应。对 流项采用二阶迎风格式,粘性项采用二阶中心差 分格式。对于平板及三种凹腔隔板,由于流场的 二维性较好,故相应的仿真算例也为二维,而交错 隔板的流场三维性明显,故仿真算例为三维。

2 实验结果及分析

表2列出了不同隔板构型下混合层的纹影图 片。从表中可以看出,各流场的基本结构都与平 板混合层流场的基本结构相似。但不同的隔板混 合层又具有各自的特点:凹腔板随着凹腔长深比 的增大,混合层的边缘变得越来越不平整,且厚度 增长,这显示出随着凹腔长深比的增大,混合层的 大涡拟序结构的卷起位置提前,亦即混合层的转 捩位置提前;而两种交错隔板的混合层厚度显著 增大,并且混合层表现得更加杂乱无章,这说明交 错隔板使混合层的湍流强度更高,湍涡尺度更大, 这对于混合层的发展是十分有利的。

> 表 2 不同隔板构型下的混合层流场纹影图 Tab. 2 Schlieren photographs of mixing layer

> > with different splitters

为了考察混合层随时间的变化,即非定常性, 需要对不同时刻的混合层流场的结构进行对比分 析。图3显示了平板混合层的连续18幅纹影图 (每两幅的时间间隔为250μs)。从图中可以看 出,不同时刻混合层流场形态表现出了随时间变 化的特性,包括混合层的起伏,波系位置的摆动和 混合层厚度的变化。然而,平板混合层以及凹腔 板混合层的流场随时间的变化幅度比较有限,流 场内各基本结构呈现出在某一平衡位置附近摆 动。而交错隔板混合层则呈现出了较强的非定常 性,如图4所示。

从图 4 中的上下交错隔板的连续时刻纹影图 可以看出流场随时间的变化十分明显。最显著的 特征就是混合层上侧的激波在上壁面的反射点位 置在不同时刻的变化很大,而其他工况下这一位 置则基本保持不变。这表明上下交错隔板使得混

图 3 平板混合层连续时刻的纹影图(时间间隔 250µs) Fig. 3 Successive schlieren of mixing layer with flat splitter(time spacing 250µs)

图 4 上下交错隔板混合层连续时刻的纹影图 (时间间隔 250 µs)

 $\label{eq:Fig.4} Fig. 4 \quad Successive \ schlieren \ of \ mixing \ layer \ with \\ up-and-down \ staggered \ splitter(time \ spacing \ 250 \mu s) \\$

合层的非定常性增强,这对于增进混合也是极为 有利的。

3 不同构型隔板的增混机制

为了补足对本文所选用的混合增强措施的增 混机理研究,需要辅以数值仿真来实现。图5所 示为实验中平板混合层纹影与相应的数值纹影的 对比。从图中可以看出,数值纹影中显示出了与 实验纹影中一致的混合层基本结构。包括隔板后 缘的回流区、流场波系结构等,并且隔板后缘上侧 的膨胀波束的形状和方向,流场中激波的方向及 激波反射点(实验中上流道第二道反射波束的起 始点)的位置都相当一致。这表明本文所用的数 值仿真方法和模型简化方法是可行的,得到的结 果与实验基本吻合。当然,还是可以发现仿真结 果与实验结果的差异。最显著的差异在于数值纹 影中混合层的厚度明显薄于实验中的厚度,以及 实验中上流道呈现出两道反射激波,而数值纹影 中只有一道。造成这种差异的原因在于仿真与实 验的边界条件的误差,以及纹影实验得到的结果 包含展向叠加效应,也就是三维视图在二维平面 的投影,而数值仿真则是纯粹的二维结果,这是二 维仿真的固有缺陷。

图 5 平板混合层数值纹影(上)与实验纹影(下)的对比 Fig. 5 Numerical(upside) and experimental(downside) schlieren photographs of mixing layer with flat splitter 图 6 所示为平板及三种凹腔板混合层数值纹

图 6 平板及三种凹腔板混合层数值纹影 (计算域为 350 × 88mm,隔板长 100mm,厚 10mm) Fig. 6 Numerical schlieren of mixing layer with flat and three kinds of cavity-mounted splitters (computational domain 350 × 88mm, splitter length 100mm,thickness 10mm)

影图,图7所示为三种凹腔板混合层的压力云图 及马赫数云图。通过对比可以看出,对于凹腔板 来说,上侧来流在凹腔内形成了低速回流区,回流 区与主流由于存在速度差而相互剪切,产生凹腔 剪切层。在凹腔前、后缘分别存在壁面边界层分 离形成的分离激波和凹腔剪切层撞击在凹腔后壁 后产生的撞击激波,而凹腔剪切层再附着于隔板 尾缘形成了再附激波。再附着后的剪切层继续向 下游移动,最后卷入混合层。凹腔剪切层卷入混 合层后对于混合层大涡拟序结构的提早形成是十 分有利的。从图6中可以清晰地看到,凹腔长深 比越大,则凹腔剪切层越厚,再附着的部分也越 厚,从而混合层的厚度也越大。

图 7 三种凹腔板混合层的压力云图及马赫数云图

Fig. 7 Pressure and Mach number contours of mixing layer with cavity-mounted splitters

图 8 给出了两种交错隔板混合层的不同展向 (Z向)位置的 XY 平面数值纹影切片,从图中可 以清晰地看到,各个展向位置上,混合层的形态各 不相同,这正是交错隔板混合层强三维特性的表 现。同时,从混合层的形态来看,最明显的特征便 是混合层的厚度显著增大,掺混极其剧烈。作为 对比,图9中给出了两种交错隔板混合层展向中 心位置处的数值纹影切片与二维平板混合层进行 对比。三维交错隔板能够产生如此显著的混合增 强效果,其原因在于交错后缘的构型能够使来流 在后缘处形成剧烈剪切,这种剪切不仅在流场中 诱导出了展向涡,而且也会诱导出流向涡,从而使 混合层的不稳定性增强,同时流场表现出强三维 特性。为了看清这一点,图10给出了两种交错隔 板混合层 YZ 平面内流向涡量云图的切片,其显 示出在两种隔板的"锯齿"尾缘,分别产生了与锯 齿分布形态相对应的流向涡,流向涡在向下游发 展的过程中形态逐渐增大,但涡量则逐渐减小,这 种流向涡的存在是一种重要的不稳定性因素,对 于增混十分有利。从图中还可以看出,上下交错 隔板的增混效果要强于左右交错隔板,这与实验 结果也是一致的,而原因在于前者诱导出的流向 涡的尺度大于后者。

图 8 两种交错隔板混合层的不同展向(Z向) 位置的 XY 平面数值纹影切片

Fig. 8 Numerical schlieren of XY plane of different Z location of mixing layer with both staggered splitters

- 图 9 两种交错隔板混合层展向中心位置处的数值 纹影切片与平板混合层数值纹影对比
- Fig. 9 Numerical schlieren of central Z location of both staggered splitters in contrast with that of flat splitter

图 10 两种交错隔板混合层 YZ 平面内流向涡量云图的切片 Fig. 10 Streamwise vorticity contours in YZ plane of mixing layer with both staggered splitters

4 结论

本文通过实验和数值仿真,对各种隔板的混 合层流场形态进行了对比分析。在纹影实验中, 发现凹腔板混合层随着凹腔长深比的增大,混合 层厚度增加。两种交错隔板均具有显著的混合增 强效果。在数值仿真中,发现凹腔板的增混机制 在于凹腔剪切层再附着于隔板后缘,且凹腔长深 比越大,则再附着厚度越大,从而混合层厚度也越 大;交错隔板的增混机制则是交错后缘能使来流 形成强力剪切,诱导出流向涡,从而增强混合。上 下交错隔板诱导出的流向涡尺度大于左右交错隔 板,故前者混合增强效果优于后者。

参考文献(References)

- Waltrup P J, White M E, Zarlingo F. History of ramjet and scramjet propulsion development for U. S. navy missiles [J]. Johns Hopkins Apl Technical Digest, 1997(02).
- [2] Chalot F, Marquez B, Ravachol M. Large Eddy simulation of a compressible mixing layer: study of the mixing enhancement [C]//Proceedings of 14th Computational Fluid Dynamics Conference 99 - 3358,1999.
- [3] 曹伟,周恒.二维超音速混合层增强混合的研究[J].中国 科学(A辑),2002,32(2):150-157.
 CAO Wei, ZHOU Heng. Research on mixing enhancement of two-dimessional supersonic mixing layer[J]. Science in China (A), 2002,32(2):150-157. (in Chinese)
- [4] McLaughilin D K, Martens S, Kinzie K W. An experimental investigation of large scale instabilities in a low Reynolds number two-stream supersonic shear layer [C]. AIAA Paper,92 -0177,1992.
- [5] Fernando E M, Menon S. Mixing enhancement in compressible mixing layers: An experimental study [C]. AIAA Paper, 91 – 1721, 1991.
- [6] Raman G. Supersonic jet mixing enhancement using impingement tones from obstacles of various geometries [J]. AIAA Journal, 1995, 33(3):454-462.