doi:10.11887/j.cn.201401013

http://journal. nudt. edu. cn

LEO 卫星网络路径选择策略*

段思睿,刘元安,胡鹤飞,李 虎 (北京邮电大学电子工程学院,北京 100876)

摘 要:路由算法在选择路径时,主要考虑传输延迟和跳数这两个因素,分别选取最短延迟路径(Least Delay Path, LDP)或最少跳数路径(Least Hops Path, LHP)。在卫星网络中,基于 LHP 选径策略实现更加简单,但其应用在 LEO 卫星网络中合理性的研究成果不多。对极轨道 LEO 卫星网络中,LDP 和 LHP 之间关系进行详细地理论分析,验证了 LHP 选径策略的合理性。并在此基础上,提出一种基于横向传输优先级(Horizontal Transmitting Priority, HTP)的 LHP 最短路径选择策略,利用横向链路长短特性简化路径决策流程。通过仿真,该方法能够快速寻找到最短 LHP 路径,为 LEO 卫星网络路由算法提供一定的研究基础。

关键词:低轨道;卫星网络;卫星星座;路径选择

中图分类号: TP393 文献标志码: A 文章编号:1001-2486(2014)01-067-07

Path selecting strategy in LEO satellite network

DUAN Sirui, LIU Yuanan, HU Hefei, LI Hu

(College of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China)

Abstract: The transmission delay and the number of hops in path are the two main factors which should be considered in designing a routing algorithm for a specific network. The paths generated by different routing strategs are called least delay path (LDP) and least hop path (LHP). In satellite network, the algorithm for LHP is much simpler, but there are limited research achievements for the rationality of LHP. A detailed theoretical analysis, in this research, was made for the differences between LDP and LHP in polar circular LEO satellite network. Based on the results of our analysis, a simplified LHP path selecting strategy with an idea of horizontal transmitting priority (HTP) by using the features of horizontal link length was proposed. The simulation results prove that our path selecting strategy can quickly find out the shortest path among all the LHP between every two nodes. It provides a foundation for the research of routing algorithms in LEO satellite network.

Key words: LEO; satellite network; satellite constellation; routing

在网络路由算法的研究过程中,选择路径代价的度量参数是一个非常重要的问题。在传统的网络路由协议中,RIP协议以跳数作为度量参数,OSPF协议为每一条路由选择基于服务类型的代价(网络延迟、数据带宽等)作为路由算法的度量参数。然而在网络路径中,最短延迟路径(LDP)和最少跳路径(LHP)之间并无直接联系,两种选择策略有各自适用的网络环境。

LEO 卫星网络路由有如下四类方式:基于虚 拟拓扑的路由算法^[1-4]、基于数据驱动的路由算 法^[5-6]、基于覆盖区域划分的路由算法^[7]以及基 于虚拟节点的路由算法^[8-9]。其中,前两类算法 的选径策略是基于 LDP 的。而基于 LHP 的路由 算法,在实现上非常简单,极大地减少了卫星节点 的存储和计算开销,满足卫星设备性能有限的实 际情况。但是 LHP 路径不一定就是全局的最短路径,其在 LEO 网络中的适用性需要验证。

在极轨道的 LEO 卫星网络中, LDP 和 LHP 并无特定的关系。文献[10]中, 作者在预先设定 的几种星座模型中, 采取遍历比较的方式, 得出了 在 LEO 星座中, LDP 属于 LHP 集合的结论, 是不 完全准确的。本文通过详尽推导, 计算出 LDP 和 LHP 与卫星星座参数的关系; 在此基础上, 提出 了一种基于横向转发权限(HTP) LHP 最短路径 选择策略。通过软件仿真结果证明, 在不同卫星 星座参数下 LDP 和 LHP 的关系符合理论推导; 基 于 HTP 的路径选择策略能够简单快速地选择最 短的 LHP 路径, 为分布式的 LEO 卫星网络路由 技术优化提供了新的方向。

* 收稿日期:2013-04-17

基金项目:国家自然科学基金资助项目(61272518);国家重大专项资助项目(2012ZX03003001-004) 作者简介:段思睿(1986—),男,重庆人,博士研究生,E-mail:duansirui@sina.com; 刘元安(通信作者),男,教授,博士,博士生导师,E-mail:yuliu@bupt.edu.cn

第36卷

1 LEO 星座结构和链路特点

1.1 LEO 网络卫星星座

LEO 卫星星座结构的选择,对卫星网络的性能网络路由算法有重大的影响。常用的星座结构 有极轨道星座^[11-12]、Walker 星座^[13-14]等。而在 采用分布式路由算法的相关文献中,都是采用极 轨道或近似极轨道的星座参数,主要原因是分布 式路由算法需要均匀分布的星座结构,以便于对 整个网络区域进行均匀地区域划分。

星座参数可记为 $N \cdot M/N/F:h:i, F = 0, 1,$ …, N - 1。其中 M 为单轨道面内的卫星数, N 代 表轨道面数, $N \cdot M$ 即为星座中卫星总数。 F 表 示相位因子, h 为轨道高度, i 为轨道倾角。在极 轨道星座中, $i = 90^{\circ}$ 。相位因子 F 可以计算相邻 轨道平面上同序号卫星之间的相位偏移角度 θ 。 在图 1 中, 轨道间链路相连的两颗卫星是相邻轨 道面的同序号卫星, 当 F = 0 时, 表示两颗卫星在 各自轨道面的圆内相位相同。若 $F \neq 0$, 则两颗卫 星的相位角差 $\theta = 360^{\circ} \cdot F/(M \cdot N)$ 。在图 2 中, 圆弧表示轨道面卫星运动轨迹, 重合在同一平面 内。相邻轨道的同序号卫星 A、, B 在各自轨道平 面内的相位为 θ_A 、 θ_B , 则相位夹角为 θ 。

文献[8]中,将极轨道 LEO 卫星网络抽象为 一种 Manhattan Street 网络,如图 3 所示。而极轨 道卫星网络与 Manhattan Street 网络存在下述两 点不同:(1)轨道内链路(纵向)在网络中是等长 的,而轨道间链路(横向)在网络中是变长的,其 长度与节点所处的纬度密切相关。链路长度过 长,将直接影响网络延迟,这一点在图 2 中无法体 现出来。(2)在极地区域和反向缝两侧的轨道间 链路是不存在的。

图 1 极轨道星座的结构图

类似"8"字型的网络拓扑结构。图4中,黑色区 域代表两个极地区域,轨道间链路无法建立;左右 两侧的网络节点之间没有直连链路,表示反向缝 两侧的链路无法建立。

1.2 星间链路

1.2.1 轨道内链路

每个网络节点都具有两条轨道内链路。轨道 方向相对于地球表面都是纵向的,所有的卫星都 沿着各自轨道以相同的方向和速度运动,由于节 点间方位角固定,因此轨道内链路相对静止且不 会中断。用 l_a表示轨道内链路的长度:

$$l_v = \sqrt{2R}\sqrt{1 - \cos(2\pi/M)} \tag{1}$$

其中 R 表示轨道半径,为地球半径与轨道高度之和; M 表示轨道内卫星颗数。

根据式(1)可知,轨道内链路长度在整个过 程中是保持不变的。

1.2.2 轨道间链路

除第一条与第 N 条轨道面上的卫星节点只 有一条轨道间链路,其余节点都有两条轨道间链 路。当星座的相位因子 F = 0 时,轨道方向都是 横向的,因此本文将轨道间链路也称为横向链路。 用 l_h 表示轨道间链路的长度:

 $l_h(lat) = \sqrt{2}R\sqrt{1 - \cos(\pi/N)} \times \cos(lat)$ (2) 其中 N 表示星座的轨道数量, *lat* 表示当前链路所 处的纬度。

图 4 极轨道卫星网络拓扑结构 Fig. 4 Structure of polar orbit satellites network

若 F≠0,则轨道间链路长度

 $l'_{h}(lat) = \sqrt{\left[\sqrt{2}R \sqrt{1 - \cos(2\pi F/MN)}\right]^{2} + l_{h}(lat)^{2}}$ (3)

从式(2)、式(3)可以看出,轨道间链路长度 *l_h*随着其所在的纬度 *lat* 增加而缩短。

1.3 网络节点地址

为区别各网络节点,需要将全网节点赋予一 个唯一的地址。设网络中存在一个初始的静止状 态,在图4中,用〈n,m〉表示某节点的地址,其中 n为轨道面序号,m为同轨道面内节点的序号。 例如,此刻左上角的卫星地址为〈1,1〉。节点地 址在网络中固定,不会因为卫星的运动而改变。 当左下角的卫星〈1,M〉跨域过极点,来到左上角 的区域时,其地址仍然是〈1,M〉。

2 LDP 与 LHP

在文献[10]中,作者设计了星座参数为48/ 6/3 的卫星网路环境,利用路径遍历对比的方式, 得到 LDP 属于 LHP 集合的结果,从而推断出在所 有星座参数的情况下 LDP 都属于 LHP 集合的结 论,缺乏足够的理论依据。本节利用数学推导的 方式,对 LEO 卫星网络中,LDP 不完全属于 LHP 集合的存在性进行证明,并对两个集合的相互关 系进行归纳。

在证明之前,定义相关函数:

定义1 函数 $P(\langle n_1, m_1 \rangle, \langle n_I, m_I \rangle)$ 表示两 点间的路径,它由一个节点序列组成。

 $P(\langle n_1, m_1 \rangle, \langle n_I, m_I \rangle)$

 $= \{ \langle n_1, m_1 \rangle, \cdots, \langle n_i, m_i \rangle, \cdots, \langle n_I, m_I \rangle \}$ (4)

 $\langle n_i, m_i \rangle$ 表示这条路径上依次经过的网络节点。在路径上增加一跳,会使 n 或 m 加 1 或者 减 1。

定义2 函数 $H(P(\langle n_1, m_1 \rangle, \langle n_I, m_I \rangle))$ 表示两点间的路径 *P* 的跳数。

$$H(P(\langle n_{1}, m_{1} \rangle, \langle n_{I}, m_{I} \rangle))$$

= $\sum_{i=1}^{I-1} (|m_{i+1} - m_{i}| + |n_{i+1} - n_{i}|)$ (5)

定义3 函数 *L*(*P*(〈*n*₁,*m*₁〉,〈*n*₁,*m*₁〉))用 以计算路径 *P*的总长度。根据节点位置和链路 类型,利用公式(1)~式(3)累加计算。

而链路的总传输延迟

 $D(P(\langle n_1, m_1 \rangle, \langle n_I, m_I \rangle))) = L(P(\langle n_1, m_1 \rangle, \langle n_I, m_I \rangle)) \div C$ (6) $\downarrow \text{th}, C \text{ (ξ-X-\vec{k}-$\vec{k}-$

Fig. 5 Topology of network

假设区域网络拓扑环境如图 5 所示,有任意 $A\langle n_A, m_A \rangle$ 和 $B\langle n_B, m_B \rangle$ 两个网络节点。令 $n_A < m_A, n_B < m_B$ 。其中 $lat_4 > lat_3 > lat_2 > lat_1 > lat_0$

根据网络拓扑的结构和上述定义,我们可以 做出如下推论:

推论1 任意 LHP 路径,其跳数等于($m_B - m_A$)+($n_B - n_A$),且路径经过的节点一定在 $A \ B \ \langle n_A, m_B \rangle \ \langle n_B, m_A \rangle$ 四个网络节点组成的矩形区域内(图5中灰色区域),以下简称为最少跳区域。

证明 因为
$$n_A < m_A, n_B < m_B, 则:$$

 $H(P(A,B)) = \sum_{\substack{i=A \ B-1}}^{B-1} (|m_{i+1} - m_i| + |n_{i+1} - n_i|)$
 $\ge \sum_{\substack{i=A \ B-1}}^{D} ([m_{i+1} - m_i] + [n_{i+1} - n_i])$
 $= (m_B - m_A) + (n_B - n_A)$ (7)

当且仅当*n_i*与*m_i*随着*i*增加而增加或不变的 情况下上式中的等号成立。

同时 $n_i \subseteq m_i$ 单调增加也保证了 $n_A \leq n_i \leq n_B$ 、 $m_A \leq m_i \leq m_B$,即LHP经过的节点范围在最少跳区域内。

推论2 若存在 LDP 路径不属于 LHP 路径集合,则 LDP 会在纵向上跨越出最少跳区域,引入了更高纬度的水平路径。

证明
$$D_{LHP}(P(A,B))$$

= $[x \cdot l_v + \sum_{i=1}^{3} y_i \cdot l_h(lat_i)] \div C$
 $\ge [(m_B - m_A) \cdot l_v + (n_B - n_A) \cdot l_h(lat_3)] \div C$
= $D_{LHP}(P(A,B))_{least}$ (8)
 $D_{LDP}(P(A,B)) = [x' \cdot l_v + \sum_{i=1}^{3} y'_i \cdot l_h(lat_i)] \div C$
(9)

x、*y*分别代表了 LHP 路径在纵向和横向的跳数,*x*′、*y*′代表了 LDP 路径在纵向和横向的跳数。 根据式(8)可以看出,最短的 LHP 其横向链路一 定是最少跳区域中的最高纬度的横向链路。

若 LDP 不属于 LHP 集合,也就是 LDP 的总跳 数大于 LHP 的跳数,则 $x' > m_B - m_A$ 或 $\sum_{i=1}^{3} y'_i > n_B$ $- n_A$,两者至少满足一项,否则 LDP 的跳数和 LHP 相等。

假设 $\sum_{i=1}^{5} y'_i > n_B - n_A$,则LDP会横向跨出最少

跳区域(不考虑路径在最少跳区域内折返的情况),如图6所示。将不等式代入式(9)得

 $D_{LDP}(P(A,B)) = \left[x' \cdot l_{v} + \sum_{i=1}^{3} y'_{i} \cdot l_{h}(lat_{i})\right] \div C$ > $\left[(m_{B} - m_{A}) \cdot l_{v} + (n_{B} - n_{A}) \cdot l_{h}(lat_{3})\right] \div C$ = $D_{LHP}(P(A,B))_{least}$ (10)

若 LDP 传输延迟大于 LHP 路径传输延迟最 小值,则假设不成立。

若 $x' > m_B - m_A$,则如图 7 所示,LDP 会从纵向跨出最少跳区域,这样会引入其他纬度的水平路径。

由于在四方形的网络中,路径跳数只会以偶数增加,即 x' = x + 2j(j = 1,2,3...)。为保证

图 / 功泉 ² Fig. 7 Scenario 2

 $D_{LDP}(P(A,B)) < D_{LHP}(P(A,B))_{least} \overrightarrow{\mathbb{R}} \overrightarrow{\Omega}, j \overrightarrow{\mathbb{R}} 1_{\circ}$ $D_{LDP}(P(A,B)) = [x' \cdot l_{v} + \sum_{i=0}^{4} y'_{i} \cdot l_{h}(lat_{i})] \div C$ $= [(x+2) \cdot l_{v} + \sum_{i=0}^{4} y'_{i} \cdot l_{h}(lat_{i})] \div C$ $\ge [(m_{B} - m_{A} + 2) \cdot l_{v} + \sum_{i=0}^{4} y'_{i} \cdot l_{h}(lat_{i})] \div C$ (11)

若式(11) 中, $D_{LDP}(P(A,B))$ 的最小值小于 $D_{LHP}(P(A,B))_{least}$,则证明存在 LDP 路径不属于 LHP 路径集合,且 LDP 一定在纵向上跨越出最少 跳区域,引入了更高纬度的水平路径。

现对 $D_{LDP}(P(A,B)) < D_{LHP}(P(A,B))_{least}$ 的成立性进行证明:

因为 $D_{LHP}(P(A,B))$ 的最小值为[$(m_B - m_A)$ · $l_v + (n_B - n_A)$ · $l_h(lat_3)$] ÷ C,则 LDP 路径不存 在于 LHP 集合的充分条件是:

$$\left[(m_{B} - m_{A} + 2) \cdot l_{v} + \sum_{i=0}^{4} y'_{i} \cdot l_{h}(lat_{i}) \right] \div C$$

<
$$\left[(m_{B} - m_{A}) \cdot l_{v} + (n_{B} - n_{A}) \cdot l_{h}(lat_{3}) \right] \div C$$

(12)

由于在纵向上延伸路径,不会对水平方向上 路径长度产生影响,可取 $\sum_{i=0}^{4} y'_i = n_B - n_{A\circ}$ 由式(12) 可得

$$(n_B - n_A) [l_h(lat_3) - l_h(lat_4)] - 2 \cdot l_v > 0$$

(13)

为确保不等式成立,可取 $(n_B - n_A)$ 的最大值 N,即星座参数的轨道面数。

 $N[l_h(lat_3) - l_h(lat_4)] - 2 \cdot l_v > 0 \quad (14)$

上式的物理意义在于,引入更高纬度的横向 链路。而缩短的横向距离,若能抵消加入的两跳纵 向链路的长度,则 LDP 不属于 LHP 的集合。

由于 $lat_3 - lat_4 = 2\pi/M$, 且 $l_h(lat_4 - 2\pi/M)$ - $l_h(lat_4)$ 在 $0 \le lat_4 \le \pi/2 - 2\pi/M$ 范围内单调 递增。 lat_4 的最大值即极轨道星座的极地区域边 界纬度值。根据文献[8],取边界值 $shr = 3\pi/4$,则 式(14)可进一步简化为

$$N[l_{h}(shr - 2\pi/M) - l_{h}(shr)] - 2 \cdot l_{v} > 0$$
(15)

将 l_h, l_r 代入式(15),即可得到

$$\frac{N\left\{\sqrt{\left[\sqrt{2R}\ \sqrt{1-\cos(2\pi F/MN)}\right]^2} - \sqrt{\left[\sqrt{2R}\ \sqrt{1-\cos(2\pi F/MN)}\right]^2}\right\}}{2R^2 [1-\cos(\pi/N)]^2 \cos^2(shr - 2\pi/M) + 2R^2 [1-\cos(\pi/N)]^2 \cos^2(shr)}$$

$$-2\sqrt{2R}\sqrt{1-\cos(2\pi/M)} > 0$$

(16)

利用 MATLAB, 以 *M*、*N*、*F* 作为变量, 对不等 式(16) 左面进行计算,并绘制得到图 8。

根据图 8 所示,当曲面 Z 轴值小于 0 时,不等 式(16)不成立,则在此星座参数的组合下,LDP 一定属于 LHP 集合;当曲面大于 0 时,不等式 (16)成立,在此星座参数的组合下存在部分 LDP 不属于 LHP 集合。文献[10]中对 48/6/3 的星座 参数进行了仿真,得到了所有的 LDP 链路都是属 于对应的 LHP 集合的结论,该结论也是符合本文 上述推论的。

以上推导,虽然只考虑相邻横向链路纬度递 减的情况,也就是两个节点处于同一个半球面内, 但其他分布情况同样符合上述推论。例如当两个 节点分处与南北半球时,与图 5 的两个网络结构 反向组合的情况类似。

在推导过程中,有如下重要结论:

由式(8)可以看出,最短 LHP 的横向链路
 一定是的最少跳区域中处于最高纬度的横向链路。

• 根据式(14),LDP路径不属于LHP路径的 主要因素,是跨出最少跳区域,引入更高纬度的横 向链路。而缩短的横向距离,能够抵消加入的两跳 纵向链路的长度。

3 基于 HTP 的路径选择策略

根据上节的分析结论,最短 LHP 的横向链路

一定是最少跳区域中处于最高纬度的横向链路,则选择最短路径的关键是在最少跳区域内选择最高纬度的横向链路进行数据传送。因此,必须清楚数据发送节点的目的节点纬度信息,才能寻找到最短的路径。

图9 区域化卫星网络结构

Fig. 9 Regionalized structure of satellites network

现对图 4 中的网络拓扑进行改进得到图 9 的 网络拓扑图。

为了体现轨道间链路的不等长特性,引入横 向转发优先级(HTP)概念。HTP表示相对区域内 横向链路(轨道间链路)长度与全网内横向链路 长度的比较关系。横向链路长度越短,其HTP值 越高。考虑到卫星在圆形轨道下的对称排列,则 $\{\text{HTP} \mid 0 \leq \text{HTP} \leq M/2 - 1\}$,0表示该区域不存 在横向链路,如极地区域。链路的长短直接影响卫 星网路中数据传输的延迟。HTP值是网络节点决 定下一跳路径的决定因素,因为在需要横向传输 数据的情况下,选择 HTP值越高(链路长度越短) 的横向链路,其传输的延迟更小。全网内的 HTP 值如表1所示。

表 1 HTP 值 Tab. 1 Values of HTPs

区域编号	1	2	3	4	5	6	7	8	9	10	11	12
HTP 值	0	3	2	1	2	3	0	3	2	1	2	3

由于轨道面内的节点数*M*和图8中的区域数 相等,因此当节点获知数据包的目的节点地址时, 根据自身所在区域,则可以推算出目的节点所在 的区域。

 $p_{D} = (p_{c} + m_{D} - m_{c}) \mod M$ (17) 其中 p_{D} 表示目的节点区域, p_{c} 表示当前节 点所在区域。在已知当前节点和目的节点区域的 情况下,通过查表操作判断当前节点是否处于二 者区域间最高的 HTP 值的区域。若当前节点所在 区域拥有最高的 HTP 值,则当前节点选择横向路 径发送数据,否则选择纵向路径将数据发送至更 高 HTP 值的区域。

使用该策略需保证单轨道面内的卫星数量为 偶数。利用轨道面内拓扑对称的特性,卫星只需要 知道自身所处于的区域位置,以及数据目的地址, 通过查询表1,即可选择最短的横向链路。从而避 免了节点间的位置信息的交互,简化了选径流程。

4 仿真与结果分析

4.1 LDP 与 LHP 关系验证

本节利用仿真软件,对各种星座参数的 LEO 卫星轨道机型仿真,并验证 LDP 和 LHP 的相互关 系是否与推论一致。仿真原理采取了文献[3]等 介绍的基于虚拟拓扑的理念,将 LEO 卫星网络在 一个周期内的运动过程离散为多个静态网络拓 扑,利用 STK 软件和 MATLAB 软件相结合的方式 进行验证。具体仿真流程如图 10 所示。

图 10 仿真流程 Fig. 10 Simulation flow chart

按照上述流程操作,计算每个静态网络拓扑中的每一条链路的长度信息,并将数据导入MATLAB。在MATLAB中,分别使用 Dijkstra 算法^[1-3]和本文介绍的基于 HTP 的路径寻找策略寻找 LDP 和最短 LHP,最后比较两种算法的计算结果。表2中列出了几组星座参数下,LDP 路径和LHP 路径集合的关系情况。

表 2 不同星座参数中 LDP 与 LHP 关系

Tab. 2 Relationship between LDP and LHP in different constellation

星座参数	48/6/0	48/6/1	48/6/2	48/6/3	66/6/0	66/6/3	72/12/0	72/12/3
LDP 路径 是否都属 于 LHP 路径	否	否	是	是	否	是	否	是

如表2所示,通过仿真结果可以看出,各种星 座参数的组合下LDP与LHP的关系符合图8分析 所得到的结论。

4.2 LDP 与 LHP 差异性

考虑在72/12/0:1375km:90°的星座参数情况下,对比 LDP 和 LHP 的具体差异。验证的方法 与图 10 所描述的方法相同。为对比 LDP 和 LHP 的 链路的差异性,在路径对比阶段,分别计算了全部 节点对之间 LDP 和 LHP 链路的传输延迟,共5112 对。定义相似度函数

$$R = \left(\sum_{P=1}^{5112} D_P\right) / 5112 \tag{18}$$

其中

$$D_{P} = \begin{cases} 1 & (对应路径延迟相同) \\ 2 & (对应路径延迟不同) \end{cases}$$
(19)

仿真时间为 56min,为半个轨道周期时间。 相似度函数记录如图 11 所示。

为便于分析成因,按照网络节点在区域内的 位置关系,计算两种算法得到的所有路径的传输 延迟差,记录于图11中。由于节点数与区域数都 为12,因此区域的宽度为360°/12 = 30°,且每个 节点在所属区域位置是相同的。

图 12 两种算法路径总延迟差 Fig. 12 Total delay difference

由图 11 可以看出,LDP 和 LHP 的相似度成周 期性变换,且数量上差异不大。虽然在大部分时间 中存在部分 LDP 路径和 LHP 路径不重合的情况, 但是这个差异度普遍在1%以内。从图12可以看 出,LDP和LHP的在总延迟上差距不大,虽然在离 区域中心15°时延迟差陡增,目出现差异的路径总 数也增加(对应图11的波谷值)。路径延迟差异周 期性变化的原因是区域2、6、8、12的边界也是极地 区域的边界,当卫星处于边界时(离区域中心远), 部分路径满足第2节总结的第2个结论的条件,产 生了 LDP 与 LHP 不重合的情况。在存在差异的路 径当中,LHP 链路最大传输延迟增量为 32.3ms,平 均增量为16.31ms。这个延迟与轨道高度成正比 关系,但在 LEO 轨道高度 300km~2000km中,这个 传输延迟增量差异值变化在 5ms 内。10ms 级别的 延迟差异在卫星网络中几乎是可以忽略的。

5 结论

(1)在 LEO 卫星网络中,LDP 路径并不一定 就是 LHP 路径,两者关系与星座参数设计有关。 具体关系如图 8 所示,图中大于零的星座参数组 合表示 LDP 与 LHP 存在出入。

(2)分析了 LDP 不属于 LHP 路径的存在条件。其关键之处在于,因引入更高纬度的横向链路、缩短的横向距离是否抵消了加入的多条纵向链路的长度。相位因子越大,横向链路长度增加,上述的条件就更难满足。因此从图 8 可以看出,当相位因子增加后,LDP 和 LHP 路径相同。但不能为寻求两者重合而选择过高的相位因子,因为增加横向链路长度也就意味着增加了网络的平均传输延迟。

基于 HTP 的最少跳 LEO 路径选择策略,主 要考虑纬度对横向路径长度的影响,利用网络拓 扑对称特性,寻找 LHP 中的最短路径。通过仿真 分析,该方法能够找到最接近 LDP 的路径,且两 种方式寻径的差异只占全网路径的 1%,最大延 迟增量在 10ms 的量级。

参考文献(References)

- Werner M, Delucchi C, Vogel H, et al. ATM based routing in LEO/MEO satellite networks with intersatelltie links[J]. IEEE Journal on Selected Areas in Communications, 1997, 15(1): 69 - 82.
- [2] Franck L, Marl G. Static and adaptive routing in ISL networks from a constellation perspective [J]. International Journal of Satellite Communications, 2002, 20: 455 - 475.
- [3] Chang H S, Kim B W, Lee C G, et al. FSA-based link assignment and routing in low-earth orbit satellite networks[J]. IEEE Transactions on Vehicular Technology, 1998, 47(30): 1037 - 1048.
- [4] Gounder V V, Parkash R, Abu-Amara H. Routing in LEObased satellite networks [C]//Proceedings of IEEE Emerging Technologies Symposium of Wireless Communications and Systems, Apr, 1999.
- [5] Tsai K, Ma R. Darting: a cost effective routing alternative for large space-based dynamic topology networks [J]. IEEE MILCOM, 1995:682-687.
- [6] Raines R A, Janoso R F, Gallaghe D M, et al. Simulation of two routing protocals operating in a low earth orbit satellite network environment [J]. IEEE MILCOM, 1997 (1): 429 -433.
- [7] Hashimoto Y, Sarikyaa B. Design of IP-based routing in a LEO satellite network [C]//Proceedings of the 3rd international Workshop on Satellite-Based Information Services (Mobicom' 98), October 1998:81 – 88.
- [8] Kici E, Akyiidiz I F, Bender M D. A multicast routing algorithm for datagram traffic in LEO satellite networks [J]. IEEE/ACM Trans. Netw, 1997, 10(2): 183-192.
- [9] Yang D N, Liao W J. On multicast routing using rectilinear steiner trees for LEO satellite networks [J]. IEEE Transactions on Vehicular Technology, 2008, 57(4):2560-2659.
- [10] 晏坚,王京林,曹志刚. LEO 星座通信系统星间路径选择策略分析[J],清华大学学报,2009,49(10),61-64.
 YAN Jian, WANG Jinglin, CAO Zhigang, Choosing intersatellite paths in the LEO satellite constellation network[J].
 Journal of Tsinghua University, 2009, 49(10), 61-64. (in Chinese)
- [11] 妥艳君,刘云,李艳.LEO/MEO 星座组网设计与分析[J], 电子科技大学学报,2010,39(1):50-54.
 TUO Yanjun, LIU Yun, LI Yan. Design and analyses of LEO/MEO constellation networking[J]. Journal of University of Electronic Science and Technology of China, 2010, 39 (1):50-54. (in Chinese)
- [12] 李辉,顾学迈.LEO/MEO 卫星通信系统 ISL 网络路由及切换性能研究[J],系统工程与电子技术,2005,27(7):1145-1153.
 LI Hui, GU Xuemai. Research on routing and handoff performance for ISL networks in LEO/MEO satellite communication systems [J]. Systems Engineering and Electronics, 2005, 27(7): 1145-1153. (in Chinese)
- [13] 杨霞,李建成. Walker 星座星间链路分析[J],大地测量与 地球动力,2012,32(2):143-147.
 YANG Xia, LI Jiancheng. Inter-satellite links analysis of Walker constellation [J]. Journal of geodesy and Geodynamics, 2012,32(2):143-147. (in Chinese)
- [14] Pratt S R, Rains R A, Fossa C E, et al. An operational and performance overview of the iridium low earth orbit satellite system[J]. IEEE Communications Surveys, 1999(2):2-10.