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I. INTRODUCTION

“The now is a link of time....for it links together past and future, since it is a beginning
of one and an end of another.” - Aristotle [1]

Whether physics can be described on a continuum or lattice is one of the oldest questions
considered by philosophers in one form or another. The most famous paradox of Zeno argues
against the infinite divisibility of a temporal interval - that is against continuous time[2].
Achilles is sent to chase a tortoise, which is given a head start. If we label the position of
the turtle xt for points in time t. Then in each instant that Achilles reaches xt the turtle has
moved on to xt+1, thus it should seem logically impossible for Achilles to catch the turtle.
Viewed externally, however, one can easily verify that Achilles does indeed catch the turtle
at a finite time. Of course we now know the resolution to this apparent paradox is that
there can be a finite sum of an infinite number of terms, as Archimedes found. To Zeno,
however, this was not known, as it was assumed that an infinite sum cannot be finite, and
thus it appeared that there could not be an infinite number of time points in an interval -
time should not be continuous.

Tong makes a case against the a lattice reality based upon the problems with implemen-
tation in practical terms [3], stating “ no one knows how to formulate a discrete version of
the laws of physics.” Futhermore he makes the compelling case that chiral fermions do not
sit easily upon a lattice, and since the Standard Model is a chiral model, this means that it
appears impossible to place known physics upon a lattice. Indeed lattice simulation models
of chiral fermions in four dimensions seem to rely crucially upon treating the particles as
living essentially on a five-dimensional lattice [4]. There is an important distinction to be
noted here: Attempts are made to simulate the four-dimensional behaviour of the particles,
for which the use of extraneous mathematical structure (in this case the extra dimension) is
appropriate. If, however, one were to claim that physics in fact inhabits a lattice, rather than
being simulated on one, this extra structure becomes unwelcome baggage whose existence
must be explained. Tong goes on to argue that the appearance of the integers in physics
is constructed from an underlying continuum, an argument which mirrors the duality be-
tween a particle which exists as the excitation of a field, and a field which is observed to be
composed of particles.

There are three ways in which one can respond to arguments of this type. The first,
more simplistic argument is to state that what has been shown is not a “no-go” theorem
against lattice constructions in four dimensions, merely that we do not yet know how to
construct one. As such it is plausible that a lattice construction may be achieved in the near
future, at which point all such objections would be rendered null. A second point would be
that the problem may come about from trying to force a continuum theory onto a lattice.
If discreteness is fundamental, then a continuum theory should emerge at large scales, but
features of theory at the lattice level may be radically different from those of the continuum.
The final method of avoiding such problems in the context of this paper is to argue merely
in favour of discrete time, not space. This argument may seem unnatural on some level, as
the even-handed treatment of time and space is a guiding principle for modern theories such
as relativity. However it is clear that there is a physical, substantive distinction between the
two at least at the level of metric signature. In practical implementations of these theories
a space-time splitting is employed regularly.

In this paper I will explore the effects of introducing a discrete tick to physical systems.
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The paper is laid out as follows: In section III I will show how the effects of introducing
this tick onto systems with continuous time parameter, establishing the kinematics of such
treatments. This is followed by section IV in which I discuss the implementation of discrete
time steps in numerical simulations. Section V shows one practical application of these
techniques to circular motion, and a way of establishing dynamics which solve some the
problems found is introduced in section VI. Finally I will note how this effects quantum
gravity. But first, to clocks...

II. A NOTE ON CLOCKS

“They took away time, and they gave us the clock.” - Abdullah Ibrahim.

The nature of physical clocks seems dichotomous at first glance. A clock is a timekeep-
ing device, an instrument whose observation gives information used to define the interval
between two events. A clock should contain a cyclic element, which describes the tick of the
system. This role is performed by, for example, observations of the positions of shadows cast
by the sun or the repeated dripping of water from a vessel (as was used in the earliest clocks
of Egypt and Babylon) through to the oscillations of a caesium atom used in the atomic
clocks of today. The clock must also be monotonic, defining unambiguously a separation of
reality into past and future.

There is of course no contradiction in this. Although at first an individual system cannot
be seen to be both globally monotonic and cyclic, a clock is not, in essence, a single system.
Clocks consist of two distinct coupled systems, these being the cyclic and monotonic parts
accordingly. The cyclic part triggers, at some point in its cycle, a distinct and discrete ad-
vance of the monotonic part, as the pendulum of a grandfather clock causes the second hand
to tick upon reaching its escapement, advancing the second hand. Of course, a grandfather
clock is cyclic in itself, but upon marking the end of each day, a calendar can be updated
such that the overall observation of time remains monotonic.

As described thus far, the measurement of time may be refined by reducing the interval
of a tick and classically there is no reason that this refinement may not, in principle, yield an
arbitrary degree of accuracy. However, lurking in the small scales is the spectre of quantum
mechanics and the Mandelstamm-Tamm uncertainty which effectively means that for any
quantum clock there is an unavoidable minimum for the amount of time it takes for a wave-
packet to move a distance equal to its standard deviation, for example. For a comprehensive
review see [13]. This minimum is dependent upon the physical nature of the clock, so one
might suspect that it is merely a practical problem to refine the tick indefinitely. However,
it is conceivable that time is fundamentally discrete, with an indivisble tick.

A prime candidate for discretization is the Planck time - the unique time that can be
formed from the dimensional constants of nature (Newton’s constant, Planck’s constant and
the speed of light). The Planck time, around 10−42 seconds, is the time interval after the
big bang on which quantum gravity effects are thought to be dominant, and the time-scale
on which we would expect to see quantum corrections to Einstein’s equations. The upshot
is that the dynamics of the tick may in fact be unavailable as an observable, and thus the
only reading of time one can get is that of the monotonic part, reading time as though from
a digital clock.

Within Quantum Gravity, issues regarding implementation within the Hamiltonian frame-
work are so severe that they have been dubbed “The Problem(s) of Time”. Some state that
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this consists of as many as eight separate yet connected issues [14]. The purpose of this
paper is not to address such issues, but I will point out that even in the symmetry reduced
mini-superspace models which are used ubiquitously in quantum cosmology time evolution
is measured with respect to a scalar field. If one is even-handed in treating both geometrical
and matter variables, one must apply the same “polymer quantization” [6] to both, and thus
the universe is imbued with a discrete tick.

The role of a clock within a physical system is split into three parts by Busch [11, 12].
First, time as measured may be “external” or “pragmatic” - there is no coupling between the
dynamical system being observed and the clock used to measure time within that system.
In a classical sense, external time can be said to be measuring some aspect of Newton’s
absolute time on which dynamics takes place. Second, an “intrinsic” time is one which is
measured as some quantity of the system itself, such as the readout of a digital display, or
the position of the hands on the face of a watch. Third, “observable” or “event” time is a
direct measurement of some physical quantity which is taken to be time itself, such as the
position of a particle. Throughout this paper I shall always have the idea of intrinsic time
in mind, as an external time can be made intrinsic simply by extending the configuration
space of a system with external time by taking the product of a the configuration space with
the configuration space of the clock. To those interested in relational observables, such as
the cosmologist, intrinsic time is all one can work with - there is no external space on which
a clock can live. In terms of quantum gravity, any physical clock must have a mass and
thus interact gravitationally with all other components of the system through its action on
space-time. Therefore cosmologically all observable time is intrinsic.

III. DISCRETE TIME

“God made the integers, all the rest is the work of man.” - Kronecker.

In this section we will discuss the result of overlaying a discrete temporal structure onto a
continuum dynamical system. The result of this will be to produce a system which contains
only information about the discrete structure, removing all reference to the continuum.
The background continuum is therefore used in the manner of Wittgenstein’s ladder [7] -
an external structure of convenience whose utility has no bearing on the resultant system.
Constructions of this type are commonplace in physics. Prime examples include the use
of a fiducial cell in cosmology against which to measure the size of the universe. Upon
calculation, care must be taken to show that results are independent of the choice of cell.
Similarly, General Relativity is a background independent theory, yet in practice calculations
often involve coordinate choices. Again resulting physical quantities must be shown to be
coordinate independent.

The mathematical structure of our background system shall consist of a manifold M
of arbitrary dimension n which can be factlorized into configuration1 states and a one-
dimensional2 temporal direction : M = C × T . The global topology of M will remain un-

1 Here we shall work extensively in the position representation, but extension to the momentum represen-

tation of states is straightforward.
2 It is conceivable that this is extended to multiple temporal directions, however this action seems to offer

little to the discussion at hand other than to distract from the essential argument through mathematical
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determined at present, however our underlying continuum mean that both C and T should
be continuous. For reasons of convenience we will often think of T as being either S1 (the
circle) or R (the real line). Here we follow the construction of the “3+1 decomposition” of
Arnowitt, Deser and Misner [8], however it is important to note that we are not splitting
space-time but rather configuration-space-time. Physically time here is a further configura-
tion variable, that of the system clock.

A. Treatment of position

The discretization of time can be performed in two distinct ways, which can be thought
of as describing configurations instantaneously or over an interval. To illustrate this, let
us consider two physical scenarios which each will describe a discretization of time on a
particle moving in a circle. In the first situation the system is measured at fixed intervals
with a stroboscopic light, whose flash is interpreted as being instantaneous3. This I will call
“instantaneous measurement”.

A second method would be to consider measurement to be smeared across an interval.
This is effectively the complement of the above: a camera is set up to measure the system
with its aperture open for an interval, closing instantaneously between intervals. The result-
ing measurement will not consist of a unique configuration but rather a trajectory across
the interval which is to be considered a single measurement. Here the idea of an instant is
used in analogy to that of Le Poidevin [16], in which an instant separates two intervals. Le
Poidevin took this instant to be the “now” which separates past from future, I shall invoke
it to separate temporal intervals. This treatment I will term “smeared measurement”.

Both measurements of a system’s position consist of replacing the time interval of our
manifold by a discrete subgroup, for instance replacing a real interval I with a subset of the
integers Z or replacing S1 with Sn (the cyclic group of order n). Without loss of generality
let us take each tick of the clock to be separated by an equal time interval with respect to
the background time. This can be achieved by making a transformation of the background
time, since an operational time obtained through any monotonic function of background
time will serve will equal sufficiency. In replacing a continuous set with a discrete one we
throw away an infinite amount of information about the system - the complete dynamics
between ”ticks of our clock.

To give an illustration of the differences between our two treatments consider the motion
of a particle along a path. Suppose we describe the motion with background dynamics
x = x(t). One may ask for the relational observable XT of a system, defined to mean the
position of a particle at the time when the clock reads time to be T . In the instantaneous
treatment XT will be a single reading of a number, the unique position at that instant in
background time. However in the smeared treatment the measurement will be a complete
path, all positions occupied between background times T and T + δT for temporal intervals
δt.

“Instants are not parts of time, for time is not made up of instants any more than a
magnitude is made of points” [9]

Some take instantaneous treatment of time is taken to induce a discretization of position

complexity.
3 This could be the result of measuring a single photon reflected from a particle



6

space. Zeno’s Dichotomy paradox [5] argues that one must occupy each point in a spatial
interval whilst traversing the interval. In doing so, if time is discrete, one must take an
infinite number of time steps, one at each position. This argument relies (unknowingly at
the time of its inception) on the cardinality of any interval I ⊂ R being larger than that of
Z - there can be no mapping f : Z → I such that f is surjective. However in our treatment
the motion is not taken to be a continuous one in discrete time - from one tick to the next
one’s position can change by an amount that is not infinitesimal.

The smeared treatment affects position space on a more fundamental level. Observations
of position are no longer points, but rather (unordered) paths in the configuration manifold.
In performing the smearing all information about the velocity through position space during
a tick is lost - all that remains is a trajectory consisting of all the points occupied during
the interval. As an example, consider a particle moving in one dimension, its position
here during a tick would be the entire interval covered between its leftmost and rightmost
positions covered by the continuum trajectory in this interval. Our observations will consist
of a set of paths γt : [0, 1]→ C modulo an equivalence relation identifying two paths formed
by any permutation of the unit interval. For continuous dynamics, this permutation should
be smooth, but in principle there is no distinction for sudden leaps. Note that we have lost
all sense of direction of the path - we cannot say from a single path whether the a particle
moves left to right, or vice versa, or even starts and ends somewhere in the middle of the
path, reaching ends at intermediate times. A path in which a particle revisits a previous
point during a tick is permissable, and cannot be distinguished from one which does not.

If our background system is does not revisit the same point in position space during a
two consecutive ticks there will be a unique point at which the paths are joined, and this
may be taken to be the configuration of the background system at the instant between
ticks. However if at any stage in these ticks a point in configuration space is revisited this
reconstruction is no longer possible: As an example, consider a particle moving in a single
dimension of which we make two observations. During the first tick we observe the path to
cover the interval from 0 to 2. During the second, from 1 to 2. We cannot say, from these
two observations whether the background dynamics had the paths join at 2, 1 or in fact any
position in between, as all such dynamics would yield the same observations.

B. Treatment of velocities

Once position space has been defined, it is necessary to define velocities which will be
fundamental to understanding dynamics. The usual method of defining a velocity is not
available since defining

ẋ = Limδt→0
x(t+ δt)− x(t)

δt
(3.1)

relies crucially on this limit being accessible to the system. In a discrete time system,
δt has a fundamental minimum, and furthermore, in the case of the smeared treatment,
the action of subtraction of two intervals is not obviously defined. Let us first address the
simpler case of instantaneous time.

The fletcher’s paradox outlines a key difficulty in identifying velocity in instantaneous
time. It can be formulated in the following way: Suppose one is given a set of instantaneous
observations of a particle in motion (Zeno uses an arrow in flight). Then at each instant
the particle has a fixed position and does not appear to move, and so there appears to be
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no motion in sum. This is resolved by Russell’s “at-at” treatment of motion [10] - that
to travel between two points at different times is to occupy all intermediate points in the
interval between.

In modern differential geometrical terminology, we describe the velocity of an object as
a member of the tangent space to the position space at the point occupied by the system:
v ∈ TxC. One can define the obvious velocity in this instance by simply letting the removing
the limit in 3.1. However, velocities defined this way are not necessarily members of TxC.
Recall that TxC is isomorphic to Rn, where n is the dimension of the manifold C. For a
finite tick, vδt must be a automorphism of mathcalC. In fact, the space of velocities at a
point on C, which we shall denote VxC must be isomorphic to C, since velocity at a point
is defined by the point in C at which one arrives after a single tick. Upon approach to the
limit, the two points in the configuration space become close and once again we recover the
tangent space. This naturally carries over to momentum which is no longer a member of the
co-tangent space (the space of linear functionals of members of the tangent space) but in
fact lives on the co-velocity space - the space of linear functionals of members of the velocity
space.

Velocity in the smeared treatment is more complicated. Our observations consist of
unordered paths in configuration space. In the case where any two adjacent paths overlap
only in a unique point, one could define the velocity of a particle to be the length of the
path covered divided by the length of the tick. However this gives only a minimum for the
velocity of the particle in the background system, as the particle may not have uniformly
covered this interval, but may have oscillated multiple times along the path during the tick.
Consider the case of a man pacing back and forth on a boat - in a smeared observation he
will appear to move with the approximate velocity of the boat, but on a closer inspection
his speed at any time will not be this. Thus we obtain a lower bound for speed, defined to
be the length of the path covered at any interval. This lower bound is the only reasonable
candidate for a velocity in this setting, though we must assign a sense of direction to it.
This is simple to do in the case that intersections are unique, but for multiply overlapping
intervals the task becomes difficult. One possible assignment is to take the velocity as being
oriented towards any part of a later path that is not contained in the prior one, or towards
any point not contained in the subsequent path, but this of course does not deal with paths
contained entirely within the both the preceding and subsequent path. In these cases the
only seemingly logical thing to do is to set the velocity to zero.

Thus our space of velocities becomes the space of directed paths in C. If C is compact, or
indeed any configuration variable on C is compact, the space of velocities is again removed
from TxC. Those positions inhabiting a compact direction of position space must induce a
finite dimension in velocity space.

Implementation of dynamics in the smeared system is considerably more difficult: The
logical method would be to apply a similar form of numerical integration to the entire path,
taking each point and moving it by the velocity of the path. In the case of a particle
moving along a line, this is of course perfectly acceptable. However there is a question of
accelerations, which are brought about by the application of force.

IV. DISCRETE TIME AS NUMERICAL INTEGRATION

“”It always bothers me that, according to the laws as we understand them today, it takes
a computing machine an infinite number of logical operations to figure out what goes on in



8

no matter how tiny a region of space, and no matter how tiny a region of time. How can all
that be going on in that tiny space?” - Feynman.

The difference between velocity space and tangent space is known to those working on
numerical integrators, though in different terms. These methods attempt to reproduce the
continuum dynamics with a finite (though often variable) time-step. The Ströminger-Verlet
method [17] (and improved velocity-Verlet [18]) uses the velocity and acceleration of the
system both at an instant and in the preceding and succeeding instants to refine estimates
of discrete motion to remain close to the continuum trajectory. The Runge-Kutta algorithm
[19] is a more complex method involving the use of iterative methods to perform a time-
step. One might be tempted, therefore, to state that a discrete system should run on a very
accurate numerical integration method.

However, there is a problem with this system: The dynamics of the system of tn depend
upon an estimation of the configuration and hence accelerations of the system at tn+1. Unless
we allow for the (potential) future to act upon the present, this is not possible: A particle
cannot know the accelerations it would feel if it were to move to a future location until it
moves there. If one insists that all the information available to a particle is its current posi-
tion and velocity (or momentum), none of these methods can be applied. Even if one were
to allow it access to its complete prior history over discrete time, this would be insufficient,
for one can construct two paths (using Hermite polynomials for a one dimensional example)
each of which visit all prior configurations but differ on future locations. One is then driven
towards describing the dynamics of discrete time using a method more akin to that of Euler
for the numerical integration of a differential equation. This is clearly not optimal, as it
will break conservation equations held in the background continuum (an example of which
is given below). It has been shown by Ge and Marsden [15] that there is no fixed time step
method which conserves symplectic structure, and Noether charges (ie all conserved quan-
tities in the continuum system). In fact, all known numerical integrators which do conserve
Noether charges require knowledge of the forces that the system will experience after the
time-step has been implemented. In simulations this is perfectly acceptable, as one can tell
the computer what model of physics to implement. However in reality this would require
information about the future to be passed to a prior time, which is for most an unpalatable
premise.

Thus one is forced into one of the following: We could drop the notion of discrete time
as it appears incompatible with conservation laws. This is of course the most obvious route
to take, but as I will argue in section VII there is good reason to believe that a discrete tick
does exist. The second possibility is that a the continuum implications of Noether’s theorem
cannot apply in a discrete time setting, so physics breaks all conservation laws at some level.
Since symmetry and conservation lie at the very heart of all modern physics, this is a very
unwelcome path to take. Finally one could argue that dynamics must be altered in some
fundamental way when one discretizes time. This I discuss further in section VI.

V. CYCLIC CONFIGURATIONS

The limitations of discrete treatments of time become apparent when one treats cyclic
systems whose period with respect to background time is of the same order as the length
of a tick. In such cases our ideas of basic physical quantities such as velocity can become
ill-defined. We shall illustrate this problem by exploring a simple system: uniform circular
motion. This systems has a long-standing association with the idea of time as for centuries
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time has been displayed on a clock through the uniform circular motion of its hands. It is
therefore fitting that this forms an exemplary model of issues in the discretization of time.

A. Uniform Circular Motion

Let us consider a simple system, the motion of a particle travelling with uniform angular
velocity around a circle. The dynamics of our system is simple to describe: θ(t) = θ0 + ωt,
in which ω is the angular velocity. For brevity of exposition let us choose a gauge in which
θ0 = 0. Let us define the period of the system τ = 2π/ω.

In the instantaneous treatment of this system an observer makes a number measurements
θ(t) = 0, θ1...θn corresponding to the position of the particle at clock times 1 through n.
However, upon being asked to reproduce the angular velocity of the system, such an observer
runs into immediate ambiguities: She cannot determine whether or not the particle is moving
clockwise with angular velocity θ1/δt or anticlockwise with angular velocity (2π − θ1)/δt.
In fact, to the observer all background dynamics of the form ωn = ω + 2πn/δt for n ∈ Z
will yield indistinguishable observations. If δt is a multiple of τ the observer will not see
the particle move at all. This is well known through the stroboscopic analogy as an optical
illusion which has in the past been used to determine the frequency of, for example, cylinder
firing in car engines.

This is a clear illustration of the difference between VxC and TxC. The tangent space to
the circle is the real line, but the topology of the space of velocities distinguishable with
instantaneous time is that of the circle itself.

Let us consider dynamics, supposing that the circular motion of our particle is brought
about by some central force. If one were to adopt a strict implementation of discrete time,
taking as a basis for dynamics Newton’s laws of motion, and updating both velocity and
acceleration only once per time step (ie implementing the method of Euler) there is an
obvious problem. Newton’s laws of motion state that we must evolve motion along the
tangent to the curve described (the velocity should be a member of TxC. This immediately
leads to the particle leaving the circle, breaking energy and angular momentum conservation.
One could ask how bad this problem is: To first order in each of the variables involved the
drift of the numerical integration increases as ω2rTδt/2. Where T is the total time interval,
divided into ticks δt, for a particle orbiting at radius r. For the orbit of the Earth around
the sun since its formation this distance comes to around 2 × 10−17m if we assume the
fundamental tick to be the Planck time. This is far less than the radius of a proton, for
example, thus we are unlikely to be able to detect any effect of this granularity, even taking
fast spinning objects such as pulsars into consideration.

One might argue that the implementation should involve some averaging or weighted
average of an initial velocity and a final velocity, vf = vi + aδt and so the implemented
velocity for the tick should be va = (vi+vf )/2. However, this does not alleviate our problem
- since it is simple to show that the final speed will be higher than the initial speed, thus the
system has not conserved energy despite the presence only of a central force. One quickly
runs into the theorem of Ge and Marsden[15] with such efforts.

At first sight the smeared treatment appears advantageous: It is indeed possible to de-
termine the direction and angular velocity of the system for small values. For δt smaller
than τ the measurement of angular velocity can be performed by simply taking length of
the complete interval covered in each tick and dividing by the length of the ticks. However,
once the tick length becomes greater than or equal to the period of motion, all observations
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become indistinguishable, as each observation will yield the entire circle as the path covered
in that tick. If the tick length is one half the period of motion or greater, we will be unable
to distinguish in which direction the particle is moving without resorting to a trick: It will
be moving counter to the direction in which the paths defined as the complete circle minus
the path covered in a tick is moving. This again is ambiguous at exact division of the period
into half.

VI. NEW DYNAMICS

If one wishes to keep both discrete time and conserved quantities in the manner of con-
tinuum systems, then one is forced to implement dynamics in a way that differs from the
usual methods of Newton, Lagrange et al. Classical evolution is implemented through the
use of a second order differential equation:

q̈ = f(q, q̇) (6.1)

From this prescription one can find the trajectory of a system. However as has been noted
above, if one implements finite time-steps the trajectory that one recovers differs from that
of the continuum, since evolution through a finite length along a vector in the tangent space
does not necessarily remain in the space compatible with conservation of Noether charges.

One way in which conservation can be implemented is to enforce “by hand” conservation
which is brought about by symmetries of the system. I shall construct such a system to
show that in principle such systems can exist, without making claims as to their accuracy
or fidelity to known physics. This manner of ensuring that fundamental physical quantities
such as energy and momentum are conserved is similar in spirit to that used in discrete
Hamiltonian systems in engineering for example [20].

The method is implemented as follows: For a system, establish those charges which are
to be conserved due to symmetry using the method of Noether. For an initial value problem,
find the surface(s) within phase-space such that this conservation takes place, E .

Dynamics is implemented by using finite time-step methods with the fundamental tick:
q′(t + δt) = q(t) + q̇(t)δt, q̇′(t + δt) = q̇(t) + f(q, q̇)δt. Finally one finds the point of E such
that q, q̇ are closest (with respect to some given metric) to q′, q̇′.

Implementing this method in the case of an inverse square central force yields approxi-
mately the correct dynamics: Conservation of the angular momentum and energy are im-
plemented, and if one measures distances in configuration by D :=

√
τ 2∆q̇2 + ∆q2 then one

finds that the orbit recovers the clasical limit when ṙτ is small compared to r.
This method has clear limitations. It depends upon the choice of measure used on config-

uration space to define a notion of distance from the conservation surface. Further the link
between velocity and position become somewhat tenuous - velocity is no longer measurable
directly as a change in position, but rather is an intrinsic quality of the system. Of course,
this is the nature of any instantaneous velocity measured in a discrete system as we have
seen, but nonetheless this remains aesthetically displeasing. The dynamics expressed here
will differ considerably from continuum dynamics in the case of chaotic systems, as surfaces
of configuration space compatible with conservation of fundamental charges may become
close to one another, allowing a system to jump from one classical trajectory to the next.

Despite the limitations, what we have established is a method by which a discretized
system may retain conservation laws mirroring those of the classical system on which it
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is based. The method is contrived and arbitrary, relying heavily on implementation of
conservation by fiat, but is proof that such solutions can exist without having to resort to
retrodiction of motion in the manner used by numerical integrators, or varying of time step.

VII. DISCRETE TIME AND QUANTUM GRAVITY

There have been several attempts to quantize gravity through a discretization of geometry.
Perhaps the most famous of these is Regge calculus [21] in which space-time is broken down
into blocks which are internally flat (ie the inside is a section of Minkowski space) and whose
curvature lies entirely at the interface between two blocks. This method has the appearance
of breaking up a curve into a series of straight lines, with all the curvature being concentrated
at the corners.

The causal dynamical triangulations programme [22] makes a splitting of space-time into
space and time. Time is implemented in discrete steps, with the layer between being “trian-
gulated” by a set of polyhedra. Once again, curvature lives on the interface between these
polyhedra. The programme attempts to reconstruct a path-integral approach to quantum
gravity by restricting the integral over geometry to being one over such triangulations. This
has all the hallmarks of an instantaneous discretization of time - each layer of polyhedra
is overlaid on the last at a discrete time interval. Sorkin’s causal set model [23] follows a
similar scheme, but rather than triangulating space, takes a discrete “sprinkling” of points
into space-time to create its structure. Time here would again appear instantaneous for any
finite number of points, though the interval of any time step would be arbitrary.

Collins et al. [24] show that when one takes into consideration the interactions of ele-
mentary particles a very tight bound is placed upon the breaking of Lorentz invariance. A
granularity of space-time on the Planck scale does not necessarily induce a factor of E/Epl
in corrections to the continuum model for a system of energy E (wherein Epl denotes the
Planck energy). Does this rule out discrete time?

Rovelli and Speziale [25] argue that this is not in fact the case for discretization of length.
Just as the discretization of angular momentum does not spoil rotational invariance, the
existence of a minimal length (or in the case considered by Rovelli and Speziale area) does
not break Lorentz invariance. A Lorentz transformation between two observers necessarily
alters the operators used to measure length, which will not commute. It is entirely plausible
that an analogous argument can be made for any measurement of time.

As I have previously noted, in treatments of cosmology, time must be intrinsic in the
manner of Busch - there can be no external parameters which are used to describe time.
Modern treatments of quantum cosmology, such as Loop Quantum Cosmology, employ a
matter field as a clock. In the simplest models this is a massless scalar field, so its motion
is monotonic, and observations of the field value give a time for the system [26].

In simplicial decompositions of space, such as those used in spin-foam theories, time will
again appear to have a discrete nature. Here one decomposes four dimensional space into
a set of simplices which fill a region, and a time slicing can be applied by cutting across
these simplices at an instant. However, due to diffeomorphism symmetry, two slices are
indistinguishable if the networks dual to the simplices have the same structure, so when
viewed from this perspective, time is simply the evolution of networks, which are inherently
discrete - only the topology of a network is important as there is no notion of geometry.
Therefore each change to the network, such as adding a new link or node, is a discrete step,
and must appear to happen instantaneously in the continuum theory, or in a “tick” in the
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discrete theory.
There are two obvious issues that must be addressed when applying discrete time to

cosmology. The first is that the Planck time is precisely the time at which quantum effects
are thought to be dominant. However, by our definition there would only be a single tick
between this point and the singularity itself. Within LQC, there may be as few as 20 ticks
during which the density is high enough for quantum effects to be significant. Yet these
differences are to be the time in which quantum gravity replaces GR. It appears unlikely
that such a narrow set of points can have so large an effect on global dynamics.

The second problem to be addressed is that if one does have singularity resolution in
a continuum theory due to some modified dynamics in which the universe “turns around”
from contraction to expansion, the turn around could be missed in the discrete time step.
As an analogy, consider a particle moving in a one dimensional potential well towards a
thin yet high wall. In the continuum theory, the particle will reflect off the wall and its
trajectory reverse, but in the discrete theory a high enough velocity will allow the particle
in some cases not to “see” the wall at all - it will simply be on one side at one time and the
opposite one tick later. In LQC this scenario is avoided as the singularity is disallowed by
the constraint, but in other theories in which singularity resolution is brought about, this
effect may be significant.
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[19] Süli, Endre; Mayers, David (2003), An Introduction to Numerical Analysis, CUP

[20] O. Gonzalez, Time integration and discrete Hamiltonian systems, Journal of Nonlinear Science

6 (1996) 449467.

[21] T. Regge (1961). ”General relativity without coordinates”. Nuovo Cim. 19 (3): 558571

[22] R. Loll, Discrete Lorentzian Quantum Gravity, arXiv:hep-th/0011194v1

[23] D.P. Rideout, R.D. Sorkin; A classical sequential growth dynamics for causal sets, Phys. Rev

D, 6, 024002 (2000) arXiv:gr-qc/9904062

[24] John Collins, Alejandro Perez, Daniel Sudarsky, Luis Urrutia, Hctor Vucetich Lorentz invari-

ance and quantum gravity: an additional fine-tuning problem? 2004

[25] Carlo Rovelli, Simone Speziale Reconcile Planck-scale discreteness and the Lorentz-Fitzgerald

contraction 2003

[26] Abhay Ashtekar, Tomasz Pawlowski, Parampreet Singh Quantum Nature of the Big Bang

2006


