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Abstract

I will give a broad overview of what has become the standard paradigm
in cosmology. I will describe the relational (a la Leibnitz) notion of time
that is often used in cosmological calculations and discuss how the local
nature of Einstein’s equations allows us to translate this notion into state-
ments about ‘initial’ data. Classically this relates our local definition of
time to a quasi-local region of a particular spatial slice, however incorpo-
rating quantum theory comes at the expense of losing this (quasi-) locality
entirely. This occurs due to the presence of two, apparently distinct, is-
sues: (1) Seemingly classical issues to do with the infinite spatial volume
of the universe and (2) Quantum field theory issues, which revolve around
trying to apply renormalization in cosmology.

Following the cosmological principle - an extension of the Copernicus
principle - that physics at every point in our universe should look the
same, we are lead to the modern view of cosmology. This procedure is
reasonably well understood for an exactly homogeneous universe, however
the inclusions of small perturbations over this homogeneity leads to many
interpretational/ conceptual difficulties. For example, in an (spatially)
infinite universe perturbations can be arbitrarily close to homogeneous.
To any observer, such a perturbation would appear to be a simple rescal-
ing of the homogenous background and hence, physically, would not be
considered an inhomogeneous perturbation at all. However, any attempt
to choose the physically relevant scale at which perturbations should be
considered homogeneous will break the cosmological principle i.e. it will
make the resulting physics observer dependent. It amounts to ‘putting the
perturbations in a box’ and a delicate practical issue is that the universe
is not static, hence the scale of the box will be time dependent. Thus
what appears physically homogeneous to an observer at one time will not
appear so at another.

This issue is brought to the forefront by considering the canonical
(space and time rather space-time) version of the theory. The phase space
formulation of General Relativity, just as for any other theory, contains
the shadow of the underlying quantum theory. This means that, although



the formulation is still classical, many of the subtleties that are present in
the quantum theory are already apparent. In the cosmological context the
infinite spatial volume renders almost all expressions formal or ill-defined.
In order to proceed, we must restrict our attention to a cosmology that
has some finite spatial extent, on which our relational notion of time is
everywhere definable. In particular, this would constrain the permissible
data outside our ‘observable universe’.

This difficulty is an IR or large (spatial) scale issues in cosmology,
however in addition there are UV or short (spatial) scale problems that
need to be tackled. There are the usual problems of renormalization,
which are further complicated by the fact that the universe is not static.
In the cosmological setting this leads to new IR problems which again
prevent one from taking the spatial extent of the universe to infinity.
The physical relevance of this problem, the consequence for defining a
time variable, and the distinction of homogeneous and inhomogeneous IR
issues will be discussed.

1 Physical cosmology

The modern view of cosmology is a profoundly phenomenological one.
One interprets observational data in terms of approximate solutions to
Einstein’s equations assuming the matter content can be thought of as a
fluid. The observations themselves are often only proxies for the desired
observable, themselves containing various levels of approximations or as-
sumptions. In addition, cosmology represents an enormous extrapolation
of scales - 15 orders of magnitude or more - in energy density, acceleration,
length and time from the more familiar laboratory scale physics that has
been tested. Given these caveats, one should not expect that cosmological
observations perfectly agree with our currently established understanding
of physics, and indeed this is not the case.

Observations have shown that on galactic scales, evolution does not
follow from Einstein’s theory for any know matter content. Whilst there
is some debate as to whether this Dark Matter may, in fact, be due to our
lack of understanding of gravitation on these scales (MOND, TeVeS etc.)
or perhaps a consequence of our approximations, it is generally believed
that it is a phenomenological description of some, as yet undiscovered,
types of matter. Indeed it would be rather more fantastic to think that
all the particles in existence have properties that can be probed in the
laboratory with current technology, and that there is nothing left to dis-
cover.

On much larger scales, approaching the size of the observable uni-
verse, it has also been shown that the expansion of space does not follow
our naive expectations. The phenomenological description of this effect is
Dark Energy and its underlying explanation is rather more open to debate,
with possibilities ranging from a new fundamental scale, modifications to
general relativity, misuse of averaging in cosmology, undiscovered types
of matter with radically different properties to those we currently observe
etc. In addition to these possible classical resolutions, there is also much
work on the possibility that Dark Energy is a consequence of the under-



lying quantum theory.

At this point one may start to be concerned. We have a phenomeno-
logical description of our universe that can match observations only if
we postulate two new sources of matter/ energy, that together account
for approximately 96% of the total current matter/ energy content of the
universe. However, whilst we may know little of the underlying physics
of these new sources, there are a myriad of observations that all agree
on their overall cosmological effect. These observations paint a coherent
picture of the evolution of the universe over the last 14 billion years or so,
a picture that is continually being tested by new observations and predic-
tions. Whilst we may not know what it is made of, we can at least see
the whole elephant!

This wealth of every more precise observations, and the remarkable
success of the phenomenological approach, allows us to tackle the undel-
rying conceptual challenges inherent in cosmology, with the real possibility
of testing our conclusions in the near future. An excellent example of this
was the question of why regions of space that have not been in causal con-
tact look (statically) the same? How could different regions ‘know’ the
properties of the others? One explanation is that there was an earlier pe-
riod Dark Energy-like expansion - known as Inflation - which ensures that
the entire observable universe was, in fact, in causal contact. Of course
there are other possibilities, such as a universe with an infinite past (for
example a bouncing or cyclic cosmology), however different solutions to
this conceptual difficulty led to different predictions for other observables.
Whilst nothing has yet been completely ruled out, the current observa-
tions are able to distinguish between the most basic versions of these (and
other) possibilities.

2 Spatial extent and time

Of the many important conceptual challenges facing any approach to cos-
mology I will concentrate on two: the spatial ‘size’ of the universe and
the notion of time. Here I will argue that it is very likely that these two
issues are intimately related, with the relation coming from the underlying
quantum gravity formulation of cosmology (what ever it may be).

2.1 Time

Here, in line with the phenomenological under pinnings of cosmology,
I shall consider a very practical notion of ‘time’, taking it to be given
entirely by relative change. I will consider time as a relational concept,
which can be defined for any two sub-systems. If one of these sub-systems
is considered a ‘clock’, the state of the others evolve with respect to the
internal time given by the evolution of this clock. For example, consider
a system containing as sub-systems a swinging pendulum, a revolving
wheel and an observer capable of observing both. This observer may
choose to use the pendulum as a clock and ask questions such as ”How
many revolutions of the wheel are there in one cycle of the pendulum?”
Of course, the observer may equally decide to use the wheel as a clock and



ask "How many cycles of the pendulum are there per revolution of the
wheel?” The choice of which sub-system the observer chooses to use as a
clock is irrelevant, only the relative change between them is important.
Note that the inclusion of the observer here is important. If neither the
pendulum nor the wheel were in motion, the observer would be unable to
use either device as a clock, however the fact that the observer interacts
with them (via observing), implies that there must be another sub-system
that could be used for the observer to measure time. Namely the field
propagating this interaction (i.e. photons traveling from the observer to
the devices). Thus, should the clock be static, it may not be a useful
means of measuring time, however the observer’s act of seeing the clock
means that time can still be defined, simply by using alternative degrees
of freedom to register relative change. Consider the following example. A
person observes a clock to read mid-day. A second, distinct, observation
is subsequently made and again the clock reads mid-day. There are three
conclusions that the observer might draw,

e 12N hours have elapsed between observations, for N a strictly pos-
itive integer,

e the clock is in fact broken and some indeterminate period of time
has passed,

e no time has passed between observations.

The last case can be ruled out by the fact that the observer carries out
two distinct observations. That is, other degrees of freedom - say the
photon propagation from the observer to the clock - distinguish the two
events. Similarly the first possibility does not present any difficult, since
although this particular observation may produce in the same result -
the clock reads mid-day - other observables would not (for example the
charge in the battery). Finally the second possibility is the case in which
the sub-system the observer has decided to use as a clock is static. Clearly
this does not make for a useful method of measuring the passage of time,
however, equally clearly, it does not mean that time is not definable.
Other degrees of freedom that are responsible for the interaction of the
clock and the observer could be used to define this relational notion of
time. In practice this means that when we are choosing a particular
degree of freedom of our system to be a clock, we want to ensure that its
evolution is monotonic, at least for the period of our observation. If it is
ever static, we must choose a different degree of freedom. In the event that
every degree of freedom of the system is static, then, indeed, relative time
would not be definable, however in such a situation the observer would
also have to be static and evolution would have no meaning.

Typically we want to choose a clock whose evolution is largely unaf-
fected by the state of the other sub-systems (we might prefer that our
watches tick at a uniform rate despite swinging of our arms for exam-
ple), however this needn’t be the case. In cosmology for example, we may
choose to use the expansion of the universe as a clock and ask ”What is
the state of some matter content when the expansion is such and such?”
or "How does this state change when the expansion varies from x to y?”.
The evolution of the matter content is highly dependent on the expan-
sion of the universe, however we can still describe the evolution of one



parameter in terms of another. In cosmological notation this amounts to
writing ¢ (a), where a is the scale factor and ¢ is some particular matter
content. This practical, relational notion is very typical for cosmological
observations, where one regularly refers to time via red-shift (closely re-
lated to expansion) and considers the relative change of energy density,
temperature, galaxy number density etc. with respect to red-shift. In
early universe cosmology it is also common to consider the evolution of
matter fields (in particular the inflaton) as defining a clock, thus writting
(for example) a(¢).

2.2 The relation to spatial extent

To demonstrate the plausibility of a link between spatial extent and tem-
poral evolution consider the following. General relativity provides us with
local equations, the solution of which in any finite region can be calculated
from data specified on the boundary of that region. Typically we consider
foliating the manifold using 3-dimensional slices, labeled by a parameter
t, in which case the required data can be specified at an ‘initial’ slice. The
solution in any finite region on any other slice requires data to be specified
only on a (different) finite region of this initial slice. For example, in order
to predict the motion of an apple as it falls, one does not need to specify
the data describing the sun at the time the apple is dropped (provided
the apple hits the ground within 8 minutes - the light travel time from
the sun to the Earth).

This heuristic explanation applies to any system that is ‘well-posed’ -
of which general relativity is an example. It essentially says that solutions
can be calculated by ‘evolving’ initial data in time and that if we are in-
terested only in a finite temporal extent, then we need only specify a finite
spatial extent of initial data (provided the speed of light is finite). The
passage of time for some (finite) system can then be operationally defined
by the expanding spatial region of initial data required to uniquely specify
the evolution of that system. That is, given the state of an observable and
a clock at some instant, to know how the observable will change in rela-
tion to the changing clock we need only specify the initial data required
to calculate this evolution. The longer the evolution, the more initial data
that is required.

Consider for example an observer and a clock on some slice 3; and
suppose we provide initial data on a spatial slice 3;, prior to the slice
containing the observer (i.e. some time before t). Both the observer and
clock are a (presumably extremely complicated) solutions to the coupled
general relativity and (classical) particle physics evolution equations, and
they are given uniquely by the data contained within a certain (finite)
region of the initial slice, Sy C 3;. Given this data, there is a unique
solution describing the observer’s evolution in time, as measured by the
changing of the clock, from the initial slice to the slice labeled by ¢. Now
we wish to understand what is required in order for this observer to evolve
from the state of the clock given at t to the state at t + §t. The required
information is simply the data specified in Si+s5¢ C X and so we can
consider the evolution in time of this particular observer, from ¢ to ¢ + dt,
to be given by the additional data required in order to go from S; to Siyst



i.e. Sipse N (Se), which is entirely defined on the initial spatial slice.

This transforming of the temporal extent of a solution to the spatial ex-
tent of the initial data is made possible by the existence of a fundamental
velocity - the speed of light. This leaves aside issues such as singularities
at which both spatial and temporal extent lose much of their meaning,
however it does provide a useful definition of time, for all practical pur-
poses, throughout most eras of cosmology. This entire discussion is a
roundabout way of describing the very familiar concept of ‘the observable
universe’ often used in cosmology - how much of the universe at some
earlier time is in principle observable to us today? In the notation above,
the current observable universe is just Sioday, Where the ‘initial’ data is
specified on some slice given very early in the cosmological evolution (close
to the big-bang singularity).

3 Infinite spatial extent

If we are interested only in evolution of a spatially finite system for finite
times, only a finite region of the initial spatial slice is relevant, the rest is
unimportant for this evolution and in particular the total spatial extent of
the initial slice is not relevant. Of course, if we want to evolve a solution for
infinite time, one must provide data on the entire spatial slice and in this
case the total spatial extent of the universe is relevant. If our universe were
exactly spatially homogeneous this question of spatial extent becomes
redundant, even for evolution between infinite times. Since every point
on the initial slice is equivalent, every point on any other slice must also
be equivalent to each other (although there may of course be differences
between slices). In this spatially homogeneous situation, all our solutions
depend only on one function that relates any spatial region on different
slices, the scale factor a(t).

Before we move away from the classical theory it is worth noting that
the above discussion also means that, for practical purposes, it does not
matter whether the spatial extent of the foliating slices are infinite or not.
Only a finite region of the ‘initial’ slice is relevant for the evolution of any
particular observer (such as ourselves). Thus in classical cosmology there
is essentially no difference between a universe that is spatially infinite
and one that has some finite spatial extent, provided it is larger than the
current size of the observable universe. Indeed observations can put limits
on the minimum size of the spatial slice (and to some extent its topology),
but these observational limits cannot extend beyond the observable spatial
size of universe. There is of course a very important conceptual difference
between a spatially infinite and a spatially finite universe, in particular
when it comes to trying to define what constitutes a ‘special’ position
or conditions. There are also some technical differences that effect the
practical calculations typically used in cosmology such as Fourier series vs.
Fourier transforms. However for cosmological observations the distinction
is unnecessary.

A word on causality. The above discussion is very similar to the notion
of causality, however it is not quite the same. Causality would usually be
defined as follows. Consider a set of initial data on some slice and add to



it a localized disturbance. Causality now describes the fact that, under
evolution, the consequences of this disturbance propagates slower than
(or equal to) the speed of light. It is certainly true that causality implies
that any disturbance outside our observable universe cannot effect us, and
hence that there is essentially no difference between an (spatially) infinite
and a (spatially) finite universe. However the converse is not true. As
we will see, a theory may be non-local and hence ‘know’ if the universe is
infinite or not, whilst still obeying causality.

Finally, note in particular that our relational definition of time can be
defined for any finite evolution, given by a finite initial data S, completely
independently of whether the spatial slice is finite or infinite (provided it
is sufficiently large to encompass S;). Indeed it can be defined completely
independently of whether regions on the initial slice, outside S; have any
definable notion of time at all. In this sense, relational time, for finite evo-
lution, can be defined ‘locally’ (i.e. it is insensitive to the global properties
of the spatial slice).

4 The consequences of quantum theory:
Hamiltonian formulation

So much for classical cosmology, what changes when we try to incorporate
quantum theory? Quantum theory is not a local theory and any attempt
at quantization fails when we have a spatial slice that is infinitely large.
Indeed, this difficulty can be seen even before going to the quantum the-
ory, by considering the Hamiltonian or action formulation of the classical
theory. Both these frameworks contain the ‘shadow’ of the underlying
quantum theory and already at this (classical) level the problem of an
infinite spatial extent arises. The Hamiltonian generates evolution of the
system via Hamilton’s equations which we may hope to use as a practical
definition of time, since they describe how the observables evolve with re-
spect to one and other, one of which we may choose to refer to as a clock.
However the Hamiltonian is defined as an integral over the entire initial
spatial slice. In a sense, the Hamiltonian is defined so that it can gener-
ate the evolution of all possible regions of the initial slice for all possible
times. The only ways for this to be well-defined are that the initial slice
has a finite spatial extent with specified boundary conditions or that the
functions giving the Hamiltonian vanish sufficiently quickly ‘at infinity’
(both possibilities also require that the initial data be suitably regular ev-
erywhere). The latter is the usual condition used in mechanical systems,
where the spatial extent of the system being consider is obviously finite,
however in cosmology this would mean that our position in the universe is
somehow ‘special’ which breaks cosmology’s guiding principle and in any
case, precludes the existence of a solution which is exactly homogeneous.
Thus we are forced to consider only cosmologies in which the spatial ex-
tent is finite. Provided this finite spatial extent is sufficiently large, it will
not yet be observable, however this does alter our description of time. The
evolution of some finite region may explicitly depend only on the initial
data in some finite region of the initial slice, however for it to be defined at



all, initial data on the entire initial slice must be specified. The evolution
of our falling apple may not depend on the state of the sun at the time the
apple drops, provided the sun’s contribution to the Hamiltonian is finite.

It is important to realize that although the Hamiltonian approach de-
scribes the classical evolution of the system, giving the same evolution
described by Einstein’s equations, it contains additional regularity con-
ditions coming from the underlying quantum theory. These regularity
conditions are non-local and we can no longer fully describe the evolution
of a system independently of the evolution of other causally disconnected
systems. It is not that the evolution of two causally disconnected systems
are dependent on each other, however to be able to evolve one we must
know that the evolution of the other exists and meets the regularity condi-
tion. Put another way, the existence of (this practical definition of) time
for any system requires that the same definition exist for all systems. This
additional requirement arises from the quantum theory, which then leaves
its imprint in the classical theory via the Hamiltonian description. An ex-
actly similar conclusion arises from the action formulation of the classical
theory. In the language of quantum field theory, this phenomenon comes
from the fact that the action contains additional ‘off-shell’ information,
not present in the original classical equations of motion.

Thus we see that although the classical equations of motion allow one
to define time via the evolution of a system, independently of causally
disconnected regions, indeed independently of whether such regions exist
at all or if they do, independently of whether time can be defined for
systems inhabiting these regions, this is no longer the case once the quan-
tum theory is considered. In the particular case of cosmology, if we wish
to consider solutions that are (spatially) homogeneous, we are restricted
to universes with a finite spatial extent and for inhomogeneous solutions
the local existence of this practical notion of time i.e the evolution of our
observable universe, implies that there exists a similar practical notion of
time for all, causally disconnected regions on our spatial slice. That is,
the existence of initial data sufficient to evolve into our universe implies
that initial data exists everywhere on the initial spatial slice and most im-
portantly that this slice is finite (or the data on it has compact support)
and the initial data, when integrated over the entire slice, is also finite.

5 Consequences of quantum theory: renor-
malization

We have seen that there is a surprising relationship between the total
spatial extent of our universe and the existence of a practical definition
of time, that is now required to be globally defined. This is apparent
already when the classical theory is written in terms of the Hamiltonian
approach, however it arises from the quantum theory, and the require-
ment that evolution be unitairily implementable. The conclusion we have
reached is that the total spatial extent must be finite, even if we wish to
focus only on finite evolution of finite spatial regions. Previously the pos-
sibility of an infinite spatial extent was not relevant for finite evolution,



however now a divergence appears. Perhaps we should not be surprised
that, in the transition from classical to quantum theory, previously finite
expressions become divergent. This occurs also in the subtly of defining
products of operators at coincident (spatial) points, which also lead to
divergences in classically finite expressions. Since this is an issue to do
the small separation scales they are usually referred to as UV divergences.
These need to be regulated in a suitable manner, consistent with the basic
axioms of quantum theory, through a process known as renormalization.
The second source of divergence that we have discussed, due to an infi-
nite spatial extent is usually referred to as IR divergences. Perhaps this
too can be ‘renormalized’ in some suitable manner? Or perhaps the two
divergences are related in some as yet unexpected way? The physical sig-
nificant of our inability to define observables in a spatially infinte universe
may well point to a failing of the renormalization scheme. It may be that
the correct approach to renormalization, presumably arising from some
full theory of quantum gravity, will show us how to regulate not only the
usual UV divergences, but also the IR divergences that appear in cosmol-
ogy. If this were indeed the case, it may allow the local notion of time
that can be defined for classical systems to be harmonized with the global
requirement that currently result from quantum theory.

In the following I will describe how once again, the spatial extent of
the universe can enter the game when (one particular version of) the usual
renormalization procedure is carried out in cosmology. Again this leads
us to requiring that the total spatial extent of the universe be finite if
physical quantities such as (expectation values of) energy density are to
be well defined. At first sight this will suggest that we should alter our
definition of renormalization, and indeed it may well be possible to do
so in such a way as to ensure that all (finite) physical observables and
their (finite) evolution are well defined, even in spatially infinite cosmolo-
gies. However, the point of the entire procedure of renormalization is that
there is a universal method for removing UV divergences. This univer-
sality can be traced to the basic fact that all Riemannian manifolds are
locally approximated by Euclidean space and hence that, in some loose
sense, all UV divergences are the same. This universality is not present in
considerations of IR divergences and without something similar it would
be difficult to justify any particular approach.

5.1 Adiabatic renormalization

If one considers an almost homogeneous cosmology, then it is very natural
to decompose the system into a homogeneous part (the spatial average)
and the inhomogeneous part, which are considered small perturbations.
This matches extremely well with all observations of the early universe and
forms the basis of our modern understanding of the early universe. The
next step is to consider these small perturbations to be a quantum field,
now evolving on the homogeneous background, whose evolution provides
us with a ‘time’ parameter with which to evolve the perturbations. This
step is a particularly thorny one and it leads to many difficult conceptual
issues that collectively go under the name of the ‘quantum to classical
transition’, which will not be discussed here. Once this step has been



taken, our cosmological system contains the classical evolution of a homo-
geneous universe and a quantum field (the perturbations) evolving on the
dynamical background. As with any quantum field theory, the definition
of many important quantities require renormalization and in particular
the definition of the energy density of the quantum field is formally diver-
gent without this procedure. Fortunately there is a well defined method
of performing this renormalization, even in for a system with a dynamical
background, and one can calculate the (expectation value of the) energy
density in the perturbations. For self-consistency of the basic approxima-
tions one needs to ensure that this renormalized energy density is indeed
a perturbation to the homogeneous background.

One explicit method for performing this renormalization of products of
operators, known as ‘adiabatic renormalization’ is the following. Perform
a Fourier transformation on the perturbation field and calculate the formal
expression for the desired operator (in this case the energy density). This
formal expression contains an integral (or sum) over the values of the
Fourier modes, k, which diverges. However, the integrand (or each term in
the sum) is finite and well defined for every k, it is only the combination of
all these finite contributions that diverges. Adiabatic renormalization then
provides an explicit factor to subtract from the integrand (or from each
term in the sum) for all k, that ensures that the resulting integral is well
defined. In this scheme, the large values of k£ correspond to small spatial
separations, and it is in this limit (k — oo) that the subtraction factor
tends to a universial form. Indeed, the entire procedure for calculating
this subtraction factor is based on the idea that, for large enough & (i.e.
small enough scales), the spatial slice must approximate a flat slice and
hence, on these scales, the quantum field should approximate the results
of the well defined, flat space, quantum theory.

However, in a cosmology with an infinite spatial extent a new diffi-
culty arises. This adiabatic renormalization scheme is designed to ensure
that the large k& (small scale) limit of the quantum field theory is well
defined, however it does not guarantee that the explicit subtraction term
is finite away from this limit. It may happen that the factor that needs to
be subtracted from integrand at some low value of k (i.e. on some large
scales) itself diverges, in which case the renormalization scheme may suc-
cessfully remove the UV divergences of the theory, only to introduce new
types of IR divergences. But should this be a concern? We have already
encountered IR divergences in cosmology and have thus had to restrict
our attention to cosmologies with finite spatial extent, is this more of the
same? Unfortunately not. One can remove these new forms of IR diver-
gences by considering a spatial slice that has a finite spatial extent, at
the technical price of replacing the continuous Fourier transform with a
discrete Fourier series, however this spatial extent cannot be arbitrarily
large. If the renormalization procedure is to be well defined, not only
must the spatial slice be finite, but it must have a spatial extent smaller
than some specific value (given by the background dynamics).

But should this new IR divergence be considered physical? It arose
from our attempt to remove UV divergences in some universal manner, but
this universality applies only to the UV limit of the theory. If we choose to
alter the subtraction terms for low k scales, whilst ensuring that the large
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k limit remains intact, we will not have spoiled the universality property of
the renormalization scheme. Indeed it is possible to perform an alteration
in such a way that the IR divergences are removed, thus ensuring that the
expectation value of all (relevant) renormalized operators are well defined.
The difficultly is that there are many ways of doing so and unlike the
removal of the UV divergences, there is no universality argument that can
be appealed to choose one (class). One needs to use additional physical
or conceptual inputs to choose the particular, ‘natural’, scheme.

6 Summary

As it has been presented here there appears to be two sources of IR di-
vergences in cosmology, one coming from the homogeneous sector and an
infinite spatial extend, the other from the renormalization scheme of the
inhomogeneous perturbations, however the distinction is perhaps one only
of mathematical convenience. Without splitting the cosmological model
into an homogeneous background and inhomogeneous perturbations, it is
difficult to formulate the quantum system, however physically it is per-
haps not illuminating. In particular when one is forced to consider spatial
regions larger than the currently observable universe. What an observer
considers ‘homogeneous’ is tied to their observable universe. After all, we
cannot say whether the universe is homogeneous or not on scales larger
than our currently observable universe. As we saw in Section (4) quantum
theory would seem to require us to restrict to a finite spatial slice if we
wish to consider an homogeneous universe, whilst in Section (5) we saw
that if we consider small perturbations over this background, then either
one of the following must hold.

e Not only must the spatial extent be finite, it must be smaller than
some specific scale or,

e Renormalization must be altered according to some, as yet unknown,
new principles.

One possibility is that we may try to avoid this artificial decomposi-
tion into homogeneous and inhomogeneous sectors, defining renormaliza-
tion in such a way as to ensure that (for example) the energy density in
the zero-mode (the purely homogeneous sector) vanishes in some suitable
manner. This may cure both forms of IR divergences (whilst not effect-
ing the removal of the UV divergences of the theory) and if the resulting
cosmological predictions were consistent with observations it would be a
viable model. However, such an approach would impose our prejudice on
the form of the universe on large (unobservable) scales. In such a case we
would have succeeded in rendering quantum theory in an infinite universe
well defined, however we would still have the fundamental discrepancy
between the purely classical, local notion of time or evolution and the
quantum requirement that this notion be applicable over the entire spa-
tial slice. There is an essential non-locality built into quantum theory,
which manifests itself at the classical level not by any change in causality,
but rather by a requirement that our notion of time be globally definable.
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These IR issues arise from the implementation of quantum theory to
cosmology. In all other quantum systems, we do not need to consider
the consequences of an infinite spatial extent, however in cosmology we
must face this head on. There two possible resolutions to the discrepancy
between classical cosmology, in which infinite and finite spatial extents
are indistinguishable and the application of quantum theory, in which a
difference appears:

e The classical locality is incorrect. We do need to constrain data
outside our observable universe to be able to define evolution and
hence relational time everywhere on a spatial slice, even for finite
evolution of a finite region. In additional to the regularity constraints
of the data, this requires either that the universe have a finite spatial
extent or that the data defining the basics variables have compact
support in a universe with infinite spatial extent (in particular it
cannot be homogeneous).

e Quantum theory needs to be reformulated in a more ‘local’ way, so as
to ensure that, when applied to cosmology, our observable universe
is not dependent on unobservable data. However any reformulation
must agree with the wealth of experimental data that quantum the-
ory has provided on laboratory scales, whilst simultaneously allowing
for independent definitions of evolution for causally disconnected re-
gions and the compatibility between these evolutions if these regions
overlap.
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