
ABSTRACT In 1995, we described a new model for
adiposity regulation. Since then, data regarding the biology of
body weight regulation has accumulated at a remarkable rate and
has both modified and strengthened our understanding of this
homeostatic system. In this review we integrate new information
into a revised model for further understanding this important
regulatory process. Our model of energy homeostasis proposes
that long-term adiposity-related signals such as insulin and
leptin influence the neuronal activity of central effector
pathways that serve as controllers of energy balance. Am J Clin
Nutr 1999;69:584–96.
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INTRODUCTION

In 1995, we described a new model for adiposity regulation in
a supplement to the Journal (1). We proposed that discrete neu-
ronal circuits exist within the brain that, when activated, exert
potent, unidirectional effects on energy balance. We hypothe-
sized that these central effector pathways transduce afferent
input from adiposity-related hormonal signals into changes in
feeding behavior and energy balance. Through this mechanism,
the central nervous system (CNS) response to afferent signals
that control the size of individual meals was proposed to be
adjusted in proportion to changes in body adiposity, resulting in
the long-term stability of fat stores. The present article integrates
new information into a revised model for understanding this
important regulatory process (Figure 1).

Over the course of a single day, the amount of energy ingested
can be influenced by a nearly infinite number of variables.
Despite this short-term variability in energy intake, body fuel
stored in the form of adipose tissue remains relatively constant
over time (2–4). These observations suggest the existence of a
homeostatic mechanism whereby short-term mismatches in
energy balance (ie, the difference between energy consumed and
that expended) are compensated for over long time intervals.
Much evidence supports this concept. For example, changes in
body fat content induced by such diverse interventions as dieting
(5, 6), behavior modification (3, 6), surgical removal of fat (7–9),
or experimental overfeeding (10, 11) induce compensatory

responses that gradually restore adiposity to baseline values. The
limited success of energy-restricted diets as an approach to
achieving long-term weight loss in the treatment of obesity (4–6)
underscores the clinical importance of this regulatory system.

Food intake and energy expenditure are influenced over the
short term by input from a wide variety of situational and meal-
related factors. Within this broad category are physiologic sig-
nals, including neuronal information related to ongoing circadian
rhythms, metabolic signals reflecting the rate of utilization of dif-
ferent fuels by brain and abdominal viscera, gastrointestinal sig-
nals resulting from gastric distention, and the release of peptides
from the gastrointestinal tract in response to nutrient ingestion.
Emotional factors and the palatability and nutrient content of
available food are additional inputs that can exert strong, tran-
sient effects on the amount and type of food consumed from one
meal to the next. Because short-term factors can arise unpre-
dictably and can influence powerfully the size and frequency of
meals, variability in daily patterns of energy intake is the rule.
Moreover, because short-term, meal-related signals are not gen-
erated in proportion to energy requirements, daily food intake and
energy expenditure are not closely correlated in humans (12).

The biological system that regulates body adiposity was
hypothesized 46 y ago (13) to involve humoral signals generated
in proportion to body fat stores that act in the brain to alter food
intake and energy expenditure. Major candidates for such signals
include the hormones insulin (14) and leptin (15), both of which
are secreted in proportion to body adiposity and act in the brain
to reduce food intake and promote weight loss. In contrast with
short-term inputs, insulin and leptin exert effects in the CNS that
are slow in onset and offset (eg, hours to days), with an effect
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that is sustained over long intervals. These hormones appear to
regulate the activity of neuronal systems that strongly influence
energy homeostasis, referred to here as central effector path-
ways. In this article, we advance the thesis that energy balance is
achieved and maintained over long time intervals (eg, weeks to
months) via the activation of key brain systems in response to a
change in fat stores, triggered in part by changes in signaling by
leptin and insulin (16).

CENTRAL EFFECTOR PATHWAYS FOR CONTROL OF
ENERGY BALANCE

Many neuropeptides and monoamines synthesized and
released along discrete neuronal pathways within the brain can
modify food intake when administered to the CNS (Table 1). An
increasing number of these have been implicated as endogenous
signaling molecules, which play an important role in energy
homeostasis. We propose that candidate central effector path-
ways must meet the following criteria: they strongly influence
both energy intake and energy expenditure and their activity is
regulated by adiposity-related signals.

Central effector pathways can be defined as either anabolic or
catabolic, terms that reflect the overall effect on energy balance
brought about through stimulation of the pathway. Elevated neu-
ronal activity in anabolic pathways promotes a state of positive
energy balance by stimulating the ingestion and storage of
energy, whereas stimulation of catabolic pathways causes a net
loss of energy from the body. Anabolic systems act primarily by
increasing the drive for food intake, although they may also
decrease energy expenditure, alter the peripheral metabolic envi-

ronment to favor assimilation and storage of ingested energy, or
both. In contrast, catabolic effector systems promote the mobi-
lization of stored fat and cause weight loss by reducing food
intake, increasing lipolysis and thermogenesis, or both. Avail-
able evidence suggests that the peripheral metabolic effects of
central neuropeptides and monoamines are mediated by efferent
autonomic activity. As a general rule, elevated sympathetic ner-
vous system (SNS) outflow promotes catabolic effects and a
decreased SNS outflow favors anabolic actions (17, 18), whereas
the reverse applies to efferent activity of the parasympathetic
nervous system (17, 19).

CANDIDATE ANABOLIC EFFECTOR SYSTEMS

Neuropeptide Y

Neuropeptide Y (NPY) is a member of the pancreatic
polypeptide family that is synthesized in peripheral sympathetic
neurons as well as in the brain. In the CNS, the actions of NPY
on energy homeostasis are exerted largely within the hypothala-
mus. The primary hypothalamic site of NPY biosynthesis is the
arcuate nucleus (20), a collection of neuronal cell bodies located
adjacent to the floor of the third cerebral ventricle. Axons from
these neurons project to several other hypothalamic nuclei,
including the paraventricular nucleus, a key brain area mediating
a potent effect of NPY to stimulate feeding (21). Daily injection
of NPY into the hypothalamic paraventricular nucleus not only
causes sustained hyperphagia and weight gain (20–22), but also
has metabolic actions that favor fat deposition. These include
increased lipoprotein lipase gene expression and enzyme activity
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FIGURE 1. Model for the regulation of energy balance and adiposity. Neural systems termed central effectors of energy balance represent major
controllers of food intake and autonomic outflow that affect the storage and mobilization of energy. Anabolic effector pathways promote feeding and
suppress energy expenditure, whereas catabolic effector pathways have the opposite effect. Short-term, situational, and meal-related signals originate
from various internal sources [eg, cholecystokinin secretion from the gastrointestinal (GI) tract], from the environment (eg, food-related cues), and
from higher centers (eg, emotional and cognitive factors). Although short-term signals are major determinants of the size and timing of individual
meals, their effect on fat stores is limited by the long-term regulation of energy homeostasis. This is because long-term, adiposity-related signals such
as insulin and leptin regulate the output of the central effector pathways and modulate the central nervous system response to short-term signals in pro-
portion to the level of fat stores. In this way, changes in energy balance that alter fat stores elicit compensatory responses in central effector pathways
that preserve energy homeostasis.
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in white adipose tissue (23), enhanced lipogenesis in both liver
and white adipose tissue, and increased secretion of insulin and
glucocorticoids into the circulation (24). Because these meta-
bolic effects of intracerebroventricular NPY administration are
detected even when hyperphagia is prevented, they are not sim-
ply a consequence of increased energy intake. The ability of
intracerebroventricular NPY to reduce SNS activity (18, 23) may
account for these metabolic actions.

NPY also promotes weight gain by reducing SNS outflow to
brown adipose tissue (BAT), a form of adipose tissue that is spe-
cialized for the purpose of heat production. BAT is richly sup-
plied with SNS fibers and stimulation of these fibers elicits a
thermogenic response via a process that requires a mitochondr-
ial protein unique to BAT known as uncoupling protein 1 (UCP-
1). After SNS activation of BAT, oxidation of fatty acids in mito-
chondria that contain UCP-1 yield energy in the form of heat
rather than ATP generation. By reducing SNS outflow to BAT
(18), NPY injection into the brain increases energy efficiency by
suppressing this thermogenic mechanism (23).

A physiologic role for the hypothalamic NPY system in energy
homeostasis is suggested by evidence that its production (within
the arcuate nucleus) and release (into the paraventricular nucleus)
are affected by changes in energy balance. Thus, conditions asso-
ciated with weight loss, such as food deprivation (25–28) and
uncontrolled insulin-deficient diabetes (29–33) increase produc-
tion and release of NPY along the arcuate nucleus–paraventricu-
lar nucleus pathway, and this response may contribute to the
hyperphagia common to both conditions. Activation of the hypo-
thalamic NPY system in these conditions appears to involve
decreased signaling by insulin and leptin, combined with
increased glucocorticoid concentrations (26, 31, 34–36).

Genetic obesity resulting from defective leptin signaling
appears to result in part from inappropriate activation of NPY-
containing hypothalamic pathways. This conclusion is supported
by the observation that hypothalamic NPY messenger RNA
(mRNA) concentrations are elevated in fa/fa obese Zucker rats
(37, 38), in ob/ob mice (39), and in db/db mice (40). Because
obesity in these animals results from mutation of either the gene
encoding the leptin receptor (in db/db mice and fa/fa rats) or lep-
tin itself (in ob/ob mice), defective leptin signaling appears to
activate the NPY system.

The finding that inhibition of NPY biosynthesis in the arcuate
nucleus by direct application of antisense oligonucleotides is
associated with reduced food intake (41) and a blunted hyper-
phagic response to fasting in rats (42) suggests that variations in
endogenous NPY signaling contribute to the normal regulation of
food intake. Similar conclusions have been drawn from studies in
which hypothalamic NPY signaling was reduced by immunoneu-
tralization (43, 44) or by intracerebroventricular infusion of anti-
sense oligonucleotides directed to the Y5 receptor (42), which is
proposed to mediate the effects of NPY on food intake (45).
However, mice with genetic NPY deficiency (due to targeted
gene disruption or gene knockout) maintain relatively normal
patterns of food intake and body weight gain (46); mice that lack
Y5 receptors paradoxically develop a mild, late onset form of
obesity (47), as do mice lacking Y1 receptors (48). Excessive
weight gain in Y1 receptor–deficient mice was attributed to
reduced locomotor activity and occurred despite food intakes that
were lower than those of controls (48). Although these findings
do not support the hypothesis that NPY is required for mainte-
nance of normal food intakes, mice lacking Y1 receptors also

have reduced food intakes in response to fasting. Y1 receptor sig-
naling, therefore, appears to be important for the hyperphagic
response that facilitates the recovery of depleted fuel stores fol-
lowing food deprivation. In contrast, the effect of fasting to stim-
ulate food intake is intact in mice lacking NPY (46). These con-
flicting results raise the possibility that genetic deficiency of a
major CNS signaling system can result in a compensatory
“rewiring” of neuronal circuits involved in energy homeostasis,
and that the extent to which this occurs can vary with the nature
of the mutation. Alternatively, CNS pathways that control food
intake may be sufficiently redundant to compensate for the loss
of even a major signaling system. This possibility agrees with a
growing literature suggesting that neuronal systems additional to
NPY play an important role in weight regulation.

Melanin concentrating hormone and orexins

Melanin concentrating hormone (MCH) (49) and orexins A
and B (50), also referred to as hypocretins 1 and 2 (51), are
hypothalamic neuropeptides that share several features in com-
mon and are implicated in the stimulatory control of food intake.
Both peptides are expressed exclusively in the dorsolateral hypo-
thalamus and both have extensive projections to other brain
areas (49, 50). Both peptides also stimulate food intake robustly
after injection into brain ventricles, and expression of mRNA
encoding these peptides increases in response to fasting, features
in common with NPY. These results suggest that the hyperphagic
response to conditions associated with weight loss involves the
activation of multiple neuropeptide systems in the hypothala-
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TABLE 1
Some candidate signaling molecules used by central effector pathways
involved in the hypothalamic control of energy balance1

Effect on Effect on SNS
food intake activity

Catabolic
Corticotropin-releasing hormone2 ↓ ↓ ↑↑
a-MSH2 ↓ ?
CART2 ↓ ?
Bombesin ↓ ↑
Somatostatin ↓ ?
Cholecystokinin ↓ ↑
Thyrotropin-releasing hormone ↓ ?
Calcitonin-gene–related peptide ↓ ↑
Neurotensin ↓ ↑
Serotonin ↓ ↑

Anabolic
Neuropeptide Y3 ↑ ↑ ↓ ↓
Melanin concentrating hormone3 ↑ ?
Agouti-related protein3 ↑ ?
Orexin A and B3 ↑ ?
Galanin ↑ ?
b-Endorphin ↑ ↓
Dynorphin ↑ ?
Growth hormone–releasing hormone ↑ ↓
Norepinephrine ↑ ↓

1↑ , increase; ↓ , decrease; ?, not established; double arrows indicate
robust effects; SNS, sympathetic nervous system; MSH, a-melanocyte-
stimulating hormone; CART, cocaine- and amphetamine-regulated tran-
script.

2Pathways that are stimulated by leptin.
3Pathways that are inhibited by leptin, activated by fasting, or both.
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mus. The mechanisms underlying the regulation of these MCH
and orexin neurons, however, are unknown, and the possibility
that both neuropeptides are expressed within the same neurons
has yet to be explored. Although the hypothesis that these neu-
rons are targets for the action of negative feedback from hor-
mones such as leptin and insulin is attractive, the receptors for
these hormones are not abundantly expressed in the dorsolateral
hypothalamus compared with areas such as the arcuate nucleus
(34, 52). Regulation of these neuronal systems by leptin or
insulin, if it occurs, is likely to involve an indirect signaling
pathway.

CATABOLIC CENTRAL EFFECTOR PATHWAYS

Melanocortins

The melanocortin signaling system in the brain is an impor-
tant member of the family of catabolic central effector pathways
proposed to transduce changes in CNS leptin signaling into
changes in food intake and body weight. Melanocortins are a
family of peptides, including a-melanocyte-stimulating hormone
(a-MSH) and corticotropin, that are cleaved from the proopi-
omelanocortin precursor. In the mammalian forebrain, proopi-
omelanocortin is expressed solely by neurons of the arcuate
nucleus, adjacent to NPY-producing cells. These neurons release
a-MSH from axon terminals (53), where it can bind to and acti-
vate melanocortin receptors on postsynaptic membrane surfaces.
Of the 5 melanocortin receptor subtypes identified to date, 2 are
expressed primarily in the brain (MC3 and MC4 receptors) (54).
The MC4 receptor is strongly implicated in energy homeostasis
because genetic knockout of this receptor subtype causes hyper-
phagia and obesity in mice (55) (Table 2) and because intracere-
broventricular administration of an MC4 receptor agonist causes
anorexia, whereas antagonists of MC4 receptors stimulate feed-
ing (56). These observations implicate the melanocortin system
as a catabolic effector pathway that plays a key role in energy
homeostasis.

Consistent with this hypothesis, leptin deficiency in ob/ob
mice is associated with reduced proopiomelanocortin mRNA
concentrations in the arcuate nucleus; leptin administration
reverses this defect (57). Moreover, leptin receptor mRNA is co-
localized with proopiomelanocortin mRNA in arcuate nucleus
neurons (58), suggesting that these proopiomelanocortin neurons
are targets for leptin action. The recent observation that the
effect of a single dose of intracerebroventricular leptin to lower

food intake and body weight is completely prevented by pre-
treatment with an MC4 receptor antagonist (59) supports the
hypothesis that the arcuate nucleus proopiomelanocortin system
is an important mediator of leptin action in the brain.

Agouti and agouti-related protein: endogenous
melanocortin receptor antagonists

A unique feature of the melanocortin system is the presence of
endogenous antagonists of melanocortin receptors. The first of
these to be discovered is agouti, a protein synthesized in skin and
hair follicles that is released in a paracrine manner to antagonize
a-MSH at cutaneous MC1 receptors (60). This mechanism
explains the lightening effect of agouti on coat color because
melanin production in hair follicles is stimulated by the ability of
circulating a-MSH to bind to and activate cutaneous MC1 recep-
tors. Evidence that antagonism of CNS melanocortin receptors
can cause obesity was first provided in the yellow obese or
agouti (Ay) mouse, an autosomal dominant model of genetic obe-
sity (Table 2). This condition results from a gene rearrangement
that causes ubiquitous expression of agouti in tissues throughout
the body, including the brain. Because agouti antagonizes MC4
receptors as well as MC1 receptors, this form of obesity appears
to result from antagonism of melanocortin receptors in the brain,
whereas the yellow coat color arises from antagonism of the
melanocortin receptors in the hair follicle (60).

A second endogenous melanocortin receptor antagonist,
known as agouti-related protein (AgRP), was identified recently
based on sequence homology to the agoutigene (61). In contrast
with agouti, the gene encoding AgRP is normally expressed in
the CNS (61) and appears to function as an endogenous antago-
nist of CNS melanocortin receptors (62). Consistent with this
hypothesis, AgRP antagonizes a-MSH at both MC3 and MC4
receptors, but not at MC1 receptors (62). Moreover, transgenic
overexpression of AgRP in tissues throughout the body (by using
a b-actin promoter) causes an obesity syndrome in mice that is
virtually identical to that associated with overexpression of
agouti, except that coat color is not affected in AgRP-transgenic
mice (62), presumably because AgRP does not antagonize cuta-
neous MC1 receptors. In the brain of normal animals, mRNA
encoding AgRP is expressed only in the arcuate nucleus (61) and
AgRP mRNA is highly co-localized with NPY, but not with
proopiomelanocortin mRNA in arcuate nucleus neurons (63).
Like NPY, expression of AgRP mRNA is also strongly induced
by fasting and leptin deficiency, suggesting that AgRP and NPY
gene expression are regulated in parallel within the same arcuate
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TABLE 2
Monogenic obesity syndromes involving leptin or melanocortin (MC) signaling systems in rodents1

Mutation Species Affected gene Pathogenesis

Leptin and leptin receptor defects
ob/ob Mouse Leptin Leptin deficiency
db/db Mouse Leptin receptor Leptin resistance
fa/fa Rat Leptin receptor Leptin resistance

MC receptor defects
Ay Mouse Agouti Antagonism of MC-R
Transgenic agouti overexpression Mouse Agouti Antagonism of MC-R
Transgenic AgRP overexpression Mouse AgRP Antagonism of MC-R
MC4-R knockout Mouse MC4-R MC resistance

1AgRP, agouti-related protein; Ay, yellow obese agouti.
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nucleus neurons (63). The arcuate nucleus, therefore, appears to
contain a unique neuronal subtype (NPY/AgRP neuron) that,
when activated, exerts dual effects to promote hyperphagia and
weight gain by activating NPY receptors on the one hand and by
antagonizing melanocortin receptors on the other.

Corticotropin-releasing hormone

In addition to its well-known role as a major controller of
hypothalamic-pituitary-adrenal axis activity, corticotropin-
releasing hormone (CRH) is well-suited to function as a cata-
bolic central effector molecule. Administration of this 41–amino
acid peptide into the paraventricular nucleus, the primary site of
CRH biosynthesis and an area with abundant CRH receptors,
elicits a constellation of effects that promotes a state of negative
energy balance and weight loss. These include suppression of
food intake (64) coupled with stimulation of SNS outflow (64,
65), which increases lipolysis (65) and activates BAT thermoge-
nesis (66). Moreover, chronic central CRH administration
reduces food intake and body weight in normal rats (64), genet-
ically obese rats (67), rats rendered obese by lesions to the ven-
tromedial hypothalamic nucleus (VMN) (68), and primates (69).
That endogenous CRH participates in energy homeostasis is sug-
gested by the increase of CRH mRNA concentrations in the par-
aventricular nucleus documented in several conditions associ-
ated with anorexia and weight loss. These include adrenalectomy
(17), involuntary overfeeding (70), and administration of leptin
(34) or cytokines such as interleukin 1b (71, 72). Conversely,
conditions associated with hyperphagia and activation of ana-
bolic effector pathways, including food deprivation (73) and
insulin-deficient diabetes (31), are associated with reduced CRH
expression in rat hypothalamus. Changes in hypothalamic CRH
signaling may therefore contribute to adaptive changes in energy
balance in these conditions.

An important effect of glucocorticoids in the brain is to inhibit
hypothalamic CRH expression, which may contribute to the
effect of glucocorticoid excess to promote hyperphagia and
weight gain (17, 74). Regulation of hypothalamic production and
release of CRH may, therefore, be an important site at which glu-
cocorticoids and leptin interact in the control of energy balance.
This interaction provides a plausible explanation for the effect of
adrenalectomy to increase responsiveness to leptin in a rat model
(75).

Cocaine- and amphetamine-regulated transcript

Cocaine- and amphetamine-regulated transcript (CART) is
widely expressed in the brain, including hypothalamic areas such
as the arcuate nucleus, paraventricular nucleus, and dorsomedial
hypothalamic nucleus (76, 77), and encodes a neuropeptide with
potent, but short-lived anorexic effects after intracerebroventric-
ular administration (76, 78). The finding that food intake
increases after intracerebroventricular infusion of antisera raised
against the CART peptide suggests that it functions as an endoge-
nous inhibitor of feeding (78, 76). Moreover, hypothalamic
expression of CART is reduced by fasting and by both genetic
leptin deficiency (in ob/ob mice) and leptin resistance (in fa/fa
rats) (76). Support for the hypothesis that hypothalamic CART
expression is regulated by leptin was provided by a study in
which leptin treatment of ob/ob mice was shown to markedly
increase CART mRNA in the arcuate nucleus (76). These data
suggest strongly that CART peptide is a member of the family of
catabolic central effector pathways that participates in the CNS

response to leptin.

ROLE OF THE AUTONOMIC NERVOUS SYSTEM IN THE
CONTROL OF ENERGY BALANCE

Autonomic outflow is regulated by many of the same brain
regions involved in the control of food intake. These include the
lateral hypothalamic area (LHA), VMN, and paraventricular
nucleus. Moreover, the effects of brain peptides and
monoamines on energy expenditure and metabolism in periph-
eral tissues are likely to be mediated via changes in autonomic
outflow (17, 18). Therefore, the autonomic nervous system
seems likely to be the key efferent mechanism by which central
effector pathways influence energy expenditure and metabolism.
For example, activation of the SNS, which promotes energy dis-
sipation and weight loss, can be stimulated by CRH and inhib-
ited by NPY. Regulation of SNS outflow, therefore, may help to
mediate the effect of these peptides on energy homeostasis.

Activity of the SNS increases in response to feeding (17, 79)
and contributes to the thermic effect of food, <5–10% of daily
energy expenditure (80), and involves activation of BAT in
rodents. When energy intake increases, as during the consump-
tion of a highly palatable “cafeteria” diet, thermogenesis
increases proportionately via an SNS-dependent mechanism (81,
82) and thereby limits weight gain. Conversely, fasting and
energy restriction reduce SNS activation of BAT and decrease
energy expenditure (79). Therefore, increased SNS activity dur-
ing states of positive energy balance contributes to the compen-
satory elevation of energy expenditure that limits excess fat stor-
age, whereas reduced SNS tone is a component of the adaptive
response to starvation. Although the mechanisms underlying reg-
ulation of SNS outflow are incompletely understood, they may
involve changes in central effector pathway activity in response
to changing input from adiposity-related hormones.

Although an important role for BAT thermogenesis in energy
homeostasis is widely accepted, adult humans do not have dis-
crete BAT depots. Therefore, questions exist about the role of
thermogenic uncoupling in human energy homeostasis. The
recent discovery that human skeletal muscle and other tissues
express 2 related mitochondrial uncoupling proteins, UCP-2 and
UCP-3, has generated interest in the hypothesis that control of
energy expenditure in humans and other mammals involves hor-
monal regulation of thermogenic uncoupling at diffuse sites
throughout the body (83, 84). 

Many experimental models of obesity are accompanied by an
impaired SNS response to food intake and other stimuli. These
forms of experimental obesity are therefore proposed to result, at
least in part, from an impaired SNS response to the ingestion of
nutrients (17). According to this hypothesis, impairment of sym-
pathetically mediated thermogenesis results in a diversion of
ingested energy into fat stores and is therefore a major factor in
the pathogenesis of obesity. This mechanism was forwarded to
explain obesity in mice with transgenic ablation of BAT (85).

An alternative hypothesis, however, is that defective SNS
function contributes to obesity only when it is the consequence of
disordered regulation of central effector system activity. Accord-
ing to this proposal, a defect in thermogenesis resulting from
impaired SNS activation does not, in and of itself, cause obesity.
This is because the ability of increased energy efficiency to pro-
mote weight gain is limited by increased negative feedback sig-
naling to central effector pathways that accompanies weight gain.

588 SCHWARTZ ET AL

 by guest on M
ay 30, 2016

ajcn.nutrition.org
D

ow
nloaded from

 

http://ajcn.nutrition.org/


CENTRAL REGULATION OF ENERGY HOMEOSTASIS 589

Thus, although reduced energy expenditure may favor a positive
state of energy balance and promote weight gain, this effect
should be limited by increased CNS signaling mediated by adi-
posity signals such as leptin and insulin. The predicted outcome
of an isolated reduction of energy expenditure is the development
of a new steady state of energy balance after an initial expansion
of adipose mass. The degree to which weight gain occurs, accord-
ing to this model, depends on the degree to which energy effi-
ciency is increased on the one hand, and on the robustness with
which the CNS responds to increased negative feedback signaling
on the other hand. This hypothesis is supported by the observa-
tion that mice with impaired SNS activity due to genetic defi-
ciency of either norepinephrine (86) or UCP-1 (87) do not develop
obesity, despite unambiguous defects in thermogenesis.

How then does transgenic ablation of BAT cause obesity in
mice (85)? One possibility is that obesity in these animals
involves defects additional to reduced thermogenesis. Indeed,
these BAT-deficient mice exhibit hyperphagia (88), suggesting
that impaired negative feedback control of adiposity also exists in
these mice. Consistent with this possibility, BAT-deficient mice
are markedly resistant to anorexia induced by leptin (89). We
therefore favor the hypothesis that reduced energy expenditure
may lead to weight gain, but is unlikely to cause obesity in the
absence of a defect in the CNS control of energy homeostasis.

SHORT-TERM, MEAL-RELATED FACTORS

Our model groups the many stimuli that are capable of induc-
ing an acute change in energy balance, in a manner that is unre-
lated to the level of adiposity, into the category of short-term
meal-related or situational factors. This grouping encompasses a
wide variety of both endogenous and exogenous stimuli that
range from physiologic signals generated in response to a meal
to behavioral and autonomic responses to social situations or to
an environmental stress (eg, the fight or flight response). It
should be emphasized that although the long-term regulation of
energy homeostasis serves to minimize the effect of these
diverse inputs on body fat stores, the level of adiposity may be
affected if a change in the input from these short-term signals is
sustained over long time intervals. This is particularly true for
emotional factors and for changes in diet composition, both of
which may influence body weight. The extent to which such
inputs influence the regulated amount of body fat may therefore
depend on the degree to which compensatory changes in long-
term adiposity signaling occur in response to a change in body
fat. The role of short-term, meal-related signals in energy home-
ostasis is illustrated here by the examples of glucose utilization
and gastrointestinal peptide hormones.

Glucose utilization

The concept that consumption of a meal produces changes in
fuel utilization that influence single-meal food intake is sup-
ported by evidence spanning 4 decades of investigation
[reviewed in (90)]. The glucostatic theory for the control of feed-
ing, reviewed by Mayer and Thomas (91), states that the body
monitors its energy needs via glucoreceptive brain neurons that
are responsive to their own rate of glucose utilization. Accord-
ingly, a fall in the level of glucose utilization by these glucose-
sensitive neurons was proposed to stimulate food intake,
whereas the effect of a meal to increase glucose utilization led to
satiety by activating glucose-responsive neurons. These effects

of glucose were proposed to take place in a “hunger center”
located in the LHA, which when it has bilateral lesions causes
anorexia and weight loss in rats, and in a “satiety center” located
within the VMN, which, when it has bilateral lesions produces
obesity. These concepts were combined into a broadly accepted
proposal (92) that glucoreceptive neurons governed the activity
of these dual centers in the control of feeding behavior.

This dual-center model is challenged, however, by the finding
that animals with VMN lesions remain responsive to glucopenia
as a stimulus for feeding (93, 94) and that after a dynamic phase
of weight gain, these animals regain relatively normal patterns of
food intake (95, 96). Rather than manifesting a complete failure
of body weight regulation due to the absence of satiety, animals
with VMN lesions simply regulate fuel stores at higher than nor-
mal rates. These observations suggest that bilateral VMN lesions
interrupt one or more catabolic central effector pathways,
thereby favoring a positive state of energy balance, whereas
pathologic weight loss associated with bilateral LHA lesions
may result from the loss of key anabolic signaling pathways.
That MCH- and orexin-containing neurons are localized primar-
ily in the dorsal aspect of the LHA raises the possibility that
damage to these neuropeptide systems may contribute to the
effect of LHA lesions on energy homeostasis.

Although hypoglycemia stimulates food intake, the role of
glucose utilization in normal feeding is clouded by evidence that
pathologic cellular glucopenia is necessary to elicit a feeding
response (97, 98). Glucose-sensitive neurons, therefore, may
simply be components of an emergency reflex loop that defends
against acute hypoglycemia (97). However, recent studies using
continuous measurements of blood glucose concentrations in
rats have documented a small, transient decline in plasma glu-
cose concentrations just before the onset of spontaneous meals.
This pattern of change in circulating glucose concentrations pre-
dicts impending meals sufficiently to be potentially causal, and
experimental induction of the decline in glucose is reported to
initiate eating (99). The possibility that the premeal decline in
glucose is a component of the anticipatory response to nutrient
ingestion, rather than a signal that induces the meal, however,
has yet to be excluded (100). The hypothesis that changes in
blood glucose concentrations participate in normal meal initia-
tion, therefore, requires further study.

Available data do not support the concept that the rate of CNS
glucose utilization plays a major role in long-term body weight
regulation. First, neither the fasting plasma glucose concentra-
tion nor the rate of whole-body glucose utilization vary with dif-
ferences in body adiposity in normal humans (101, 102). These
indexes are therefore unlikely to convey afferent information
related to fuel stores. Moreover, whereas chronic intravenous
glucose infusion suppresses food intake in normal animals,
hyperglycemia occurring in insulin-deficient diabetes mellitus is
associated with hyperphagia. An alternative explanation that
accounts for these disparate observations is that the relation
between changes in blood glucose concentrations and CNS con-
trol of energy homeostasis arise from associated changes in cir-
culating concentrations of insulin, leptin, and glucocorticoids,
rather than via altered glucose utilization per se.

Gastrointestinal peptides as satiety factors

Nutrient ingestion stimulates secretion into the bloodstream
of numerous gastroenteropancreatic hormones, which helps to
coordinate the digestive functions that process a meal. The cen-
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tral role of gastroenteropancreatic hormones in digestion led to
the hypothesis that a subset of these hormones also participates
in the control of satiety. To date, many peptide hormones
secreted by the gut have been shown to decrease meal size, and
an important physiologic role has been suggested for the peptide
cholecystokinin in the control of meal size.

In 1973, Gibbs et al (103) reported that intraperitoneal injec-
tion of cholecystokinin reduces meal size in rats. The observa-
tion that administration of cholecystokinin intraperitoneally is
more effective than intravenous administration (104) suggests
that targets within the abdominal cavity are important for chole-
cystokinin-induced satiety. Subsequently, it was found that the
vagus nerve, which conveys parasympathetic activity to and fro
between the brain and the gut, is a target for cholecystokinin’s
effects on feeding. The mechanism by which cholecystokinin
promotes satiety is hypothesized to involve both inhibition of
gastric emptying (105, 106), which stimulates vagal afferents
sensitive to gastric distention, and direct activation of vagal
afferent fibers that terminate in the brainstem. Evidence to sup-
port the latter mechanism includes the finding that cholecys-
tokinin receptors are present on afferent vagus nerve fibers and
that the satiety effect of peripherally administered cholecys-
tokinin requires an intact abdominal vagus nerve (107, 108).
Gastric vagal afferents that are responsive to cholecystokinin
(109) terminate on cell bodies in the nucleus tractus solitarius
(110), the primary brain area for processing afferent information
from the gastrointestinal tract.

Several aspects of cholecystokinin action exemplify the dis-
tinction between short-term, meal-related factors and long-term
hormonal signals that regulate adiposity. This difference is illus-
trated in a study in which intraperitoneal administration of
cholecystokinin to free-feeding rats before each meal resulted in
a consistent reduction in meal size of <50% (111). Rather than
continuing to lose weight, however, the rats responded to this
challenge by eating these smaller meals about twice as often.
Despite a pronounced change in single meal size; therefore,
overall food intake and body weight were essentially unaffected.
The satiety effect of intraperitoneal cholecystokinin is also
dependent on an intact vagus nerve (108), whereas the mainte-
nance of normal body adiposity is not (90). Short-term signals
such as cholecystokinin, therefore, do not appear to convey input
to the CNS that is critical to the maintenance and defense of the
level of adipose mass. Rather, their effects on energy balance can
be overridden by control mechanisms that operate over long time
intervals to regulate fuel stores.

Implicit in our model of energy homeostasis is a mechanism
for integrating input from short-term, meal-related signals into
the long-term control of energy balance. One hypothesis to
explain this integration is that the response of the brain to short-
term signals is influenced by the prevailing concentration of cir-
culating adiposity signals. This hypothesis is supported by the
observation that satiety induced by intraperitoneal cholecys-
tokinin administration is potentiated by intracerebroventricular
infusion of insulin (112) or systemic injection of leptin (113).
Long-term controllers of energy balance, therefore, may regulate
adipose stores in part by modulating the sensitivity of short-term
signals such as cholecystokinin.

LONG-TERM CONTROLLERS OF ADIPOSITY

In contrast with the diverse nature of short-term signals that

regulate single meal size, long-term signals involved in the con-
trol of adiposity appear to be few in number and to play a highly
specialized role. These hormonal signals not only influence sig-
naling by central effector pathways to favor a particular shift in
energy balance, but they also modulate the sensitivity of the
brain to afferent inputs generated in response to short-term fac-
tors. During weight loss, therefore, a reduced concentration of
long-term adiposity signals is proposed to 1) diminish the effi-
cacy of satiety-inducing inputs, 2) suppress catabolic effector
pathways, and 3) activate anabolic effector pathways. This
highly integrated set of responses to weight loss is proposed to
stimulate feeding and to reduce energy expenditure, thereby
ensuring the recovery of depleted fuel stores (114).

Leptin

The hypothesis that adipocytes secrete an adiposity-related
negative feedback signal was first advanced by Kennedy (13) 46
y ago and the recent discovery of leptin has confirmed this
hypothesis. Evidence supporting a major role for leptin in energy
homeostasis has accumulated rapidly after an initial study (15) in
which the ob gene was cloned and sequenced. The ob gene prod-
uct leptin is a 164-kDa protein that is transcribed in adipocytes
of a variety of species, including humans, and after cleavage of
a signal peptide is secreted into the bloodstream where it circu-
lates at concentrations proportional to body fat mass in rodents
(115, 116) and humans (115, 117–121). Consistent with the
hypothesis that changes in fat mass are transmitted to the CNS
by changes in leptin concentrations, plasma leptin concentra-
tions decrease after weight loss (115, 118) and are strongly cor-
related with leptin concentrations in cerebrospinal fluid (122).

A fundamental observation implicating leptin in body weight
regulation is that leptin deficiency due to a loss-of-function
mutation of the ob gene results in hyperphagia and massive obe-
sity in ob/ob mice (Table 2). The CNS responds to the absence
of leptin as it would to a poverty of fat stores: by increasing food
intake, decreasing energy expenditure, and activating metabolic
responses that promote the deposition of fat. Accordingly, leptin
replacement in ob/ob mice should normalize body weight and
composition and supranormal leptin concentrations achieved by
exogenous administration should reduce fat stores. These pre-
dictions have been confirmed in studies of intravenous (123),
subcutaneous (124), intraperitoneal, (125–130), and intracere-
broventricular leptin administration (124, 125, 131). Complementing
its anorexic effects, leptin also increases energy expenditure and
normalizes the reduced metabolic rate and body temperature
characteristic of ob/ob mice (127). This effect may result from
SNS activation, because intravenous leptin infusion increases
the firing rate of SNS nerves, which innervate muscle, BAT, kid-
ney, and adrenal gland in anesthetized rats (132).

As occurs in mice, genetic leptin deficiency in humans is
associated with profound hyperphagia and weight gain (133),
and mutation of the leptin receptor is also accompanied by
severe obesity in humans (134). Although impaired leptin sig-
naling is probably a rare cause of human obesity, these data sup-
port the hypothesis that leptin plays a critical role in human body
weight regulation. Abnormal neuroendocrine function accompa-
nies mutation of the leptin receptor in humans, suggesting an
important role for leptin in endocrine regulation as well as in
energy homeostasis. Consistent with this hypothesis, female
ob/ob and db/db mice are infertile because of hypothalamic
hypogonadism. When treated with leptin, normal reproductive
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function is restored to female ob/ob mice (135, 136), an effect
that cannot be reproduced by weight loss alone. Similarly, leptin
treatment of male ob/ob mice elevates follicle-stimulating hor-
mone concentrations and increases testicular and seminal vesicle
mass, which improves fertility (136). The finding that the effect
of fasting in normal mice—suppression of the gonadotrophic,
thyroid, and hypothalamic-pituitary-adrenal axes—is attenuated
by leptin administration (137) suggests that leptin deficiency is
a key mediator of these responses. Flier (138) has argued
cogently that a falling leptin concentration is an important signal
to the brain that body fuel stores are threatened and is therefore
a key aspect of leptin’s evolutionary function in humans.

Leptin also appears to be important for normal glucose home-
ostasis because leptin administration ameliorates the obesity-
associated hyperinsulinemia and hyperglycemia of ob/ob mice
(127). Leptin administration inhibits hepatic glycogenolysis in
normal rats, an effect that is accompanied by increased fat oxi-
dation in the liver (139). Leptin is also reported to inhibit insulin
secretion via a direct effect on b cells (140). Although these
studies are provocative, the importance of leptin in glucose
homeostasis in normal animals remains uncertain.

Leptin targets

The finding that food intake and body weight are reduced by
low doses of leptin administered into the cerebroventricular sys-
tem of mice (124, 125, 141) and rats (131) suggests that its
metabolic and feeding effects are mediated in the brain. Consis-
tent with this hypothesis, leptin is present in human cere-
brospinal fluid in concentrations that are strongly correlated
with plasma leptin concentrations (122), and leptin receptors
(also termed OB-R) are present in various brain regions includ-
ing the hypothalamus (34, 142, 143). There are ≥6 splice vari-
ants of the leptin receptor (142), only 1 of which (OB-Rb) is
abundantly and preferentially expressed in the hypothalamus.
This long form of the leptin receptor is strongly implicated in
leptin signal transduction because it contains an intracellular
domain with homology to receptors of the cytokine family that
appears to mediate intracellular leptin signaling via the Janus
kinase—signal transducers and activators (JAK-STAT) of the
transcription pathway to control gene transcription (144). The
observation that OB-Rb is abnormally spliced in mice homozy-
gous for the db mutation (db/db mice) (142), which are pheno-
typically identical to ob/ob mice on the same strain background
(145), established an important role for the long form of the lep-
tin receptor in body weight regulation (Table 2).

The finding that both ob/ob and db/db mice have an elevated
expression of OB/Rb in the arcuate nucleus (146) suggests that
leptin itself may participate in the control of hypothalamic leptin
receptor gene expression. Similarly, fasting in normal rats is
associated with a sharp decrease in leptin concentrations and
with increased OB-Rb mRNA concentrations in the arcuate
nucleus. Because ob/ob mice have increased sensitivity to the
anorexic effects of leptin, changes in hypothalamic leptin recep-
tor expression are one factor that may help to explain genetic or
acquired differences in leptin responsiveness.

Both ob/ob and db/db mice overexpress the NPY gene in the
arcuate nucleus (39, 40). Because prolonged administration of
NPY into rodents elicits behavioral, autonomic, and metabolic
responses characteristic of ob/ob and db/db mice [eg, hyperpha-
gia, reduced energy expenditure, obesity, hyperglycemia, hyper-
insulinemia, hypercortisolemia, and hypogonadism (23, 24,

147)], overproduction of hypothalamic NPY in these mice may
contribute to their obesity syndrome. If leptin deficiency is the
cause of overexpression of hypothalamic NPY in ob/ob mice,
then leptin administration should attenuate NPY gene expression
in ob/ob mice, but not in db/db mice. These predictions have
been confirmed (124, 148). Evidence that NPY plays a crucial
role in the pathogenesis of obesity in ob/ob mice was provided
in a study in which NPY knockout mice were crossed into the
ob/ob genotype (130) to create leptin-deficient mice that lack
NPY; these mice have an attenuated obesity syndrome (by
<50%). Thus, NPY is required for the complete response to lep-
tin deficiency. This dependence of obesity in leptin-deficient
mice on NPY signaling does not appear to involve the Y5 recep-
tor because obesity is not attenuated in ob/ob mice lacking this
receptor subtype (47).

It is becoming increasingly clear, however, that NPY is but
one of many hypothalamic systems that responds to leptin in the
regulation of energy balance. Pathways that stimulate food
intake and promote weight gain (eg, NPY, MCH, AgRP, and
orexins) appear to be inhibited by leptin, activated during fast-
ing, or both, whereas those pathways that promote anorexia and
weight loss (eg, melanocortins, CART, thyrotropin-releasing
hormone, and CRH) are stimulated by leptin. Thus, a highly inte-
grated and redundant system of neuronal pathways appears to
mediate the CNS response to a change in leptin signaling.

Regulation of ob gene expression and leptin secretion

In rodents, weight loss reduces both adipocyte ob gene
expression and circulating leptin concentrations (115, 116,
149–152) and refeeding rapidly normalizes ob mRNA concen-
trations (149). Ob gene expression is elevated in most rodent
models of obesity, including fa/fa obese Zucker rats (153), rats
and mice with VMN lesions (116, 154), yellow obese (Ay) mice
(150), mice with transgenic BAT deficiency (116), mice with
knockout of the MC4 receptor (55), and mice with diet-induced
obesity (125, 150, 155). Thus, excessive deposition of body fat
elicits the expected increase in circulating leptin, an observation
that raises the possibility that resistance to leptin may accom-
pany most forms of rodent obesity.

Concentrations of plasma leptin and adipocyte ob mRNA in
humans also decrease with weight loss (115, 118) and increase
with weight gain (115). Interestingly, one study (118) found that
a diet-induced reduction of 10% of body weight was associated
with a 53% reduction in serum leptin concentrations when meas-
ured during the end of the weight-loss period, but that leptin con-
centrations tended to increase during the weight-maintenance
period, despite no change in weight. This observation suggests
that, in addition to the level of fat stores, leptin secretion is sen-
sitive to changes in energy balance (156).

In humans, leptin concentrations do not change acutely with
meal consumption and do not fluctuate with acute changes in
endogenous insulin or glucose concentrations (117). Leptin,
therefore, is not a satiety signal. Rather, circulating leptin con-
centrations exhibit a circadian rhythm in human subjects, being
highest around midnight and lowest around noon (117). In con-
trast, mRNA concentrations in ob rats increase sharply during
the dark phase when rats are actively eating and are lowest dur-
ing the light phase (149); a similar pattern was reported for
plasma leptin concentrations in mice (137). The mechanisms
underlying the circadian leptin rhythm and the differences in this
rhythm between rodents and humans remain unknown.
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Insulin may participate in the control of leptin secretion. In
rodents, ob gene expression increases after insulin administration,
both without (149, 150) and with (150, 152) concomitant infu-
sions of glucose. Insulin also exerts direct effects on adipocyte
leptin synthesis and secretion (157, 158). In humans, however,
short-term (up to 5 h) hyperinsulinemic, euglycemic, and hyper-
glycemic clamps do not stimulate increases in circulating leptin
(120, 121), although leptin concentrations do increase during
more prolonged insulin infusion (120). Glucocorticoids may also
increase ob gene expression and leptin secretion from adipocytes
(158, 159). However, a physiologic role for glucocorticoids in the
control of leptin production has yet to be shown. Indeed, fasting
(149, 150) and uncontrolled diabetes (160) reliably lower ob gene
expression and leptin secretion despite increased circulating glu-
cocorticoid concentrations (35). If glucocorticoids do stimulate
leptin secretion, therefore, this effect can be overridden by other
factors during conditions such as fasting.

Role of insulin signaling in the CNS

Like leptin concentrations, plasma insulin concentrations vary
in proportion to body adiposity (10, 101, 102, 161). The hypoth-
esis that insulin secreted from the pancreas enters the CNS,
where it acts as a humoral feedback regulator of food intake and
energy balance (14), was first supported by the observation that
chronic intracerebroventricular insulin administration in
baboons caused a dose-dependent reduction in food intake and
body weight (162). This finding was subsequently confirmed in
rats (31, 163, 164), sheep (165), and marmots (166). Insulin
receptors (52) and related intracellular signaling molecules such
as insulin receptor substrate 1, which are concentrated in hypo-
thalamic areas such as the arcuate nucleus (167), may mediate
insulin’s effects on food intake. Circulating insulin enters the
CNS after intravenous infusion (162, 168–172) via a saturable
transport mechanism (173). The kinetics of this process are con-
sistent with transport mediated via insulin receptors (173)
expressed on the luminal surface of brain microvessels (174).
The efficiency of transport via the BBB insulin receptor is suffi-
ciently high that it has been used as a mechanism for delivery of
protein pharmaceuticals that do not otherwise enter the brain.
According to this strategy, the protein of interest is conjugated to
an insulin receptor antibody, which greatly increases its transport
across the BBB receptor in a primate model (175).

During systemic infusion, insulin’s effects in the CNS to promote
a state of negative energy balance are opposed by potent anabolic
effects exerted in peripheral tissues. This is particularly evident in
the treatment of uncontrolled insulin-dependent diabetes, whereby
the normalization of blood glucose concentrations with insulin
treatment causes weight gain despite reduced food intake (176). The
potential for systemic insulin administration to cause weight gain
contrasts sharply with the weight loss associated with central insulin
infusion, even in rats with uncontrolled diabetes (31).

One mechanism by which insulin may participate in energy
homeostasis is via its effect to inhibit hypothalamic expression
of NPY (26, 31). Central insulin infusion also potentiates the
satiety effect of peripherally administered cholecystokinin (112,
177). Elevated brain insulin concentrations may therefore pro-
mote a state of negative energy balance both by inhibiting ana-
bolic effector pathways (eg, NPY) and by increasing sensitivity
to peripheral satiety signals such as cholecystokinin.

GLUCOCORTICOID SIGNALING IN THE CNS

In peripheral tissues, glucocorticoids exert catabolic actions that
promote the loss of lean body mass. In contrast, the effects of glu-
cocorticoids on the CNS tend to be anabolic in the sense that they
increase food intake and promote a state of positive energy bal-
ance. Consistent with this view, glucocorticoid deficiency induced
by adrenalectomy causes anorexia and weight loss (an effect that is
pronounced in most rodent forms of obesity) and these effects are
reversed by glucocorticoid replacement. However, glucocorticoid
excess per se does not cause a dose-dependent increase in food
intake or body weight in normal animals. One potential explanation
for this observation is that glucocorticoids have actions in the CNS
that oppose those of insulin and leptin. Because glucocorticoid
administration increases circulating insulin and leptin concentra-
tions, any CNS action of systemically administered glucocorticoids
to increase energy balance may be opposed by increased negative
feedback signaling to the brain (35, 36, 178).

Because circulating glucocorticoid concentrations are sensitive
to factors other than adiposity and energy balance (eg, stress), we
do not view glucocorticoids as adiposity-related negative feed-
back signals. Rather, glucocorticoids appear to antagonize the
CNS response to insulin and leptin and thereby promote a state of
positive energy balance. Thus, the anorexic response to intracere-
broventricular leptin (75) or insulin (179) is potentiated by adrena-
lectomy in rats, and this effect is reversed by glucocorticoid
replacement. Furthermore, leptin and insulin inhibit hypothalamic
NPY and leptin stimulates hypothalamic CRH gene expression
(34), whereas glucocorticoids exert the opposite effects (17, 35,
180). These observations suggest that interactions of leptin,
insulin, and glucocorticoids at the level of central effector path-
ways may play an important role in energy homeostasis.

CONCLUSIONS

In summary, our model of energy homeostasis proposes that
long-term adiposity-related signals such as insulin and leptin influ-
ence the neuronal activity of central effector pathways that serve as
controllers of energy balance. Because these hormones circulate at
concentrations that are proportionate to fat mass and energy bal-
ance, a change in body fat stores sufficient to alter the delivery of
these hormones to the brain induces central effector pathway
responses that promote the return of adiposity to its original value.
Superimposed on this long-acting control system are short-term sit-
uational and meal-related signals that arise from many sources,
including the gastrointestinal tract, the environment, and higher
centers in the brain. Although these inputs can exert potent effects
on meal initiation, meal size, and meal frequency, their effect on
body fat content is limited by compensatory changes in the level of
adiposity signals. Through this mechanism, body fuel stored in the
form of adipose tissue tends to remain constant despite short-term
mismatches in energy balance.
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