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1. Introduction

Decision theories are theories of instrumentabretiity: they formalize constraints of
consistency between rational agents’ ends and damsithey take to arrive at these ends. We caelmod
the possible actions an agent might take eaclgasale whose outcomes depend on the state of the
world: for example, the action of not bringing anhrella is a gamble that results in getting wétridins
and staying dry if it doesn’t. Decision theoryqea constraints on the structure of rational agents
preferences among the actions available to themaana result, can represent the beliefs and dedfire
any agent who meets these constraints by precisenizal values.

The prevailing view is thafubjective expected utility theory, which dictates that agents prefer
gambles with the highest expected utility, is tberect theory of practical rationality. That isbgective
expected utility theory (hereafter, EU theory)ieught to characterize the preferences of all matio
decision makers. And yet, there are some prefesetiat violate EU theory that seem both intuitivel
appealing and prima facie consistent. An importgatp of these preferences stem from how ordinary
decision makers take risk into account: ordinarmgisien makers seem to care about “global” propertie
of gambles, but EU theory rules out their doing so.

If one is sympathetic to the general aim of deaiskeory, there are three potential lines of
response to the fact that EU theory does not caphar way that many people take risk into accourgnw
forming preferences among gambles. The first daom that contrary to initial appearances, expect
utility theory can represent agents who care aglmidal properties, by re-describing the outcomas th
agents face. The second response is to clainwtiiEe many people care about global properties (and
that these patterns of preferences cannot be mezsby the theory), these people are simply not
rational in doing so. | think that neither of theesponses can succeed. | advocate a third espon
modifying our normative theory to broaden the raofjetionally permissible preferences. In patacu
| advocate broadening the set of attitudes towastithat count as rationally permissible. Althbug
won't directly argue against the first two respandermulating an alternative will be important to
evaluating them, since we need to know what ité agents are doing when they systematically tdola
EU theory. In this paper, | will explain my altative theory, and | will in particular explain haoidoes
a better job at explicating the components of umantal rationality than does EU theory.

2. Risk, EU Theory, and Practical Rationality
| begin by briefly explaining subjective expectadity theory; explaining how it must analyze
the phenomenon of risk aversion; and showing that esult, EU theory cannot capture certain



preferences that many people have. | will themi@athat this problem arises for EU theory because i
neglects an important component of practical ration

EU theory says that rational agents maximize exaegtility: they prefer the act with the highest
mathematical expectation of utility, relative teithutility and credence functions. So if we thiofkan
act as a gamble that yields a particular outconzeparticular state of the world—for example, g&s.{

Ei; Oy B ... ; O, Ej} is the act that yield®; if E; is true, for each—then the value of this act is:
n
> P(E)u(O)

EU(g) ==
If an agent (weakly) prefers f to g, then EU(f)=} EU(g). So utility and credence are linked toonadl
preferences in the following way: if we know whatagent’s utility function and credence functioe,ar
we can say what she ought to prefer. They arelialsed in another way that will be of central irgst in
this paper: if we know an agent’s preferences,ifiigse preferences conform to the axioms of EU
theory, then we can determine her credence funatidguely and her utility function up to positiviiae
transformatior!:we can represent her as an expected utility maeimelative to a some particular p and
u. ltis crucial for the EU theorist that the nefnces of all rational agents can be representiksi
way.

It is uncontroversial that many people’s prefeesndisplay risk aversion in the following sense:
an individual would rather have $50 than a faindtip between $0 and $100, and, in general, would
prefer to receive #rather than to receive a gamble betweear®l § that will yield $ on averagé. If
the agent is representable as an EU maximizer,itimenst be that u($50) — u($0) > u($100) — u($50),
i.e., that getting the first $50 makes more ofiétyidifference than getting the second $50 dokkre

generally, her utility function in money must dirish marginally:

Diminishing Marginal Utilities
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Diagram 1: Diminishing Marginal Utility
And vice versa: when a utility function is concaaejsky gamble (say, the fair coin-flip betweenab(@l
$100) will always have an expected utility thaleiss than the utility of its expected dollar va{$80)3

On EU theory, then, aversion to risk is equivaterdiminishing marginal utility.



Intuitively, though, there are two different psgtbgical phenomena that could give rise to risk-
averse behavior. On the one hand, how much onesadditional amounts of money might diminish
the more money one has. As an extreme case ptthnisider Alice, who needs exactly $50 for a bus
ticket, and doesn’t have much to buy beyond tiat.the other hand, one might value small amounts of
money linearly, but care about other propertiethefgamble besides its average utility value: for
example, the minimum value it might yield, the nmxm, or the spread of possible outcomes. In other
words, one might be sensitivedtmbal properties. Consider Bob, who gets as much pleasure ouneof t
first $50 as the second, but would rather guaramtaself $50 than risk having nothing for the pbaiy
of $100. Both Alice and Bob prefer $50 to the effiin, and the EU theorist must interpret both ageas
having a non-linear utility function, on the basfghis preference.

What is the relationship between an agent’s psydyolhe utility function that is derived from
her preferences? There are two views about thitherealistic picture, the utility function corresponds
to something “in the head": it is a measure of uch an agent desires or prefers something or the
degree of satisfaction that having it could brirg; hhat is, it represents some pre-existing vitlaethe
agent has. So for the realist, EU theory will henisinterpreted Bob, since Bob’s strength of defsire
money is linear.

On theconstructivist picture, which seems to have more widespread sad@nt among
contemporary philosophetshe utility function is not meant to measure sitérof preference, or
goodness, or any quantity that exists independémtlye head or in the world. The constructivighks
that we cannot give any independent content taethesions. Ultility is instead a theoretical counstr
from preferences: it is the quantity whose math@abéxpectation an agent maximizes. So the
constructivist won't necessarily care about thenigeeasons for the preferences she has. However,
these reasons will turn out to matter, becaudeeiformalist EU theorist misses an important fécia
the agent’s psychology, then although he will ble &d» explain an isolated preference (like thati0
over the $0/$100 coin-flip), his explanation wilramit the agent to having preferences that she oies

in fact have and will therefore fail to represeat.h

Matthew Rabin presents a “calibration theorem”tovg that in order to describe the preferences
of decision makers that display risk aversion irdegi-stakes gambles, EU theory is committed tordbsu
conclusions about preferences between gambles thhkesiakes are higher (absurd in the sense that no
one actually has these preferneces). As mentidtiddheory must interpret modest stakes risk-agarsi
as entailing a concave utility function. Rabirgsults assume nothing about the utility functiocegxt
that it continues to be concave in higher staked,s® doesn't, for example, have an inflection poin

above which it increases marginally. Here are sexaenples of the sorts of conclusions EU theory is



committed t@. If an agent prefers not to take a fair coin-Batween losing $100 and gaining $110 (that
is, if she prefers a sure-thing $0 to the coin}fliegardless of her initial wealth level, then shést also
prefer not to take a coin-flip between losing $0,@0d gainingny amount of money. Similarly, if an
agent prefers not to take a coin-flip between lg$ifh,000 and gaining $1050 for any initial weaétadl,
then she will also prefer not to take a coin-flggween losing $20,000 and gaining any amount ofayon
Furthermore, if an agent prefers not to take a-figirbetween losing $100 and gaining $105 as lasg
her lifetime wealth is less than $350,000, themfiam initial wealth level of $340,000, she willur
down a coin-flip between losing $4,000 and gair$685,670. In other words, she will prefer a sure-
thing $340,000 to the gamble {$339,600, 0.5; $978,®8.5)°

Rabin’s results are problematic for both the st@&ind constructivist EU theorist: if most people
have the modest-stakes preferences but lack thesiadres preferences that ‘follow’ from them, tienh
theory with a diminishing marginal utility functiomill fail to represent most people. In case thader is
worried that Rabin’s results rely on knowing adbthe agent’s preferences, there are also examples
preferences that EU theory (under either interfimtacannot account for that involve very few
preferences. One example is Allais’s famous pata@@onsider Maurice, who is presented with two
hypothetical choices, each between two gambles. is first asked whether he would rather hayerL
L,:

L.: $5,000,000 with probability 0.1, $0 otherwise.

L,: $1,000,000 with probability 0.11, $0 otherwise.
He reasons that the minimum he stands to walk avittyis the same either way, and there’'s not much
difference in his chances of winnisgme money. So, sincejlyields much higher winnings at only
slightly lower odds, he decides he would ratherehav He is then asked whether he would rather have
Lsor L

Ls: $1,000,000 with probability 0.89, $5,000,000 wittobability 0.1, $0 otherwise.

L,: $1,000,000 with probability 1.
He reasons that the minimum amount that he standitin L, is a great deal higher than the minimum
amount he stands to win in,Lland that althoughslcomes with the possibility of much higher winnings
this fact is not enough to offset the possibilitxcboosing Iz and ending up with nothing. So he decides
he would rather have,L. Most people, like Maurice, prefei to L, and L, to Ls. However, there is no
way to assign utility values to $0, $1m, and $5chstihhat Ly has a higher expected utility thapdnd Ly
has a higher expected utility thapdnd therefore these preferences cannot be repedsen maximizing
expected utility’ Allais’s example does not require any assumptab@it an agent’s psychology — it
relies only on the agent having the two preferemsestioned — and so again presents a problem for bo

the realist and the constructivist EU theorist.



Most people have preferences like those that #\laid Rabin show cannot be captured by EU
theory; and there are many other examples of meées that EU theory cannot capture. The reason EU
theory fails to capture the preferences in the Rahd Allais examples is that it fails to separaie
different sorts of reasons for risk averse prefegsnlocal considerations about outcomes, likeetlloat
Alice advanced in order to determine that she pse$80 (“this particular amount of money is more
valuable...”) and global considerations about gamatea whole, like those that Bob advanced in order
to determine that he prefers $50 (“I would rathegharanteed $50 than risk getting less for the
possibility of getting more”).

Why would an agent find this second kind of coasation relevant to decision making? Let us
examine the idea that decision theory formalizes@ecisifies means-ends rationality. We are presk
with an agent who wants some particular end andachieve that end through a particular means. Or,
more precisely, with an agent who is faced witlh@i@e among means that lead to different ends,twhic
he values to different degrees. To figure out vbato, the agent must make a judgment about which
ends he cares about, and how much: this is whattilitg function capture$. In typical cases, none of
the means available to the agent will lead withasety some particular end, so he must also make a
judgment about the likely result of each of hisgible actions. This judgment is captured by the
subjective probability function. Expected utilityeory makes precise these two components of means-
ends reasoning: how much one values various endsyhich courses of action are likely to realizeskn
ends.

But this can't be the whole story: what we've ssidfar is not enough for an agent to reason to a
unique decision, and so we can’t have capturetthatlis relevant to decision making. An agent rlgh
faced with a choice between one action that gueesrthat he will get something he desires somewhat
and another action that might lead to somethingtimngly desires, but which is by no means guaeshte
to do so.Knowing how much he values the various ends involdeand how likely each act is to lead
to each end is not enough to determine what the agteshould do in these cases: the agent must
make a judgment not only about how much he cares alt particular ends, and how effective his
actions will be in realizingeach of these ends, but about which sort aftrategy to take towards
realizing his endsas a whole: how to structure the realization of his aims. This involves deciding
whether to prioritize definitely ending up with sething of some value or instead to prioritize plolysi
ending up with something of extraordinarily higHue and by how much: specifically, he must decide
the extent to which he is generally willing to aocthe risk of something worse in exchange for the
possibility of something better. This judgmentresponds to considering global or structural priper

of gambles.



How should an agent trade off the fact that onens@dll realize some end for sure against the
fact that another means has some small possibflitgalizing some different end that he cares about
more? This question won't be answered by conguttie probabilities of states or the utilities ofis.
Two agents could attach the very same values taioends (various sums of money, say), and they
could have the same beliefs about how likely vagimeans are to achieve their ends. And yet, ometag
might think his preferred strategy for generallififiing his desires involves taking a gamble thais a
small chance of a very high payoff, whereas therathight think that he can more effectively achieve
this same general goal by taking a gamble with a high chance of a modgray®ff. Knowing they can
only achieve some of their aims, these agents tvavelifferent ways to structure the realizatior{sme
of) these aims.

This dimension of instrumental reasoning is theatision of evaluation that standard decision
theory has ignored. To be precise, it hasn't igdat but rather supposed that there is a singtecb
answer for all rational agents: one ought to takt@as that have higher utility on average, regessliof
the spread of possibilities. There may or maytmotjood arguments for this, but we are not in &ipas
to address them before we get clear on what exagénts are doing when they answer the question

differently, and how this relates to practical @m@ag. The aim of this paper is to make this clear

3. An Alternative Theory

To explain the alternative theory of instrumengdlanality | endorse, | will start with the case of
gambles with only two outcomes: gambles of the fé@mif E, O, if ~E}. As mentioned, the EU of such
a gamble is p(E)u(® + p(~E)u(Q). We can state this equivalently as £(® p(E)[u(Q) — u(Q)].

Taking G to be the less (or equally) desirable outcoms,ghi/s that EU is calculated by taking the
minimum utility value the gamble might yield, andding to it the potential gain above the minimuhe(t
difference between the high value and the low Jalreighted by the probability of receiving thatrga
For example, the value of the $0/$100 coin-flipl & u($0) + (0.5)[u($100) — u($0)].

Again, this implies that while it is up to agetiiemselves how valuable each outcome is and how
likely they believe each state is to obtain, theseevaluations are of set significance to the alealue
of a gamble. If two decision makers agree on #lges of various outcomes and on the probabilities
involved, they must evaluate gambles in exactlysdmae way: their preference ordering must be exactl
the same. However, it is plausible to think trahe people might be more cautious (or prudent) than
others, again, for purely instrumental reasonsabse they think that guaranteeing themselves samgeth
of moderate value is a better strategy for satigfyheir general aims of getting some of the thihgs
they value than is making a very high amount (ny@nebssible. More realistically, the minimum value

won't always trump the maximum in their consideras, but it will weigh more heavily. Or,



alternatively, an agent might be incautious: thesfality of the gamble yielding the maximum will
weigh more heavily in the estimation of its valban its minimum will, even if these two outcomes ar
equally likely. So, it is plausible that two agemtho attach the same value as each other to $iDH0
will not both attach the same value to the coip-flThe cautious agent will take the fact that &g &

50% chance of winning the better prize to be a weaknsideration than it is for the incautious agen
Thus, in addition to having different attitudes tds outcomes, and different evaluations of lilamidts,
two agents might have different attitudes towardgsof potentially attaining some of these outcames

In EU theory, the potential gain above the minimameighted by the probability of realizing
that gain. But this is too restrictive: a potehgiain over the minimurmight improve a gamble by the
size of the gain multiplied by the probability @ceiving that gain, but it might instead improvbyit
more or by less, depending on the agent’s stretagyalizing his aims. Of course, the probabitityd
the size of the improvement will be relevant: sqradicular probability of a larger gain rather thean
smaller gain will be better, and the higher thebahility of some particular gain, the better. Tfere, |
propose that the possibility of a potential gaiermthe minimum improves the gamble above its
minimum value by the size of the gain multiplieddfynction of the probability of realizing that gain,
instead of by its bare probability. This functimeasures the agent’s attitude towards risk in ghebal
properties” sense: it measures how an agent tak@account the possibility of doing better tham th
worst-case scenario. So the value of a two-outageneble will be its low value plus the interval
between the low value and the high value, weigbied function of the probability of getting the hig
value. Put formally, we might calculate thek-weighted expected utility (REU) of a gamble {Qif E, O,
if ~E}, where u(Q) < u(0,), to be u(Q) + r(p(E)[u(O,) — u(Q)], where r is the agent’s “risk function” or
“weighting function,” adhering to the constrain(®)r= 0, r(1) = 1, r is non-decreasing, and fp)< 1
for all p.

Note that this is equivalent to r(p(E))WG (1 — r(p(E))u(®). So if the function has a high
value for some p, then the value of the betteratwill count for a lot in the agent’s evaluatifrthe
gamble, and if it has a low value for some p, ttienvalue of the worse outcome will count for a lot
This formulation also makes it clear how an ageewaluation of gambles rests on factors that are
irreducibly global: the amount by which each outeagets weighted will depend on which outcome is
the minimum?°

For example, for an agent who values money ligeartl has a risk function of r(p) 2, phe
coin-flip will be worth $25: u({$0, HEADS; $100, TIARS}) = u($0) + (0.5[u($100) — u($0)] = u($25).



Diagram 2: Sample Risk Function: r(p) = p?

And here we come to the crux of the difference ketmthe psychological state that the standard
theory thinks is properly called risk aversion aimel psychological state that | think merits thernte©On
EU theory, to be risk averseis to have a concave utility function. On atheory like mine, to be risk averse
isto have a convex risk function.** The intuition behind the diminishing marginallityianalysis of risk
aversion was that adding money to an outcome lssgfvalue the more money it already containshair t
getting an additional good is of less value if already has some other good. The intuition behigd
analysis of risk aversion is that addipgbability to an outcome is of more value the more likelyt tha
outcome already is to obtain. Risk averters prieféget to certainty,” so to speak. Of courseatties
like mine allow that the utility function is conoayor, indeed, any shape). But | claim that thatdre,
which describes how an agent evaluates outcombs, gpart from his attitude towards risk properly
called. So | claim that what we might appropriaéscribe as an agent’s attitude towards risk is
captured by the shape of his risk function.

There is a natural way to extend this theory tolgamwith more than two possible outcomes.
The way I've set up the risk-weighted expectedtytdquation emphasizes that an agent considers his
possible gain above the minimum (the interval betwhe low outcome and the high outcome), and
weights that gain by a factor which is a functidnhe probability of obtaining it, a function thé¢pends
on how he regards risk. Now consider a situatiowhich a gamble might result in onerndre than two
possible outcomes. It seems natural that he stoausider the possible gain between each neigtdporin
pair of outcomes and his chance of arriving atlgder outcome or better, and, again, subjectively
determine how much that chance of getting sometbhétter adds to the value of the gamble.

One way to state the value of a gamble with maae tivo outcomes for a standard EU
maximizer is as follows. Start with the minimumuea Next, add the interval difference between this
value and the next highest value, weighted by tbbability of getting at least that higher valughen
add the interval difference between this valuethrchext highest value, weighted by the probabilfty
getting at leadthat value. And so forth. Just as we replaced subggrobabilities by subjective

weights of subjective probabilities in the two-cutte case, we can do so in this case. So the ghhie



gamble for the REU maximizer will be determinedfbjowing this same procedure but instead
weighting by a function of the probability at egahcture.

For example, consider the gamble that yields $h pibbability %2, $2 with probability ¥4, and $4
with probability ¥2. The agent will get at leastf®i certain, and he has a % probability of malahtpast
$1 more. Furthermore, he has a % probability dfingpat least $2 beyoritiat. So the REU of the
gamble will be u($1) + r(*2)[u($2) — u($1)] + r(V4p4) — u($2)].

So the gamble g = {Qf E;; O, if Ey; ... ; O, if E}, where u(Q) < ... < u(Q,), is valued under

expected utility theory as aE p(E; )u(Q,) , which is equivalent to:

EU(9) =
u(G,) + (i P(E )(U(O,) —u(G,)) + (i‘, P(E))(U(O;) —u(G,)) +...+ p(E,)(u(G,) —u(0,,))

And that same gamble will be valued under risk-Wwidd expected utility theory as follows:
REU(g) =

u(G,) + f(i P(E )(U(O,) —u(G,)) + f(i P(E))U(O;) —u(0,)) +...+ 1 (p(E,))U(O,) —u(O,,))

We can now see how the standard Allais prefereameesaptured by REU theory: they maximize risk-
weighted expected utility only if r is convé.

This functional form mirrors the “rank-dependengipeoach in non-expected utility theories
discovered by economists around the 1980s, in whielagent maximizes a sum of utility values of
outcomes, weighted by a factor that is relatedhéoprobability of that outcome but that dependshen
outcome’s rank among possible outcomes. In pdatictwo of these theories are formally equivatent
REU theory when we abstract away from what thegijhting factor” is a function of. The first is
Choquet expected utility (CEU), due to David Schdtegiand ltzhak Gilbo& and the second is
anticipated utility (AU), due to John Quiggih.However, CEU employs a weighting function of eat
not of probabilitieof states: it does not include an agent’s judgmabtaut probabilities at all. Indeed, it
is meant to apply to decision making under unaetgain which agents do not always have sharp
probability judgments> AU does attach decision weights to probabilities, it uses an “objective”
probability function: it takes the probabilitiesgisen. My formulation allows that an agent atexh
subjective probabilities to states and then empdoyighting function of these probabilities. Tisis
crucial for philosophers working in decision theasince philosophers are particularly interested

extracting beliefs (as well as desires) from pesiees?
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If we set r(p) = p, we get the standard subjeatiygected utility equation. And again, for agents
who are cautious — agents with convex r-functiottse—possibility of getting higher than the minimum
will improve the value of the gamble less thaniit fer the expected utility maximizer. The most
extreme case of this is the maximinimizer, who $yntakes the gamble with the highest minimum. He
can be represented using r(p) = {0 4, 1 if p = 1}. And for agents who are incauticuagents with
concave r-functions — the possibility of gettingher than the minimum will improve the value of the
gamble more. The maximaximizer, who takes the damvtih the highest maximum, can be represented
using r(p) ={0if p =0, 1if p£ 0}. The REU equation also ensures that the veli'egamble is always
at least its minimum and at most its maximum, aimte r is hon-decreasing, that improving the
probability of getting a good outcome will neverkaa gamble worse (preferences respect weak
stochastic dominance).

What ingredient of instrumental rationality dobe tisk function represent? The utility function
is traditionally supposed to represent desire,thagrobability function belief — both familiar
propositional attitudes. We try to make beliefs tlie world,” and we try to make the world fit our
desires. But the risk function is neither of thésags: it does not quantify how we see the werld
does not, for example, measure the strength ofjants belief that things will go well or poorlyrfaim
—and it does not describe how we would like theldvio be. It is not a belief about how much risie
should tolerate, nor is it a desire for more os lesk. The risk function corresponds to neithalidfs nor
desires. Instead, it measures how an agent stesctite realization of his aims. (We will seehia hext
section exactly how it does this.)

Thus the agent subjectively determitieree things: which ends he wants, how likely various
actions are to lead to various ends, and the etdamhich he is generally willing to accept thekrisf
something worse in exchange for the possibilitgahething better. First, like the standard theBig)
theory allows agents to attach subjective valuesitoomes. It is up to agents themselves to chibese
ends, and hence, my theory includes a subjectility fiinction, which is not necessarily linear in
money. Second, also like the standard theorjloitva them to assess the probability of some paleiic
act leading to some particular result, and hengetheory includes a subjective probability function
Third, unlike the standard theory, it allows them to subjectiyetige which sorts of means are more
effective at fulfilling their ends as a whole.altows them to judge which gamble better realibes taim
of getting more money (which includes their patéciends of, say, getting $50 or, perhaps better by
twice, getting $100). It is up to them whetherythéll better fulfill their goals by guaranteeing
themselves a high minimum or by allowing themsethespossibility of some high maximum. And it is

up to them how these two features of gambles tfide.g., how much possibly doing better than the
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minimum is worth. Hence, my theory includes a satiye risk function, which is not necessarily hne
in probability.

To put this point another way: every agent hagefsgldesires, and a norm for translating these
two things into preferences. EU theory assumésx{pis the correct norm. But | claim that justthere
may be no uniquely correct utility function (in thgirit of Hume, as long as one is consistent,aare

have any preferences one wants), | claim that tiseakso no uniquely correct norm for rational agen

4. From Preferences to Beliefs and Desires

I have so far been focusing on the question of anwagent might aggregate her beliefs (credence
function) and desires (utility function) to arrigéa single value for an act. I've claimed thatrag need
not aggregate according to the expected utilitygiple, but instead might weight the values of ontes
by a function of their probabilities. Thus we ntighodel decision makers as using a more general
decision rule, which includes a utility functiongceedence function, and a risk function. Howettes,
question that has received the most attention ilegdphy is not how we might arrive at preferencese
we know an agent’s beliefs and desires, but rdtberwe might extract an agent’s beliefs and desires
from her preferences. Specifically, decision tissthave been interested in what restrictions on
preferences will allow us to fix unique beliefs atekires. So the question that arises for my yhisor
what restrictions are needed in order to extralgfise desires, and attitudes towards risk.

As mentioned, a utility and probability functiogpresent an agent under EU theory just in case
for all acts f and g, the agent prefers f to deiff(f) < EU(g), where expected utility is calculated relati
to the agent’s subjective probability function tdtes. Arepresentation theorem spells out a set of
axioms such that if an agent’s preferences obesethgioms, then she will be representable under EU
theory by a unique probability function and a titifunction that is unique up to positive affine
transformation: she will be an EU maximizer relatto these functions.

Representation theorems are important in dectbieory, but their upshot depends on the use to
which decision theory is put. There are at leastyery different ways in which decision theory esn
used, which | refer to as tipeescriptive use and thenterpretive use. When the theory is taken
prescriptively, an agent uses it to identify theich he should make or the preferences he shoukd ba
the decision theorist uses the theory to assesthahine agent’'s choices and preferences are ahtion

The agent himself can use decision theory prebeelp in at least two ways. First, if an agent
has already formed preferences over enough iteensat look to decision theory to tell him the
preferences he should have over other items; $h#d tell him how to attain his ends of getting, o
balance, things that he (already) more stronglfepse Second, if an agent realizes that his peefms

are not in accord with decision theory, then heamrctlude that he has done something wrong and,
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insofar as he is rational, that he should altephigerences so that they do so accord. In adylitie
theorist using decision theory prescriptively ascertaingtivbr the agent’s choices in fact accord with the
theory, and it is by this criterion that she judgdmther the agent’s preferences are rational.

Representation theorems state the conditions wadieh an agent can count as an EU
maximizer, and thus the conditions under whichgen#s preferences are rational (on the standard
theory). Therefore, they are useful for prescriptiecision theory because they provide a criteéiion
determining when an agent has irrational preferetit@t doesn't require knowing his precise numerica
values. Furthermore, this criterion can be empldfeve think there are no precise numerical vatoes
know (aside from those that result from the thedresm they are especially useful to the constrigttiv
For the constructivist, rationality just is confatynto the axioms of decision theory, and it is a
convenience that this also guarantees represatyasilan expected utility maximizer. Thus,
representation theorems are useful because ttory ad to refocus the debate about rationalityemdt
of arguing that a rational agent ought to maxineizpected utility because, say, he ought to cang onl
about average value, the EU theorist can arguathatonal agent ought to conform to the axioms.

In contrast to prescriptive decision theory, aiparof the modern philosophical literature treats
decision theorynterpetively: not as a useful guide to an agent’s own decisiouisrather as a framework
to interpret an agent’s desires, his beliefs, artigps even the options that he takes himself to be
deciding among. The interpretive use of decisi@oty arises in response to a worry about how to
discover what an agent believes and desires, @ghatrwe have no direct access to these mentasstate
and, if constructivism (or a version of realismvaimich one’s desires are opaque) is true, neitheheo
agents themselves, since these states cannotdoeelisd by introspection. However, it seems thiat i
relatively easy to discover agents’ preferencesfepences do manifest themselves directly (if not
perfectly) in behavior, and are ordinarily operintnospection.

It should be clear how representation theoremsise@ul to interpretive theorists. If an agent’s
preferences obey the axioms of EU theory, thernteepretive theorist can start with the agent’s
(observable) preferences and derive the probalilitgtion and utility function that represent héir.
should also be clear why it is important that theorems result innique probability and utility
functions. If there were multiple <p, u> pairstteach could represent the agent as an expectityg uti
maximizer, we wouldn’t know which way of represagtihe agent accurately captures “her” beliefs and
desires?

We can see that representation theorems are ctaaaktision theory, so any alternative to EU
theory needs a representation theorem if it cae hogerve the purposes EU theory is traditiorality
to. Furthermore, comparing the axioms of an EUasgntation theorem to those of an alternative will

allow us to see the difference between what eaatrytrequires of rational agents. In the remairder
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this paper, | will present a representation thedi@nmy theory (though | will not include the proof
here)™ In particular, | will present a set of axioms Istbat if a decision maker’s preferences obey these
axioms, we will be able to determine a unique pbditg function, a unique risk function, and a il
function that is unique up to positive affine trimmnation such that an agent maximizes REU reldtive
these three functions. My aim here is to show RislJ theory captures what it is to be risk-aversthat
level of preferences, by contrasting the axiomsgtheorem and the (stronger) axioms of the analego
representation theorem for expected utility thedFiis will provide a way to frame the debate about
whether REU maximizers are rational around the tipresf whether agents ought to obey the axioms of
EU theory or only the weaker axioms of my theory.

5. Representation Theorem

My theorem draws on two other results, one by Vi obberling and Peter Wakker (hereafter
KW) and by Mark Machina and David Schmeidler (h&exaviS)? Kobberling and Wakker prove a
representation theorem for another “rank-depentifeatry,” CEU theory. CEU, like my theory, applies
to “Savage” acts, in which outcomes are tied tone&yevhose probabilities are not given. However, as
mentioned, CEU does not represent the agent asdhaviunction that assigpsobabilities to events, and
thus the representation theorem for CEU does mighe us with a way of extracting the agent’s degre
of belief from his preferences. Machina and Sclilieeigive conditions under which an agent can be
represented as probabilistically sophisticated khaagng a unique probability function relative thish
his preferences respect stochastic dominance asnmhximizingsome value function, but does not
allow us to determine the values of outcomes dsaie the gambles they are embedded in. Combining
their results, | give conditions under which we capresent an agent as a probabilistically sopulaitetd
decision maker maximizing the specific functiontttiés paper is concerned with: that is, giving
conditions under which we can extract from an dggeferences a probability function, a utility
function, and dunction that represents how he structures the realization of his aimsin the face of risk.
Thus the set of axioms | will use in my represeatatheorem are a combination of Kobberling and
Wakker's and Machina and Schmeidler's axioms, thfritronger than either set of axioms.

| start by explaining the spaces and relationsmeedealing witi' Thestate spacds a set of
states S={..., s, ...}, whose subsets are calledteveFheevent spaceEE, is the set of all subsets of S.
Since | want to represent agents who have prefesemeer not just monetary outcomes but discrete
goods and, indeed, over fully specified statehefutorld, it is important that the outcome space be
general. Therefore, the outcome space is meredy af arbitrary outcomes X ={..., X, ...}. | follow
Savage (1954) in defining the entities an agenpheferences over as “acts” that yield a known oute
in each state. Thact spaceA ={..., f(.), g(.), ...} is thus the set of all fité-valued functions from S to
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X, where the inverse of each outcoriiéj is the set of states that yields that outcoie) JEE. So for
any act f0 A, there is some partition of the event spacer& {E;, ... E;} and some finite set of
outcomes YOI X such that f can be thought of as a member"of Ahd as long as f(s) is the same for all
sE;, we can write f(g as shorthand for “f(s) such thalis.”

For any fixed finite partition of events M = {E..., E}, all the acts on those events will form a
subset A O A. Thus, Ay contains all the acts that yield, for each evernhe partition, the same act for
all states in that event: A= {fOA | (OEOM)(IXOX)(OsOE)(f(s) = X)}. An upshot is that for all acts in
Ay, we can determine the outcome of the act by kngwihich event in M obtains: we needn’t know the
state of the world in a more fine-grained way.

Thepreference relation> is a two-place relation over the act space. ghiss rise to the
indifference relation and the strict preferencatieh: f ~ g iff f>g and f>g; and f > g if & g and —(g
>f).

For all X1 X, fx denotes the constant function (f(i) = x &dri). | will sometimes use expressions
that technically denote outcomes as the relatavaifien to use “f” would be cumbersome, but these
should always be read as denoting the constantifumngielding that outcome in every state.
Furthermore, ¥ denotes the function that agrees with f on altes not contained in E, and yields x on
any state contained in E. That igf(8) = {x if s O E; f(s) if sO E}. Likewise, for disjoint Eand g in
EE, %1yeof is the function that agrees with f on all states contained in Eand E, and yields x on E
and y on E We say that an event Engll on FJA if the agent is indifferent between any pair ofsa
which differ only on E: ¥ ~ f for all xf, fOF 2

The concepts in this paragraph and the next goertent in Kobberling and Wakker's result.
Two acts f and g areomonotonicif there are no stateg s S such that f($ > f(s,) and g(g) < 9(9).

This is equivalent to the claim that there are venés &,E[JEE such that f(B > f(E;) and g(E) < 9(E).

The acts f and g order the states (and, conseguérglevents) in the same way, so to speak:éeals to

a strictly more preferred outcome tharia@ act f, then sdoes not lead to a strictly less preferred outcome
than s for act g. We say that a subset C gfi& acomonconeif all the acts in C order the events in the
same way: for example, the set of all acts on figis-in which the heads outcome is as good astieb
than the tails outcome forms a comoncone. FormadiyKobberling and Wakker define it, take anydixe
partition of events M = {E, ..., E}. A permutatiornp from {1, ..., n}to {1, ..., n} is arank-ordering
permutation of f if f(E)) > ... > f(E,rn). So a comoncone is a subset C gftAat is rank-ordered by a
given permutation: C = {f1 Ay | f(Eyw) > ... > f(E,)} for somep. For each fixed partition of events of

size n, there are n! comoncor@sThis concept will become important in arguingttREU theory is a
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better analysis of rational preference than EUtheand will be discussed extensively in the next
section.

We say that outcomeé,mz, ... form astandard sequenceon FJA if there exist an actiF,
events E# E; that are non-null on F, and outcomes y, z with—@) such that (<")ei(y)gf ~ (X)),
with all acts contained in . The idea behind a standard sequence is thaettw sutcomes™?, x,
..., will be “equally spaced.” (I should say: thésthe interpretation we will be aiming for when we
extract utility from preferences, but since we hévetated the axioms yet the notion of a standard
sequence doesn't yet have that meaning.) Sincagdet is indifferent for each pair of gambles, and
since each pair of gambles differs only in that“te#-hand” gamble offers y rather than z ifd&btains,
and offers ¥* rather than if E; obtains, the latter tradeoff must exactly makdasghe former. And
since the possibility of‘* rather than (if E;) is enough to make up for y rather than z (Jffer each k,
the difference between eacti»and X must be constant. Note that a standard sequeandeec
increasing or decreasing, and will be increasiraify and decreasing if y > z. A standard seqgiésc
bounded if there exist outcomes v and w suchiffi@t> x' > w).

We are now in a position to define a relation thatportant for Kobberling and Wakker’s result
and that also makes use of the idea that one tifagbesctly makes up for another. For each partitit
we define the relation ~*(F) for B Ay and outcomes x, vy, z, W X as follows:

xy ~*(F) zw

iff (f,g0F andCELEE that is non-null on F such thaf x yeg and zf ~ weg,

where all four acts are contained if"RKobberling and Wakker explain the relation ~*&8)follows:
“The interpretation is that receiving x instead/@pparently does the same as receiving z instead o
i.e. it exactly offsets the receipt of the [fsktrad of the [g’s] contingent on [-E¥” The idea here is
that if one gamble offers f if ~E obtains, wheraasther gamble offers g if ~E obtains, then this is
point in favor of (let’s say) the first gamble. Boorder for an agent to be indifferent betweentthio
gambles, there has to be some compensating pdiaaon of the second gamble: it has to offer adrett
outcome if E obtains. And it has to offer an onteathat is better by the right amount to exactfgetdf
this point. Now let's assume that offering y ratti&n x (on E), and offering w rather than z (rb&th
have this feature: they both exactly offset thé that a gamble offers f rather than g (on -E)afTif, if
one gamble offers f on ~E, and a second gamblesoffen ~E, then this positive feature of the first
gamble would be exactly offset if the first offeredn E and the second offered y on E — and it dibel
exactly offset if instead the first offered z orakd the second offered w on E. If this is the ctmn
there is some important relationship between xyaod the one hand and z and w on the other: teeae i

situation in which having the first member of egelir rather than the second both pilag same
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compensatory role We might call this relationship radeoff equality. Following Kobberling and
Wakker, | write xy ~*(C) zw if there exists a conamone HJ Ay, such that xy ~*(F) zw: that is, if x and
y play the same compensatory role as z and w ireggambles in the same comoncone.

The relation ~*(F), and particularly ~*(C), wilkature centrally in the representation theorem,
because one important axiom will place restrictionsvhen it can hold, i.e., when two pairs of aes
play the same compensatory role. This relatiohadgb play a crucial role in determining the (daad)
value difference between outcomes from ordinalgrefces. | will explain this more fully in the ex
section.

With the preliminaries out of the way, | can nokegent the axioms of REU theory, side-by-side
with those of the analogous representation thedoefBU theory that Kobberling and Wakker spell 8ut.



EXPECTED UTILITY THEORY

B1. Ordering: > is complete, reflexive, and
transitive.

B2. NondegeneracyThere are at least two non-
null states on A, and there exist outcomes x and
y such that fx > fy.

B3. Weak (finite) monotonicity (KW 396):
For any fixed partition of events E..., E, and
acts f(g, ..., E) on those events, if f{E> g(E)
for all j, then f> g.

B4. Solvability (KW 398): For any fixed
partition of events k ..., E,, and for all acts
f(Ey, ..., B), 9(E, ..., E) on those events,
outcomes X, y, and eventslith x:f > g > \f,
there exists an “intermediate” outcome z such
that zf ~ g.

B5. Archimedean Axiom(KW 398): Every
bounded standard sequence on A is finite.

B6. Unrestricted Tradeoff Consistency KW
397): Improving an outcome in any ~*(A)
relationship breaks that relationship. In other
words, xy ~*(A) zw and y' >y entails —(xy’
~*(A) zw).
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RISK-WEIGHTED EXPECTED UTILITY
THEORY

Al. Ordering (MS P1):> is complete, reflexive,
and transitive.

A2. Nondegeneracy{MS P5): There exist
outcomes x and y such that fx > fy.

A3. State-wise dominancelf f(s) > g(s) for all
sOS, then £ g. If f(s)> g(s) for all £1S and f(s)
> g(s) for all SIEOIS, where E is non-null on A,
then f>g.

A4. Continuity (()KW 398, Solvability, and
(ihlMS P6 Small Event Continuity):

() For any fixed partition of events E.., E,

and for all acts (g, ..., &), 9(E&, ..., E) on

those events, outcomes x, y, and eventsith

xef > g > \ef, there exists an “intermediate”
outcome z such thatfz~ g.

(i) For all acts f > g and outcome X, there exists
a finite partition of events {E ..., E;} such that
for all i, f> xgg and xf > g

A5. Comonotonic Archimedean Axiom(KW

398, 400):

For each comoncone F, every bounded standard
sequence on F is finite.

A6. Comonotonic TradeoffConsistency (KW
397, 400): Improving an outcome in any ~*(C)
relationship breaks that relationship. In other
words, xy ~*(C) zw and y’' > y entails =(xy’
~*(C) zw).

A7. Strong Comparative Probability (MS
P4*): For all pairs of disjoint events Bnd B,
outcomes X' > x and y' >y, and acts gh,
X eXeod > XeX' g2 => YeiYe > Yery e2h

Any agent whose preferences obey (B1) through {Bimaximize expected utility relative to a unique

probability function and a utility function uniqugp to linear transformatiofi.

Analogously, if a preference relatigron A satisfies (A1) through (A7), then there eXista

unique finitely additive, non-atomic probabilityrfation p: EE=> [0, 1]; (ii) a unique increasing risk
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function r: [0, 1] [0, 1]; and (iii) a utility function unique up taear transformation such that REU
represents the preference relatonlf there are three such functions so that REté(fyesents the
preference relation, we say that REU holds: soséatisfies (A1) through (A7), then REU holds.
Furthermore, in the presence of (A2) and (A4iREU holds with a continuous r-function, then the
remaining axioms are satisfied.
Therefore, if we assume non-degeneracy (A2) angbiity (A4i), we have:

(Al), (A3), (Adii), (A5), (AB), (A7) are sufficientonditions for REU.

(Al), (A3), (Adii), (A5), (AB), (A7) are necessacpnditions for REU with continuous r-function.
The proof of this theorem, with references to det@und in Kobberling and Wakker and in Machina an

Schmeidler, can be found in my Risk and Rationghtyok ms.).

6. Comonotonicity and Global Properties

In this section, | will explain how the differenbetween the axioms | accept and the stronger
axioms the EU theorist accepts amounts to therdiffee between allowing agents to care about global
properties — or to determine for themselves thel tdmponent of instrumental rationality — and
prohibiting them from doing so.

There are roughly four types of axioms in eachasgntation theorem. First are those that ensure
that the preferences are totally ordered: (A1) @1J. Second are those that ensure that the prefes
are complex enough, but not so complex as to bepuesentable by the real numbers: (A2) and (B2),
(A4) and (B4), and (A5) and (B5). Third are thtisat ensure that the agent has stable views about
events so that we can elicit well-defined prob#ibii (A7) and (B6). Fourth, we have those thaues
that the agent has stable views for any two outscabeut the difference between including one ouecom
in a gamble and including the other, so that weediait well-defined utility differences: (A3) an@®3),
and (A6) and (B6). (Utility difference ratios atee only “real fact” about utility functions, sincsility
functions are equivalent up to positive affine sfanmation.) In the axiomatizations of the twodties,
axioms of the first two types are nearly identicAkioms of the third type will not be discussedd)e
though | note that (B6) does double-duty in fuliig the third and fourth functions. Axioms of tteairth
type are the crux of the disagreement between egryhand EU theory. We do, however, agree about
state-wise dominance (A3), and although this axdormects values of outcomes to values of gamtiles, i
does not play a large role in eliciting a cardimdlity function. The disagreement is really abthe
axioms ((A6) and (B6)) that fix utilitgifferences.

The axioms of EU theory are stronger than my axiontkat | only accept weaker versions of
(B5) and (B6), their comonotonic counterparts (ABYl (A6). On the face of it, the axioms of EU thyeo

also appear weaker than my axioms in a sense, $&¢BG) is weaker than my (A3), (B4) is weaker than
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my (A4), and | add (A7). But expected utility masizers do obey these axioms — they follow from ¢(B1)
(B6) — and so the standard theorist would not destghen? (Axioms (A1) through (A7) are strictly
weaker than (B1) through (B6).) It is worth notitingit these are essentially the axioms needed to
guarantee a stable and unique probability functibinus, we can see that the disagreement | hate wit
the EU theorist is about whether agents are regjiareonform their preferences to (B5) and (B6pwiy

to the weaker (A5) and (A6). And since (A5) an&)Berve primarily to ensure that utility valueaga
over real numbers (e.g., are not infinite), anchtsmrve that exact purpose in the presence of the
respective other axioms, the substantial disagreebeween us is whether rationality requires
Unrestricted Tradeoff Consistency or only Comonmtdimadeoff Consistency.

The goal of this section is to spell out how thitedénce between UTC and CTC maps on to the
idea of being sensitive to global properties: dipeadly, to show that accepting a restricted vensiof
Tradeoff Consistency allows agents to care abaldajlproperties in the ways suggested in section 3.

Since comonotonicity will be an important concepthie discussion, let me remind the reader
what it is for two acts to be comonotonic. Actnfl g are comonotonic if there are no eventarid &
such that f(g) > f(Ey) and g(E&) < g(E): if E; leads to a better outcome thandg f, then Eleads to at
least as good an outcome aE g. Again, a comoncone is a set of gamblesatteaill pairwise
comonotonic: all the acts in a comoncone ordeethants in the same way. So for each comoncone, we
could order the events such that for each actdrcttmoncone, the agent weakly prefers events teat a
later in the ordering. We could, if we like, thinka comoncone as corresponding to a preference
ordering over events.

Here is an example to illustrate the idea of a@arone. A gamble that yields $50 if a coin lands
heads and $0 if a coin lands tails is comonotoriils & gamble that yields $100 if that same coiml$an
heads and $99 if it lands tails — in either case agent would rather see heads than tails. A Igatindt
yields $0 if the coin lands heads and $50 if the tands tails is not comonotonic with either gaebl
since the agent would rather see tails than heddgamble’ that yields $70 no matter how the coin
comes up is comonotonic with all the gambles meetioso far: the heads outcome is at least as good a
the tails outcome, so it is comonotonic with thietftwo gambles mentioned, and the tails outconag is
least as good as the heads outcome, so it is cdoroavith the third gamble. The first two gambles
and this ‘gamble’ together form (part of) a comameathe comonocone in which heads is weakly
preferred to tails; and the third gamble and thamble’ form (part of) a different comoncone, the
comoncone in which tails is weakly preferred todeaSo we can see that a gamble can be contained i
more than one comoncone.

Recall from the previous section the idea of todidequality. The relation ~*(F) holds of (xy,
zw) when there are two gambles f and g containéd(imecall: F is a set of acts on some finite-event
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partition) and an event E such that the agentdi$farent between the gamble that agrees with filén
but yields x on E and the gamble that agrees with gE but yields y on E; and the agent is indéfer
between the gamble that agrees with f on —E bldyie on E and the gamble that agrees with g on -E
but yields w on E. That isgik~ yeg and &f ~ wegg. Note that each of these four gambles must be
contained in F, and that E must be non-null. Agtia idea behind tradeoff equality is that recegw
rather than y in E plays the same role as receiragher than w in E: they both exactly compengate
getting f rather than g in the remaining states.
What we are ultimately interested in is the utintribution each outcome makes to each

gambile it is part of: this will help us determife tutility values of outcomes. More preciselycsin
utility differences are what matter, we are interested in the utiiitgtribution that x rather than y makes
to each gamble. And tradeoff equality gives usag t@ begin to determine this: if getting y ratti@an x
in event E and getting z rather than w in evenoth lexactly compensate for getting f rather tham g
event ~E, then they make the same difference lityutontribution in event E in those gamble paits.
order to get from these differences in utility admnitions to utility full stop, we need to fix whéwo
pairs making the same difference in utility contitibn means that they have the same difference in
utility. And to do this, we will identify the coitibns under which if two pairs have the same ddfee
in utility (full stop), they must make the samefeiiénce in utility contribution, and constrain tla¢ional
agent to treat a pair consistently in these sibaati- to consistently make tradeoffs. Tradeoffstziancy
axioms provide such a constraint. Recall thesenasj from above:

Unrestricted Tradeoff Consistency (UTC): Improving an outcome in any ~*(F) relationship lkza

that relationship. In other words, xy ~*(F) zw ayid> y entails —(xy' ~*(F) zw).

Comonotonic Tradeoff Consistency (CTC)Improving an outcome in any ~*(C) relationship

breaks that relationship. In other words, xy ~*@)and y’ > y entails =(xy’ ~*(C) zw).
The difference between the two axioms is that Uags ghat if two tradeoffs are equal, they must be
equal irrespective of the gambles they are embeiidaad the event they are substituted in for;®UE
says that this only holds when restricted to gasisidhe same comoncone. According to UTC, whether
x-rather-than-y plays the same compensatory role-egher-than-z does not depend on the structure o
the gambles involved. But according to CTC, it sardepend: it can depend on whether each outcome i
in the same structural position in the gamble.sWill become clearer shortly.

CTC follows from UTC, but not vice versa. NotettRa C is stronger than the idea that UTC

must hold on every comoncone: it is stronger bex#us/ ~*(C,) zw holds for some comoncong, €hen
CTC entails that for any other comonconge Xy’ ~*(C,) zw cannot hold. We can also point out that for

REU maximizers, xy ~*(C)zw holds just in case ue(y) = u(z) — u(w), and for EU maximizers,
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xy~*(A)zw holds just in case u(x) — u(y) = u(z) &w). So in each theory, tradeoff equality holdsswh
utility differences are equivalent.

Unrestricted Tradeoff Consistency entails thatuti@y contribution made by each outcome is
separablefrom what happens in other states. In other waordls-E rather than x-in-E makes the same
difference to the overall gamble (it exactly comgeges for the same subgambles) regardless of what
happens in ~E. Furthermore, y rather than x mtdesame value difference regardless of which event
the substitution occurs in — not in terms of absolualue, but in terms of which other tradeoffis it
equivalent to. To clarify: substituting y rathbah x into a gamble will make a different valudeatiénce
depending on the event the substitution occumnarely because the more probable the event, tigebig
value difference it will make; however, if substitig y rather than x for some event in some gamble
makes the same difference as substituting w réltlaer z for that same event in that same gambila, the
for any event and any gamble, substituting y rather themtlat event in that gamble makes the same
value differences as substituting w rather thamthat event and that gamble. This is what allog/go
calculate the difference between z and w simplicite can state exactly which other pair-wise
differences it is equivalent to, and these paireigeivalences will be relativized neither to a ghemior
to an event. (As mentioned, under EU theory, when*(A)zw, u(x) — u(y) = u(z) — u(w)). Therefore,
the value that each outcome contributes to a gamililbe independent of (“separable from”) the athe
outcomes that might result from the gamble.

Comonotonic Tradeoff Consistency entails that tiiléyucontribution made by each outcome is
only separable from what happens in other statee gtay within a single comoncone. In other wprds
y-in-E rather than x-in-E makes the same differendhe overall gamble as long as E occupies thesa
position in the “event ordering” in each relevaatiple. But still, if we remain in the same comare;o
then which event E is will not matter, so the valifference a trade makes will be relativized to a
gamble, but not to an event. Again, under REUhashen xy ~*(C)zw, u(x) — u(y) = u(z) — u(w).

So why would not staying within a comoncone makiiffarent to the utility contribution that y-
in-E rather than x-in-E makes? To make things mEta¢let’'s assume we have a set of preferences tha
satisfies Comonotonic Tradeoff Consistency, butUatestricted Tradeoff Consistency. So, for
example, consider four gambles f, g, h, j and fivecomes x, vy, ¥, z, w, and consider some of the
gambles we might get by making a replacement ontdvezf, weg, %f, Yeg, Zh, W, Xeh, V'g. Let's
assume that the agent's preferences are as folawese “x < f(s)” is shorthand fofJ0S)(x < f(s)):

z<w<js)<h(s) <x<y<y <g(s) <f(s)

Zef ~ wWeg

Xef ~ Yeg

Zeh ~ W
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Xeh ~ Y
Note that E is the worst event (the event withvtleest outcome) in the first six of these “replaceatfie
gambles (&, weg, Xf, Yeg, Z=h, Wej), and that E is the best event in the last twh (¥'gf). These
preferences fail Unrestricted Tradeoff Consistdmegause xy ~*(A)zw and xy'~*(A)zw, but they don't
fail Comonotonic Tradeoff Consistency because afghaxy ~*(C)zw, we cannot derive xy™*(C)zw
becausegh, Wej, Xeh, and yg are not in the same comoncone.

So for an agent who has these preferences, wratiker than z-in-E when E is the worst event
makes the same difference as y-in-E rather thamkavhen E is the worst event. But w-in-E rathnemt
z-in-E when E is the worst event makes the sanferdiice ay’-in-E rather than x-in-E when E is the
best event. Furthermore, y'-in-E rather than x-in-Eibetter trade than y-in-E rather than x-in-E.
Therefore, when E is the best event, it takes @ibiade to make up for a specific bad trade thdoes
when E is the worst event. Put succinctly, théedénce that y-in-E rather than x-in-E makes to the
gamble is smaller when E is the best event ratter the worst’

So why might the value contribution of y-in-E ratthan x-in-E be less when E is the best event?
There are two possibilities. The first is thaisEeonsidered more likely when it has a worse outcom
associated with it, and less likely when it hagtdr outcome associated with it. In this case afient
would not have a fixed view of the likelihood ofemts but would instead be pessimistic: he would
consider an event less likely simply because itaining would be good for him. But the axiom of
Strong Comparative Probability (A7) rules this mietation out: in the presence of Machina and
Schmeidler's other axioms, it entails that an a¢pgasta stable probability distribution over events.

The second possibility is that what happens indiens less to the agent, not because E itself is
less likely, but because this feature of the oVgaahble plays a smaller role in the agent’s
considerations. If an agent is more concerned gutranteeing himself a higher minimum, for example
then tradeoffs that raise the minimum are goingadter more than tradeoffs that raise the maximum.
stressed that one thing an agent must determimstiumental reasoning is the extent to which he is
willing to trade off a guarantee of realizing somimimum value against the possibility of getting
something of much higher value: that is, the extenthich he is willing to trade raising the minimu
against raising the maximum. And, again, thisesduse agents must determine how to structure their
goals.

So we can now see that restricting Tradeoff Ct&1sty to gambles within the same comoncone
captures the idea that agents who are risk-avergeisense of caring about global (or structural)
properties are structuring their goals differemitign EU maximizers. Unrestricted Tradeoff Consisye
says that trades must have the same value regaaflbew they affect the structural properties of
gambles. But Comonotonic Tradeoff Consistency #agisthe difference a trade makes depends not just
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on the difference in value between the outcomdisarparticular state, but on where in the structiitthe
gamble this difference occurs. If the agent catesit these structural properties then he will aflgy
the comonotonic version of the axiom.

What does Comonotonic Tradeoff Consistency rutetben? Recall our example from above.
Comonotonic Tradeoff Consistency allowed that yEimather than x-in-E when E is the best event made
the same difference as w-in-E rather than z-in-Emwf is the worst event. But y'-in-E rather thaim-E
when E is the best event can’t make the same difter as w-in-E rather than z-in-E when E isltbst
event. More generally, the relative value of tigftlemust be stable when the tradeoffs occur irsttrae
structural part of the gamble: that is, when tlaeeno global considerations at issue.

So the defender of UTC and the defender of th&kere@TC have different views on what it is to
consistently value outcomes. According to the pramt of UTC, an agent consistently values outcomes
if the (comparative) contribution each outcome nsakea gamble is the same regardless of the gamble.
According to the proponent of CTC, an agent coestbf values outcomes if the (comparative)
contribution each outcome makes to a gamble isahge regardless of the gamble — as long as the
outcome doesn't also figure in differently to theple’s structural properties. Again, if preferemc
obey UTC, then the contribution of each outcom#éovalue of a gamble separable it does not
depend on which other outcomes the gamble conté#fipseferences obey CTC, then the contribution of
each outcome to the value of a gambleeisi-separableit does not depend on which other outcomes
the gamble contains, unless which other outconggsrible contains affects the relative ranking that

outcome occupies in a gamble.

7. Conclusion

I have proposed a theory on which agents subggtletermine the three elements of practical
rationality: their utilities, their credences, ahé tradeoffs they are willing to make in the fa€eisk. In
this paper | have discussed how allowing agenssitjectively determine which sorts of tradeoffsythe
are willing to make corresponds to adopting a weakeof axioms on preferences than those endorsed
by the EU theorist. On EU theory, which tradeafifisagent is willing to make must be determinedigole
by the outcomes and events those tradeoffs involves means that lowering the value of what happen
in an event has the same effect on the value afdhgble regardless of what happens in the resteof t
gamble. However, on REU theory, agents can caratathere in the structure of the gamble the
tradeoffs occur. Therefore, the effect on the @afithe gamble can depend on whether it is theeval
the minimum or maximum that is lowered. And eviethé agent assigns the same probability to events
and F, she needn't think that lowering the valug& @f exchange for raising the value of F (by tame
utility) is an acceptable tradeoff. In particuldishe is risk-avoidant, the worst-case scenaidy be
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more important to her than the best-case sceraribso this may not be an acceptable tradeoff hen
prize in E is already worse than the prize in FewNhat we've seen the difference between what EU
theory requires of agents and what my more perwgghieory requires of them, we can properly address
the question of which theory captures the requirgmef practical rationality.

! To say that two utility functions u(x) and u’(x)esequivalent up to positive affine transformatineans that there
are some constants a and b where a is positivaal + b = u’(x).

2 For the purposes of this paper, | will use thentéisk-averse” neutrally: an agent is risk avenséh respect to
some good (say, money) iff she prefers a sure-thingunt of that good to a gamble with an equivalent
mathematical expectation of that good. For a ngeresral definition of risk aversion that is compkgiwith what |
say here and that captures the idea that a risls@y®rson prefers a gamble that is less spreaderiM.
Rothschild and J. Stiglitz (1970), “Increasing RiskA Definition,” Journal of Economic Theory.

% In all these examples, | will assume that proliigsl are given, to simplify the discussion. Bug probabilities
involved should be assumed to be the agent’s stilggurobabilities.

* Particularly clear expositions of this view appizathe following: (1) Patrick Maher (1993), Betiion Theories,
Cambridge: Cambridge University Press; (2) JohroBre (1999), “Utility,” in_Ethics out of EconomicBprt
Chester, NY, USA: Cambridge University Press; @hés Dreier (2004), “Decision Theory and Moralit@fiapter
9 of Oxford Handbook of Rationality, eds. Alfred Rele and Piers Rawling, Oxford University Press.

® Matthew Rabin (2000), “Risk Aversion and Expect#ility Theory: A Calibration Theorem Econometrica,

pg. 1282.

® Rabin states his results in terms of changes fnitial wealth levels because he thinks that theai explanation
for people’s risk aversion in modest stakeloss aversion of the kind discussed in Kahneman, Daniel and Amos
Tversky (1979), “Prospect Theory: An Analysis ofdX®on under Risk,Econometrica 47, pg. 263-291..

" Example due to Maurice Allais (1953), “Criticismisthe postulates and axioms of the American Sghool
reprinted in_Rationality in Action: Contemporary grpaches, Paul K. Moser, ed., Cambridge UniveRigss,
1990. Amounts of money used in the presentatidhisfparadox vary.

8 For if Ly is preferred to §, then we have 0.1(u($5m)) + 0.9(u($0)) > 0.11(ufHl+ 0.89(u($0)). Equivalently,
0.1(u($5m)) + 0.01(u($0)) > 0.11(u($1m)). And ifis preferred to , then we have u($1m) > 0.89(u($1m)) +
0.1(u($5m)) + 0.01(u($0)). Equivalently, 0.11(u¢®) > 0.1(u($5m)) + 0.01(u($0)). These two conirgdo there
is no utility assignment that allows for the comn#dhais preferences.

° This talk may faze a certain kind of constructivigVe could recast it in terms that are acceptabthe
constructivist as follows. If risk-preferences besed only on local considerations so that thatamgeys the
axioms of EU theory, then the utility function astekrmined by EU theory will reflect these evert ddesn’t
correspond to anything ‘real.’ If risk-preferen@gs based on both kinds of considerations sahiesagent doesn’t
obey the axioms of EU theory, then constructivisttBeory will read the agent as not having a wtflitnction.

10|f contra our supposition, ugd< u(0y), then the value of the gamble would be r(p(~E)h¢ (1 —
r(p(~E)u(Q), i.e. r(L — p(E)u(® + (1 — r(1 — p(E))u(®), which is not necessarily equivalent to r(p(ERs(+ (1 —
r(p(E)u(Q).
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Y For further discussion of this point, see my bawnuscript.

21> L, @ r(D)[u($5m) — u($0)] > r(.11)[u($1m) — u($0)].

Ly>Ls & (1 =r(-99)[u($1m) — u($0)] > r(.1)[u($5m) — ugh).

These inequalities hold jointly only if r(0.11) (0rl) < 1 —r(0.99).

13 David Schmeidler (1989), “Subjective ProbabilitydeExpected Utility without Additivity, Econometrica 57, pp
571-587. ltzhak Gilboa (1987), “Expected UtilitytivPurely Subjective Non-Additive Probabilitiesdurnal of
Mathematical Economics 16: 65-88.

14 John Quiggin (1982), “A Theory of Anticipated ttji” Journal of Economic Behavior and Organization 3, pg.
323-343.

15 Schmeidler’s (1989) version includes some objegikobabilities to derive the decision weights.

16 Given the similarity in the formalism, | could gent REU theory as a generalization of AU theorgdoision
making with subjective probabilities: i.e., as “gdiive” anticipated utility theory. But to do seuld be
misleading about what the functions in Quiggin'edty are meant to refer to: on Quiggin’s theorg, decision
weights are themselves subjective probabilitieser&fore, AU interprets decision makers as haviegences that
are different from their known objective probalidi (AU maximizers are usually referred to as “myitic” or
“pessimistic”). This interpretation makes agentwovare sensitive to global properties automatidalational,
since their credences are different from the ohjeqgirobabilities and their credence in each eigenbt
independent of which outcome occurs on that evemt.the contrary, on my theory there is room fcerdg to
believe a coin is fair even if the heads outcomesdmwt get a decision weight of 0.5. Furthermitre,
philosophical foundations of my theory — the wawinich | analyze means-ends reasoning — are véfigrelnt from
Quiggin’s. In addition, the formalism itself ifairly intuitive generalization of EU theory: astBeWakker notes,
Allais himself proposed, but rejected, this pod#ibi Therefore, | think it is best to view my thiy as somewhat
similar in formalism, but different in philosophlaammitments, to the rank-dependent theories ptéaghe
literature.

" See Leonard Savage (original 1954, second edif89i2), The Foundations of Statistics, New York: Brov
Publications, Inc. See also Frank P. Ramsey (1928)th and Probability,” in Ramsey, 1931, The Rdations of
Mathematics and other Logical Essays, Ch. VII, pf-198, edited by R.B. Braithwaite, London: Kegaaul,
Trench, Trubner & Co., New York: Harcourt, Bracel@@ompany. For a survey of representation theofemsU
theory, see Peter Fishburn (1981), “Subjective EtqueUtility: A Review of Normative TheoriesTheory and
Decision 13. A different sort of representation theorerdus to Jeffrey, Richard (1965), The Logic of D&nis
McGraw Hill. For Jeffrey, the state space anddbhiome space are the same, and each outcomauistdegover
other outcomes, i.e., there are no “final outcofnds a result, his uniqueness result for the tytfliunction is
weaker.

18 Note that the utility function is only unique uppositive affine transformation. Therefore, otilg facts that are
common to all of the utility functions, e.g., treative size of the utility intervals between outws, are rightly
called facts about the agent’s utilities.

9 See my book manuscript.

20 veronika Kobberling and Peter Wakker (2003), “Brefice Foundations for Non-expected Utility: A Getized
and Simplified Technique Mathematics of Operations Research 28, pp. 395-423. Mark J. Machina and David
Schmeidler (1992), “A More Robust Definition of $ettive Probability,"Econometrica 60(4).

2 1n the denotation of the spaces, | follow Machama Schmeidler (1992).

22 Machina and Schmeidler (1992), p. 749.

% Kobberling and Wakker (2003), p. 400. On pg. 408hberling and Wakker point out that we can alsfire a
comoncone on an infinite state space, althoughigmst necessary for our purposes.

4 Kobberling and Wakker (2003), p. 398. The conaépt standard sequence, however, does not orégimisth
them.

%1d, pg. 396-397.

26 Kobberling and Wakker (2003), p. 397.

27 Kobberling and Wakker (2003). | change their preation slightly, for readability.

2 Theorem 5 in Kobberling and Wakker (2003). Naiztt added non-degeneracy; they list the restilisen
degenerate cases (with non-unique probability difiydunctions) separately; see pg. 399.

2 We can see that EU maximizers obey them by natiagREU maximizers with a continuous r-functioregb
them and that EU maximization is a special cadRElfl maximization with a continuous r-function.

%0 Note that the agent would havghx> \j, by state-wise dominance @i > yj) and ordering.




