(自测时间 2.5~3 小时, 满分 100 分)

·. 填空题(该题 40 分, 每小题 4 分	·)	
(1) 已知序列 $x(n) = \sin(\frac{\pi}{8}n)$,	 丰周期是()。
(2) 系统函数 H(z)的收敛域包含单位)系统。
系统函数 H(z)的收敛域包含∞时	<i>,H</i> (z)是 ()系统。
(3) 若 $X(e^{j\omega})$ =FT $[x(n)]$,则FT $[x(n)]$)e ^{j@₀n}] 的FT为().
(4) 己知 $X(e^{j\omega})$ =FT $[x(n)]$, $H(e^{j\omega})$ =	FT $[h(n)]$, $y(n)=x(n)$	*h(n), w(n)=x(n)h(n)
则 $Y(e^{j\omega})$ =FT $[y(n)] = ($)	
$W(e^{j\omega})=FT[w(n)] = ($)
(5) $x(n)$ 的 N 点 DFT 用 $X(k)$ 表示, X	(k)是在单位圆上()的结果。
(6) 有限长复数序列的实部的傅里吗	十变换具有()性质。
(7) 已知 $y(n)=x(n)*h(n)$, $x(n)$ 和 $h(n)$	i)的长度分别为 M 和	IN。 $x(n)$ 和 $h(n)$ 的 I
(<i>L>M, L>N</i>) 点循环卷积用 w	(n)表示, $w(n) = y(n)$)=x(n)*h(n)的条件是
()。		
(8) 对信号进行频谱分析时,截断信	号引起的截断效应表	远现为两方面 :
()和()。
(9) 线性相位 FIR 滤波器的单位脉冲	响应 h(n)应满足条件	= (
(10) 将模拟滤波器的传输函数 H _a (s)	转换为数字滤波器的	系统函数 H(z)的常
用方法有两种: ()和()。
完成下面各题: (该题 30 分, [△]		
(1) 已知周期序列 $\tilde{x}(n) = \sum_{k=-\infty} \delta(n-8k)$), $\vec{X} X(e^{j\omega}) = FT[\tilde{x}($	(n)] \circ
(2) 已知系统的输入序列 $x(n)=R_4(n)$,系统单位脉冲响应	$h(n)=a^nu(n), 0< a<1,$
求系统的输出序列 y(n)。		
(3) 己知 $x(n)=a^{ n }$, 求 $X(z)=ZT$ [.	$c(n)$ $]$ \circ	
(4) 试叙述用双线性变换法和脉冲	响应不变法设计数等	字低通滤波器的基本
步骤。		
(5) 试画出 N=8 点的基 2DIT-FFT 5	5算流图。	

(6) 试叙述 IIR 滤波器级联型结构和并联型结构相对比的优缺点。

三. 计算题(该题 30 分, 每小题 10 分)
$$(1) \ \Box \text{知 } X(z) = \frac{-3z^{-1}}{2-5z^{-1}+2z^{-2}} \quad 0.5 < |z| < 2 \text{ ,求原序列 } x(n).$$

- (2) 已知 $H_a(s) = \frac{2}{s^2 + 3s + 2}$, 试用脉冲响应不变法将 $H_a(s)$ 转换成H(z),并 画出直接型结构。
- (3) 设采样率转换系统输入为 $x(n_1T_1)$, 输出为 $y(n_2T_2)$ 。
- ① 试画出信号整数倍内插系统原理框图, 并解释其中各功能框的作用。
- ② 假设内插因子 I=5, 试画出镜像频谱滤波器的幅频特性和系统中各点 信号的频谱示意图。