
Static Type Inference in a Dynamically Typed LanguageAlexander AikenIBM Almaden Research Center650 Harry Rd.San Jose, CA 95120email: aiken@ibm.com Brian R. MurphyComputer Science DepartmentStanford UniversityStanford, CA 94305email: brm@neon.stanford.eduAbstractWe present a type inference system for FL based on an operational, rather than a denotational, formulationof types. The essential elements of the system are a type language based on regular trees and a type inferencelogic that implements an abstract interpretation of the operational semantics of FL. We use a non-standardapproach to type inference because our requirements|using type information in the optimization of functionalprograms|di�er substantially from those of other type systems.1 IntroductionCompilers derive at least two bene�ts from static type inference: the ability to detect and report potential run-timeerrors at compile-time, and the use of type information in program optimization. Traditionally, type systems haveemphasized the detection of type errors. Statically typed functional languages such as Haskell [HWA*88] and ML[HMT89] include type constraints as part of the language de�nition, making some type inference necessary to ensurethat type constraints are satis�ed (i.e., to ensure that a program has no type errors). We, however, are interestedin using type inference as a tool for the optimization of programs written in a functional language.We present a type inference system for FL [B*89], a functional language based on FP [Bac78]. Unlike MLand Haskell, the FL language de�nition does not include any type constraints. In standard terminology, FL isdynamically typed, meaning that run-time type checks are required. However, static type information is still veryuseful for the compilation of FL programs and particularly for enabling program optimization.Two characteristics distinguish type inference in our setting from the traditional type inference problem. First,for type information to be useful for optimization, it should be as precise as possible. This is not the case in typeinference for ML, for example, where the only requirement is to infer information that is accurate enough to provethat the language's type constraints are satis�ed. Second, because FL has no static type restrictions, it is desirablethat an FL type inference algorithm infer some useful type information for many programs that other type systemswould reject entirely as \untypeable".Type systems for languages such as ML and Haskell can be characterized roughly as follows. A type is a setof values. There is a formal language to describe types and a logic to assign types to the subexpressions of aprogram. There is usually a particular algorithm, the type inference algorithm, for applying the rules of the logic.The correctness of the type inference algorithm is derived from the denotational semantics of the language.Our type system for FL di�ers substantially from the standard approach. Nevertheless, there are close parallels,1

and for this reason we choose to use the terms type and type inference, despite the non-standard interpretation. Forus, a type is a set of normal-form expressions. We give a formal language based on regular trees [GS84] to describetypes. We give a logic to assign types to the subexpressions of a program. Our type inference algorithm appliesthis logic to carry out an abstract interpretation [CC79, Nie85] of the operational semantics of FL. The correctnessof this type inference algorithm is established using the operational semantics.Our approach can be viewed as an operational (or intensional) formulation of types. For �rst-order values (e.g.,the atoms, sequences of atoms, etc.) our formulation is equivalent to the standard one, because there is a one-to-one correspondence between the �rst-order expressions and the values they denote. For higher-order values (e.g.,functions and structures containing functions) this correspondence breaks down, and two functions that denote thesame value may be members of di�erent (and incomparable) types. As discussed in Section 3, the main reason foradopting this approach is that it appears to provide greater precision on a wider range of FL programs than thestandard approach.Using this operational formulation of types, we construct a type language using regular trees in which typecontainment is decidable (Section 4). Furthermore, when types are sets of expressions, all the major features of FL,including higher-order functions, sequences, recursive structures, and user-de�ned datatypes, are precisely capturedby regular trees.Section 5 solves a simpli�ed type inference problem using an abstract interpretation of an operational (rewrite)semantics of FL. The abstract interpretation is presented as a logical inference system. For many recursive functions,proofs in this logic do not exist|i.e., the abstract interpretation does not terminate. Section 6 adds new inferencerules to the logic to guarantee termination and to type recursive functions precisely. Section 7 presents a solutionto the full type inference problem, using a simple way of de�ning a collecting interpretation [Nie85, HY88] directlyfrom the structure of a proof in the logic. Section 8 concludes with a brief discussion of the implementation andoutstanding problems.This paper concentrates on the theoretical basis for the type system; detailed descriptions of some of thealgorithms and the implementation appear in [Mur90]. An implementation of our type inference system for the fullFL language has been in use at IBM Almaden for several months. During this time, the system has been used toanalyze a wide variety of small- to medium-size (500 lines of FL) programs. Our initial experience indicates thatthe system is very precise. More importantly, the type information has proven to be of great bene�t in programoptimization. We believe these results should be applicable to other functional languages, especially those withoutstatic type restrictions such as the functional subsets of Lisp and Scheme.2 An Overview of FLThe FL domain consists of normal and exceptional values. The normal values are the atoms (integers, reals,characters, and the values true and false), sequences, tagged normal values, and functions. The exceptional valuesare specially tagged normal values and ?. The set of all exceptional values is EFL. Figure 1 gives the subset of FLneeded to understand the examples that follow. Some features of the language are ignored altogether; in particular,input/output functions and syntactic sugar are omitted. Note that all FL functions are strict with respect to2

f denotes a functionf:x denotes function applicationhx1; : : : ; xni denotes sequence construction� integer; x � denotes tag pairs� err; x � denotes exceptions\abc" abbreviates the sequence of chars h`a; `b; `cicomp:x = � err; h\comp"; xi � if x 6= hf1; : : : ; fnicons:x = � err; h\cons"; xi � if x 6= hf1; : : : ; fnicond:x = � err; h\cond"; xi � if x 6= hf1; f2; f3icomp: hf1; : : : ; fni:x = f1: (: : : (fn:x))cons: hf1; : : : ; fni:x = hf1:x; : : : ; fn:xicond: hf1; f2; f3i:x = 8<: f1:x if f1:x 2 EFLf3:x if f1:x = falsef2:x otherwiseseqof:f: hx1; : : : ; xni = 8<: f:xi min i s.t. f:xi 2 EFLfalse 9i s.t. f:xi = falsetrue otherwisef:x = x if x 2 EFLid:x = xK:x:y = xisint:i = true if i 2 Int; false o.w.signal:x = � err; x ��: hx1; : : : ; xni = x1 � : : : � xn if xi 2 Numsi: hx1; : : : ; xni = xitl: hx1; x2; : : : ; xni = hx2; : : : ; xnial: hx; hy1; : : : ; ynii = hx; y1; : : : ; yniFigure 1: A subset of FL.
3

exceptions. We use the following abbreviations:f � g = comp: hf; gi[f1; : : : ; fn] = cons: hf1; : : : ; fnip! q; r = cond: hp; q;riSome functions in Figure 1 are de�ned only for some arguments; for all other arguments, the application f : xreturns the exception � err; < \f"; x >�. The evaluation order of FL is leftmost-innermost; thus, in [f; g]:x; f:x isevaluated and then g:x is evaluated.The function de�nitions in Figure 1 can be interpreted as rewrite rules, where the rewriting consists of substi-tuting the right-hand side of the de�nition for the left-hand side. An expression is in normal form if no rewriterule applies. Examples of normal form expressions are: 1; id; h1; idi; K � id; and � err; < \f"; x >�. Note thatexceptions are legitimate normal forms.3 The Type Inference ProblemThe following example shows a very simple use of type information in program optimization. Consider an expressionE(�). If, in the context of E(), the function � is guaranteed to be applied to sequences of integers, then � can bereplaced by integer multiplication �int, which is a faster operation.This small example illustrates certain characteristics that allow a type system to be useful in optimization: thetype system should associate with each function f in a program a set of possible arguments, farg. (It also usefulto have a set of possible results; the necessary modi�cations to the type system are simple and omitted.) To becorrect, type information must be conservative|farg must be a superset of the actual set of possible argumentsof f .1 Finally, it should be possible to compare types, and in particular to test whether one type is a subset ofanother type. In the example above, the precondition for the transformation is that farg � sequences of integers.3.1 Types as Sets of ValuesLet e be an expression, let � :: Expressions ! Values be the meaning function mapping expressions to values, andlet a type T be a set of values. The statement \e has type T" is formalized as the assertion �(e) 2 T .In type systems where types are sets of values, typing an application e1: e2 involves computing a type T1 fore1 and T2 for e2, and then applying a rule App(T1; T2) to derive a type for e1: e2. In general, the rule App mayconstrain the types T1 and T2, thereby gaining information about the behavior of e1 and e2 in the context e1:e2.For example, in cond: hseqof: isint;�; signali the argument of � is always a sequence of integers; thus �intcan replace �; as discussed above, provided the type information for � is precise. Suppose cond has type T1 andhseqof:isint; �; signali has type T2. For App(T1; T2) to tightly constrain the type of �'s argument, the type T1should express the following properties: cond takes a sequence of functions hf1; f2; f3i as its �rst argument; f1is applied to cond's second argument to determine which arm of the conditional to use; and �nally, f2 is applied1A formal de�nition of conservative requires more development; see Section 7.4

TE ::= ; 	(;; �) = fgj � 	(�; �) = �(�)j TE1 _ TE2 	(TE1 _ TE2; �) = 	(TE1; �) [(TE2; �)j TE1 ^ TE2 	(TE1 ^ TE2; �) = 	(TE1; �) \	(TE2; �)j �x �:TE1 	(�x �:TE1; �) = least T s.t. T = 	(TE1; �[� T])j c(TE1; : : : ;TEarity(c)) see Figure 3Figure 2: Syntax and semantics of type expressions.to values for which f1 is true. Thus, if we wish to infer precise information for �; the type of cond is highlyconstrained|ideally, the type should be f�(cond)g to avoid losing information.Similar arguments can be constructed for many of the primitive functions using simple and typical programs.Within the framework of types as sets of values, the most general solution to this problem is to admit arbitraryfunctions from types to types as types; this allows unlimited precision in the types of primitive functions. However,if types are arbitrary functions, it is very di�cult to test whether T1 � T2. As we shall see, the ability to comparetypes is important not only for enabling optimization, but also for the precision of type inference itself.Our solution to this dilemma is to rede�ne types as sets of expressions. The type of cond becomes just the setof expressions fcondg; and knowledge about the behavior of cond is captured through a separate mechanism oftype rewrite rules. The advantage of this approach is that types have simple semantics (making it possible to testwhether T1 � T2) while still allowing arbitrary precision (embodied in the type rewrite rules).3.2 Related WorkIt is interesting to examine the e�ect de�ning types as sets of values has had on other type systems for dynamicallytyped languages. Thatte presents a type system for Lisp designed to detect statically some type errors [Tha88].The system extends the Hindley/Milner type system [Mil78] with one new type
 representing the set of all values;thus, every expression has type
. This is probably the simplest extension of Hindley/Milner that is adequatefor dynamically typed languages. Unfortunately, the typing algorithm Thatte presents for this minimal extensionmay diverge. Furthermore, the system cannot precisely type some simple expressions; for example, the expressions1: h1; ai has type
 because heterogeneous sequences have type List(
).At the other extreme, Young and O'Keefe present a type evaluator for a lazy dialect of Scheme [YO88]. Thissystem is strikingly similar to our system in some respects, but types are sets of values. Scheme itself serves as thetype language; thus, any function from types to types is a type. As discussed above, this presents serious problemsin comparing types. Young and O'Keefe use a conservative test for type equality. In contrast, a di�erent de�nitionof type leads us to a more robust subset test. Other algorithms on types (such as type intersection and union) arealso correspondingly weaker in their approach because of the di�culty of handling function types.Several type systems have been proposed for FP [GHW81, Fra81, Kat84]. The drawbacks of using theseapproaches for FL type inference are the essential �rst-order nature of the systems and the inability to automaticallyinfer types for recursive data structures.Regular trees have been used before in a type language for a statically-typed, �rst-order functional language[MR85]. There are two essential di�erences in our approach. First, in our system regular trees are the only5

TE ::= TE1 7! TE2 	(TE1 7! TE2; �) =fhe0; : : : ; enije0 2 	(TE1; �) ^ he1; : : : ; eni 2 	(TE2; �)gj TE1:TE2 	(TE1:TE2; �) = fe1:e2je1 2 	(TE1; �) ^ e2 2 	(TE2; �)gj � tag;TE1 � 	(� tag;TE1 �; �) = f� tag; e � je 2 	(TE1; �)gj Null 	(Null; �) = fhigj
 	(
; �) = feje is a normal formgj Int 	(Int; �) = f: : : ;�1; 0; 1; : : :gj cond 	(cond; �) = fcondgFigure 3: The constructors.mechanism for expressing types; in [MR85] a separate function-space constructor is used for function types. Second,we require arbitrary type union, whereas [MR85] uses discriminated unions. Regular trees have also been used inthe static analysis of logic programs [HJ90].4 The Type LanguageLet � be a set of type constructors and let � be a set of type variables. We use c for elements of � and �; �; : : :for elements of �. A syntax and semantics for type expressions is given in Figure 2. Let T be a type expression.An occurrence of � in T is bound if it is in the scope of �x �:T 0; otherwise � is free. Except for the presence of freevariables, type expressions are regular trees [GS84]. An environment � is a function from type variables to sets ofexpressions. The type meaning function 	 maps type expressions and environments to sets of expressions.De�nition 4.1 Let T1 and T2 be type expressions. Then T1 � T2 if 8� 	(T1; �) � 	(T2; �), and T1 = T2 ifT1 � T2 and T2 � T1.Recall from Section 3 that the goal of type inference is to assign conservative argument types to every functionin a program. Since FL has call-by-value semantics, the argument of a function is always in normal form. Thisleads to the following de�nition of type.De�nition 4.2 Let
 be the set of all normal forms, let � be the substitution such that 8� � (�) =
, and let Tbe a type expression. T is a type if 	(T; �) �
.From this point, we use e for arbitrary expressions, v for expressions in normal form, T for type expressions, andV for types. We omit environments and write e 2 T for e 2 	(T; �) when a statement is quanti�ed over allenvironments �.A subset of the constructors for our type language is given in Figure 3. We use in�x notation for constructorsto emphasize the relationship with the syntax of FL (Figure 1). In addition to the constructors listed, there is aconstructor f for each primitive function f . There are also constructors covering the atoms: Char, Int, Real, andFalse are used in examples. Other useful types are listed in Figure 4.Type expressions precisely describe common programming structures. Every primitive function f is exactlydescribed, since f = ffg. Applications are also captured; for example, the expression cond: hseqof:isint; �; idiis the only element of the type cond: [[seqof: isint; �; id]]: Regular trees naturally describe recursive structures.6

Num = Int _Real Exc = � err;
 �True = :(False_ Exc) Seq = �x �:Null_ (
 7! �)Func = fvjv is a function g [[T1; : : : ; Tn]] = T1 7! (: : : 7! (Tn 7! Null) : : :)Figure 4: Some useful type expressions.�:v !FL � 1 � v1 � : : : � vn if v = hv1; : : : ; vni vi 2 Num� err; < \�"; v >� otherwise MULTv 6= hv1; v2; v3i _ 9i vi 62 Funccond:v !FL � err; \cond"; v >�CONDERR v1:v4 !FL v5; v5 2 Exccond: hv1; v2; v3i:v4 !FL v5COND1v1:v4 !FL v5; v5 2 True; v2:v4 !FL v6cond: hv1; v2; v3i:v4 !FL v6COND2 v1:v4 !FL v5; v5 2 False; v3:v4 !FL v6cond: hv1; v2; v3i:v4 !FL v6COND3Figure 5: Sample FL rewrite rules.The set of sequences of type V (henceforth Seqof(V)) is �x �:null_ V 7! �. Binary trees with leaves of type V are�x �:[[�; �]]_ V . More interestingly, a type expression for an iterated constant function that (eventually) returnsan element of V is �x �:K: (�_ V). Finally, type expressions support unrestricted type union. This is necessary forthe precise typing of conditionals, for example, since the types of the two branches need not be the same.Type expressions have many useful properties. From Figure 2 type expressions are closed under union, intersec-tion, and least �xed-point operations. Type expressions with no free variables are closed under complementation.It is also decidable whether T = ; [GS84] and whether T1 � T2 [Mur90]. We have developed a fast heuristic (basedon the work of [MR85]) for the following problem: Given two types T1 and T2, �nd a most general substitution �such that 	(T1; �) � 	(T2; �). A heuristic is required because �nding a substitution is PSPACE-hard in general[Mur90]. The heuristic works well; we have yet to �nd an example in practice where its use adversely a�ects theprecision of type inference.We conclude this section with two brief comments on the implementation of types. First, for increased precision,our system propagates an atom (e.g., 1) instead of its type (e.g., Int) insofar as possible.2 For clarity, atoms are usedin types in the examples. Second, while the de�nition of type expressions given in Figure 2 is easy to understand,it does not lead to the best algorithms. An alternative representation, known as regular �X-grammars [GS84] orleaf-linear systems of equations [MR85], is used in our implementation.5 Type RewritingOur type inference algorithm is an abstract interpretation [CC79, Nie85] of an operational semantics of FL. Thecorrectness of type inference is established by comparing two rewrite relations: the standard evaluation relation2Including atoms as types prevents a crisp statement of some results; thus, the exclusion is for pedagogical reasons.7

8i � n ei !FL vie!FL v whereei = Ei�1(e; v1; : : : ; vi�1)v = En(e; v1; : : : ; vn) 8i � n Ti !T ViT !T V whereTi = Ei�1(T; V1; : : : ; Vi�1)V = En(T; V1; : : : ; Vn)Figure 6: The general form of an FL rewrite rule and its type rewrite rule abstraction.!FL on FL expressions, and an abstract evaluation relation!T on type expressions. This section solves a simpli�edtype inference problem: De�ne !T on type expressions such that when e 2 T , e!FL v, and T !T V , then v 2 V .Section 6 alters the abstract rewrite relation to guarantee termination and to precisely type recursive functions.Section 7 presents a full solution to the type inference problem based on the abstract rewrite relation.We begin by writing the operational rewrite rules of FL in the structural style advocated by Plotkin [Plo].Rewrite rules in this style are presented as inference rules of a formal logic; a rule is read as asserting that ifthe subgoals above the line hold, then the conclusion below the line holds. A proof of e !FL v in this logic is acomputation tree showing the evaluation of e. Examples of FL rewrite rules for the functions � and cond are givenin Figure 5.Type rewrite rules rewrite type expressions to types. Type rewrite rules are given in the same style as FLrewrite rules, with one type rewrite rule corresponding to each FL rewrite rule. The general form of an FL rewriterule and its corresponding type rewrite rule is given in Figure 6. (The constraint that the number of subgoalsbe the same in corresponding FL and type rewrite rules can always be satis�ed by padding rules with \dummy"subgoals.) The following de�nition provides a condition for the correctness of a type rewrite rule.Constraint 5.1 (Conservative Rules) Let RFL and RT be corresponding FL and type rewrite rules as shownin Figure 6. RT is conservative with respect to RFL if8i; T; V1; : : : ; Vi�1 fEi(e; v1; : : : ; vi�1)je 2 T; vj 2 Vjg� Ei(T; V1; : : : ; Vi�1)If all type rewrite rules satisfy this constraint, then type rewriting is conservative with respect to the standardsemantics.Theorem 5.2 Suppose e!FL v and T !T V . If type rewrite rules are conservative and e 2 T , then v 2 V .Sample type rewrite rules for � and cond are given in Figure 7. In practice, we have found that precise typeinference requires sophisticated type rewrite rules such as TCOND. For precision, it is important to know for whicharguments the functions in V1 are true and false. To approximate this, we have implemented a conservative typeinversion function with the propertyV �1(V 0) � fvjv00 : v !FL v0; v0 2 V 0; v00 2 V gUsing TCOND, and others rules not speci�ed here, the type system proves the following:cond: [[seqof: isint; �; signal]]:
 !TInt _ � err;:Seqof(Int) �8

�:V !T (IF V ^ Seqof(Int) 6= ; THEN Int ELSE ;) _(IF V ^ Seqof(Num) ^ :Seqof(Int) 6= ; THEN Num ELSE ;) _� err; [[\�"; V ^ :Seqof(Num)]] � TMULTV 6� X whereX = [[Func;Func;Func]]cond:V !T cond: (V ^X)_ � err; < \cond"; V ^ :X >� TCONDERRV1:V4 !T V5; V2: (V �11 (True) ^ V4) !T V6; V3: (V �11 (False) ^ V4) !T V7cond: [[V1; V2; V3]]:V4 !T (V5 ^ Exc) _ V6 _ V7 TCONDFigure 7: Sample type rewrite rules.T !T
TERM 8i � n A [fT 0 !T V 0g ` Ti !T Vi T 0 � T V � V 0A ` T !T VREC A [fT !T V g ` T !T VASSUMEFigure 8: Type rewrite rules to guarantee termination.6 TerminationAn implementation of type rewriting as de�ned so far would be correct but would also frequently fail to terminate.Consider the following function, which is the identity on sequences:def f � isnull! []; al � [s1; f � tl]This example introduces FL's function de�nition mechanism. We assume, without loss of generality, that the righthand side of a function de�nition is a function in normal form. For each function de�nition def f � v in a program,a constructor f is added to the type language, a type V is computed such that v 2 V , and a new type rewrite rulef !T V is de�ned.Consider the type application f:Seq: A proof P of f:Seq !T V must correspond, step for step, with proofs pvof f:v !FL v0 for every v 2 Seq. But there is no �nite proof P , since there is no bound on the size of all pv. In animplementation, type rewriting diverges searching for the proof P .Figure 8 de�nes new type rewrite rules TERM and ASSUME; REC is a scheme for modifying all type rewriterules of the form given in Figure 6. The rule TERM can always be applied to prevent type rewriting from diverging.However, using TERM usually results in a great loss of information, so it is used only if other techniques fail.The most important technique for guaranteeing the termination of type rewriting is embodied in REC andASSUME. In general, to use a REC rule a substitution � is needed such that T 0� � T� and V � � V 0�. The systemtries to �nd a most general substitution � that maximizes the domain T of the type rewriting and minimizes therange V .Our implementation uses several heuristics to discover a valid assumption T 0 !T V 0 for REC. We illustratethe most important heuristic using the function f above. In evaluating f:Seq , the system �rst discovers that this9

S � fV g [fXj9Y 2 S s.t. Fun(Y):
L!T Xg
L:V !T
L _ _X2SX CONTEXTwhere Fun(V) = ff jf is a subexpression of e 2 V gT !T
Lab(T) TERMFigure 9: Additional type rewrite rules.H :: Label � Int! Type(H1 tH2)(l; n) = H1(l; n) [H2(l; n)H1 � H2 , 8l; n H1(l; n) � H2(l; n)He(l; n) = fvnjvn 6= ?^ l:f:v1: : : ::vn 2 [P2Pe Conc(P)gHT (l; n) = �
L if T 0 !T
L 2 Conc(PT) ^ l 2 L where L = Lab(T 0)SfVnjl:f:V1: : : ::Vn 2 Conc(PT)g otherwiseFigure 10: History functions.recursively involves the computation of f:Seq; when the occurrence of f in the body is applied. Since f:Seq � f:Seqthe system adds the assumption f: Seq !T �; where � is a new type variable, and applies ASSUME. In the laststep of the proof, the system has derivedff : Seq!T V 0g ` f : Seq!T V whereV = �V 0 = Null_ (
 7! (� ^ Seq))_ � err; h\al"; � ^:Seqi �At this point, to apply a REC rule a substitution � is needed such that V � � V 0�. In this case the system �ndsthe most general substitution [� �x �:V]. Since �x �:V = Seq, the �nal result is a proof that f:Seq!T Seq:Note that the type V precisely describes the possible outcomes of the body of f under the assumption that freturns type �. In particular, V shows that the body of f produces a modi�ed sequence for every sequence in �,and an append-left (\al") exception for every non-sequence in �. The application of REC in the �nal step provesthat no append-left exceptions can arise.7 Type InferenceA collecting interpretation [Nie85, HY88] is an abstract interpretation that gathers information about the subex-pressions of an expression. This section uses proofs in the logic !T and a simple way of de�ning collecting inter-pretations to solve the type inference problem stated in Section 3: to determine constraints upon every function'suse in a given context. Without loss of generality, we assume that the context is a normal form expression.10

We �rst formalize the result of type inference. Following [HY88], we extend FL's syntax to distinguish occur-rences of a primitive function f by labelling each with a unique label l (writing l:f).3 For higher-order functions, itis useful to have type information for every curried argument, not just the �rst. Thus, the result of type inferenceis a history function (see Figure 10) which associates a type with each label l and argument number n.It is straightforward to modify the FL and type rewrite rules to propagate, but otherwise ignore, labels. In-troducing labels changes the de�nition of types, however: l1:f and l2:f are distinct expressions if l1 6= l2, since wewish to track occurrences of functions individually. De�ne Lab(e) (resp. Lab(T)) to be the set of labels in e (resp.T). Let L be a set of labels. We de�ne a family of types
L = fvjLab(v) � Lg.The next step is to identify the proofs in !T that express the type information we wish to capture aboutfunctions in v. Type information must be computed for all surrounding contexts in which v might be used; thatis, type information is needed for v0: v for all contexts v0. The rule CONTEXT in Figure 9 accomplishes this; itanalyzes not just v, but also any components of v that are accessible (e.g., if v is a sequence of functions) and anyfunctions that v might return (if v is a higher-order function). In general, �nding a �nite set S in rule CONTEXTrequires use of the rule TERM to ensure closure, although this is rare in practice. For increased accuracy in thepresence of labels, the rule TERM is modi�ed as shown in Figure 9.The conclusion of rule CONTEXT may seem strange for a precise type system; after all,
L contains everycomputable function. We are not interested in the conclusion, however, but in the structure of the proof itself andwhat it shows about the possible arguments of functions. The rest of this section develops two history functions,He for proofs in!FL and HT for proofs in !T. The following de�nition formalizes a correctness condition for HT .De�nition 7.1 (Conservative) Let T be a type expression and let HT be a history function. HT is conservativeif HT � Fe2T HeWe �rst de�ne a history function for !FL. This is complicated by the fact that no proof of the form e !FL vexists in general (i.e., e may diverge). To account for histories of non-terminating computations, a new rewrite rulee !FL ? is added and all other are rules are modi�ed to enforce strictness with respect to ?. The modi�cationsare easy and omitted for lack of space. Let Pe be the set of all proofs of e!FL v, and let Conc(P) be the set of allconclusions v1:v2!FL v3 in a proof P . The history function He de�ned in Figure 10 is precise in that all the stepsof the proof are recorded (thus the name \history").Let PT be the proof of the form ` T !T V discovered by the type system. The de�nition of a history functionH for!T is given in Figure 10. The only di�culty is the rule TERM; the most precise history information inferablefrom T !T
Lab(T) is that functions in T could be applied to any argument.Theorem 7.2 The de�nition of HT given in Figure 10 is conservative.Let v be an FL expression in which every primitive function has a unique label. The result of type inference isthe history function HT , where T =
;:V and v 2 V .3Labels may be drawn from any countable set. 11

8 Conclusions and Future WorkWe have presented a type inference algorithm for FL based on an operational view of types where types are setsof expressions. This approach inherently sacri�ces some of the potential power in a system where types are sets ofvalues. For example, in our system there is no direct way to prove any relationship between the functions id andid � id , even though these expressions denote the same value. However, a system such as ours requires heuristicsat some level, since perfectly precise information is uncomputable. Our implementation has convinced us that thisdesign is a good one; this approach seems to match very well with programming styles used in practice.The main barrier to a completely practical system is performance. The current implementation tries to makethe proof search fast. Memoization [Mic68] is used extensively to avoid recomputation and there is no backtrack-ing. However, the underlying algorithm is still exponential in the worst case, since the size of the proof may beexponential in the size of the original program.A promising solution to this problem is to adapt the idea of principal types from statically typed languages[DM82]. Consider the function f from Section 6. At present, the system must derive the entire proof f:Seqof(V)!TSeqof(V) every time it is needed. Instead, the system could prove once that f: Seqof(�) !T Seqof(�) and thenspecialize this fact when needed. This introduces no new ideas; the system is already powerful enough to provef: Seqof(�) !T Seqof(�): The di�culty is that, in general, there is no \most general" rewriting f:V !T V 0 of ffor which every other rewriting is obtainable by substitution. The problem, then, is to identify heuristics whichaccurately predict when the potential cost in precision is small enough that it is worthwhile to use a specializationof a general fact.9 AcknowledgementsThe authors would like to thank the FL group (John Backus, Thom Linden, Peter Lucas, Paul Tucker, JohnWilliams, and Ed Wimmers) for many useful discussions and a congenial working environment. Discussions withEd Wimmers helped to clarify many of the semantic issues. Paul Tucker assisted with the implementation. It isalso a pleasure to thank Carl Gunter, John Mitchell, Uday Reddy, Moshe Vardi, Jennifer Widom, John Williams,and Ed Wimmers for their comments on earlier versions of this paper.
12

References[B*89] J. Backus et al. FL Language Manual, Parts 1 and 2. Research Report RJ 7100, IBM, 1989.[Bac78] J. Backus. Can programming be liberated from the von Neumann style? a functional style and itsalgebra of programs. Communications of the ACM, 21:8, 1978.[CC79] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Sixth Annual ACMSymposium on Principles of Programming Languages, pages 269{282, January 1979.[DM82] L. Damas and R. Milner. Principle type-schemes for functional programs. In Proceedings of the NinthAnnual ACM Symposium on the Principles of Programming Languages, pages 207{212, 1982.[Fra81] G. Frank. Speci�cation of data structures for FP programs. In Proceedings of the 1981 Conference onFunctional Programming Languages and Computer Architecture, pages 221{228, 1981.[GHW81] J. Guttag, J. Horning, and J. Williams. FP with data abstraction and strong typing. In Proceedings ofthe 1981 Conference on Functional Programming Languages and Computer Architecture, pages 11{24,1981.[GS84] F. Gecseg and M. Steinby. Tree Automata. Academei Kaido, Budapest, 1984.[HJ90] N. Heintze and J. Ja�ar. A �nite presentation theorem for approximating logic programs. In POPL17,pages 197{209, January 1990.[HMT89] R. Harper, R. Milner, and M. Tofte. The De�nition of Standard ML|Version 3. Technical Re-port ECFS-LFCS-89-81, Laboratory for Foundations of Computer Science, University of Edinburgh,1989.[HWA*88] P. Hudak, P. Wadler, Arvind, B. Boutel, J. Fairbairn, J. Fasel, J. Hughes, T. Johnsson, D. Kieburtz,S. P. Jones, R. Nikhil, M. Reeve, D. Wise, and J. Young. Report on the Functional ProgrammingLanguage Haskell. Technical Report DCS/RR-666, Yale University, December 1988.[HY88] P. Hudak and J. Young. A collecting interpretation of expressions (without powerdomains). In Proceed-ings of the 15th Annual ACM Symposium on the Principles of Programming Languages, pages 107{118,1988.[Kat84] T. Katayama. Type inference and type checking for functional languages: a reduced computationapproach. In Conference Record of the 1984 ACM Symposium on Lisp and Functional Programming,pages 263{272, August 1984.[Mic68] D. Michie. `Memo' functions and machine learning. Nature, (218):19{22, April 1968.[Mil78] R. Milner. A theory of type polymorphism in programming. J. Comp. & Sys. Sci., 17:348{375, 1978.[MR85] P. Mishra and U. Reddy. Declaration-free type checking. In Proceedings of the Twelfth Annual ACMSymposium on the Principles of Programming Languages, pages 7{21, 1985.[Mur90] B. R. Murphy. A Type Inference System for FL. Master's thesis, MIT, 1990.[Nie85] F. Nielson. Program transformations in a denotational setting. ACM Transactions on ProgrammingLanguages and Systems, 7(3):359{379, July 1985.[Plo] G. D. Plotkin. A structural approach to operational semantics. Text prepared at University of Aarhus.[Tha88] S. Thatte. Type inference with partial types. In Automata, Languages and Programming: 15th Inter-national Colloquium, pages 615{629, Springer-Verlag Lecture Notes in Computer Science, vol. 317, July1988.[YO88] J. Young and P. O'Keefe. Experience with a type evaluator. In D. Bj�rner, A. P. Ershov, and N. D.Jones, editors, Partial Evaluation and Mixed Computation, pages 573{581, North-Holland, 1988.

