# **Chapter 12 Reproduction**

Ning Song Dept. Physiology Qingdao University Email: ningdoc@yahoo.com.cn

- The primary reproductive organs are known as gonads: Testis in the male
  Ovary in the female
- The gonads serves dual function:
  - (1) Gametogenesis take places sperm/ova(2) Secrete steroid hormones (sex hormone)
- Primary sex hormones:

Testosterone in the male

Estradiol and progesterone in the female

Section 1 Testis endocrine & male reproduction

#### Section 2

# Ovarian endocrine & female reproduction

# Section 1 Testis endocrine and male reproductive physiology

- Spermatogenesis: formation of sperm
- Endocrine functions of testis
- Regulation of testis function

# Male reproductive system



# Male primary sex organ: Testis

# Spermatogenesis of Testis

- 1. The process of spermatogenesis
- 2. The transport of sperms and ejaculation

#### **Testis Anatomy**



Cross section of an area of testis

#### Spermatogenesis

#### **Sperm Production in the Testis**



# Spermatozoa Structure and Functions in Review

#### • Head

- Acrosome:
- Nucleus:
- Midpiece
  - Centrioles:
  - Mitochondria:
- Tail: flagellum
  - Microtubules:



- The scrotum normally maintains a temperature -2°C lower than internal body temperature.
- The entire process of spermatogenesis takes approximately 64 days.
- The prostate gland and seminal vesicles secret most of the fluid in which ejaculated sperms are suspended. The fliud, plus sperm cells, constitute semen (3~6ml, 20-100 million).

# Sertoli Cell Function

- Sertoli Cells
  - Nourish healthy cells & phagocytize damaged germ cells
  - Blood-testis barrier
  - Secrete fluid & hormones
  - (1) inhibin,

(2) and rogen-binding protein (ABP)

- Leydig cells (Interstitial cells)
  - Secrete androgen

Association of Germ Cells with Sertoli Cells



• The sperm-producing and testosterone-

producing functions of the testes are carried out

by different structures- the seminiferous tubules

& Leydig cells, respectively.

# Major Testicular Steroids (Androgens)

OH (100)• () = Relative D activity where T activity=100 B HC ЭH Testosterone Androgens are C19 lacksquareAndrosterone steroids (250)Majority of 5 a-DHT is formed in 5-a-Dihydrotestosterone Androstenedione peripheral tissues

#### Male Sex Steroid Synthesis



Cholesterol may be from plasma or de novo synthesis

#### Transport of Sex Steroids in Males

- Major Sex Steroid Binding Proteins
  - Testosterone-Estrogen (Sex hormone) Binding Protein
    - One high affinity binding site
    - Binding affinity order for sex steroids =
      - » DHT (100) >T (33) >E (25)
  - Albumin
    - One low affinity binding site
  - Cortisol Binding Globulin
    - No binding to DHT, T or E. Binds Progesterone
- Normal Distribution in Blood

TEBG (30%), Albumin (68%), Free (2%) Active fraction includes free + albumin-bound fraction

# Androgen Activity

#### 1. Maintain (not initiate) Spermatogenesis



- GnRH
- $\rightarrow$  LH
- $\rightarrow$  Leydig cells
- $\rightarrow$  testosterone
- $\rightarrow$  Sertoli cells
- → Dihydrotestosterone (DHT)
- → spermatocyte maturation

# Androgen Activity

- Stimulates the growth of reproductive organ, stimulates the development of secondary sexual characteristics, maintains sexual function
- Promotes the synthesis of protein (muscle & reproductive organ), increase bone growth & erythropoiesis
- 4. Stimulates the embryo differentiation

Increased atheletic performance Increased basal metabolic rate, red blood cell density & oxygen utilization

#### **Regulation of testes functions**

- 1. Control of testes functions by hypothalamus and pituitary
- 2. Feedback regulation of testes hormones



Figure 26-11: Hormonal control of spermatogenesis

18



**ABP: androgen binding protein** 

# Section 2 Female reproductive physiology

- Folliculogenesis : formation of follicle
- Endocrine functions of ovary
- Regulation of ovary function

## Female reproductive system



The structure & function of the uterus are synchronized with the ovarian cycles

21

# **Oogenesis of Ovaries**

#### 1. The process of follicle maturation

#### 2. Ovulation & formation of corpus luteum

#### Follicular maturation



#### Follicular Structure



At birth: 2-4 million Puberty: less than 30000 500 during a lifetime

# **Ovulation:**

At about the 14<sup>th</sup> day of the cycle, the distended follicle ruptures, and the ovum is extruded in to the abdominal cavity. This is the process of ovulation

## Formation of corpus luteum:

•The follicle that ruptures at the time of ovulation promptly fills with blood, forming a corpus hemorrhagicum.

•The granulosa cells and theca cells of the follicle lining begin to proliferate, and the clotted blood is replaced with yellowish, lipid-rich corpus luteum.

•This eventually forms corpus albicans without pregnancy

# **Ovarian Cycle**

#### Ovulation Egg released



# Follicular phase

Luteal phase

Egg matures

# Uterine (Menstrual) cycle

#### Endometrium changes



Proliferative phase Regenerate Secretory phase Prep for blastocyst

Endometrium: highly vascularized, slightly edematous Glands: coiled & tortuous



#### **Endocrinal function of ovaries**

(estrogen, progesterone, inhibin, androgen)

Follicular phase: granulosa cells & theca cells

Estrogen, small amounts of progesterone, inhibin

Luteal phase: luteal cells

Estrogen, progesterone, inhibin

#### Two cell-two gonadotropin scheme



Physiological effects of estrogen Estradiol (main), estrone, estriol

- \* Development of female reproductive organs Uterine tube、 Uterus 、 Vagina
- \* Development the breast and secondary characteristics
- \* Effect on metabolism: bone, kidney, brain aldosterone

# Menopausal symptoms

- Hot flash, depression, mood swings, sleeping disorders
- Vaginal dryness
- Osteoporosis, cardiovascular

disease, neurodegenerative

diseases



# Physiological effects of progesterone

#### On the basis of estrogen

- \* Uterus: implatation & pregnancy
- \* Effect on the breast
- \* Increase basal body temperature

#### **Regulation of Ovary function**

#### **Hypothalamic-Pituitary-Ovary Axis**



# Endocrine Control of ovary Cycle: Follicular Phase

- GnRH rises in response to a decline in sex steroids
- GnRH stimulates rise in pituitary FSH & LH secretion.
- FSH stimulates new follicle growth
- LH induces thecal cell growth, vascularization & androgen synthesis



- LH act on thecal cells and FSH acts on granulosa cells, E produced.
- Inhibin↑ pushes FSH down , ↓ new follicle development
- E+ feedback
- Estrogen ↑ → LH "surge" & FSH spike → egg release





# Endocrine Control of Menstrual Cycle: Luteal phase

- Granulosa cells form corpus luteum  $\rightarrow$  progesterone
- progesterone & estrogen ↑ maintain endometrium
- Inhibin continues to limit new follicular development
- Pregnancy: progesterone, estrogen  $\uparrow$
- No pregnancy: progesterone, estrogen & inhibin  $\downarrow$ 
  - Menses,  $\uparrow$  FSH & LH  $\rightarrow$  new follicle development



#### 40

#### **Overview of the Menstrual Cycle**



41

# Placenta and Further Embryonic

#### Development



Figure 26- 19a, b: The placenta

# **Birth: Parturition**

#### • Labor

- Rhythmic
- Uterine
- Contractions
- Cervical dilation (induced by relaxin)
- Delivery
  - Baby
  - Placenta

(initiated by a fetal signal)

(stretch induces release of oxytocin)

(oxytocin continues uterine contractions)

### **Birth: Parturition**



## **Regulators of Parturition**

lacksquare

 $\bullet$ 

•



Figure 26-21: The positive feedback loop of parturition 45

## **Reproductive Maturation: Puberty**

- Increase production of sex hormones
- Maturation of reproductive organs & gamete production
- 2<sup>0</sup> sexual characteristics
  - Males: pubic hair, beard, deep voice, "wedge" body form & 1 muscle mass
  - Females: menarche, pubic hair, breasts & "pear shape" body form

# Later in Life

- Menopause: Female "Change-of Life"
  - Ovaries responding to GnRH  $\downarrow$
  - Levels of estrogen & progesterone produced  $\downarrow$
  - Cease egg development
  - "Hot flashes" , osteoporosis risk  $\uparrow$
- "Andropause" (?): Male changes are gradual
  - Testes responding to GnRH  $\downarrow$
  - Sex hormones  $\downarrow$  : muscle mass, libido, erections  $\downarrow$

# **Chapter 12 Review question**

- Describe the sertoli cells functions
- Define the different phases in ovary cycle and corresponding menstrual cycle.
- Describe the endocrine control of follicular phase
- Describe the endocrine control of luteal phase