Chapter 7

Energy Metabolism and Body Temperature

Xu Hua Min (徐华敏)

Qingdao University

Section 1 Energy Metabolism

Section Outline

Energy metabolism
Factors affecting the metabolic rate
Basal metabolism

Material metabolism

Anabolism: take up energy

Catabolism: liberate energy

Energy metabolism

1.Energy metabolism

Energy metabolism: the production, storage, transformation, release and utility of energy during the process of material metabolism.

Energy sources

Carbohydrates: mainly glucose 70%

Fat 30%

protein

Skeletization cachexia

Fat

Major form of energy storage Alternative Energy Source

Proteins

Proteins are made up of amino acids.

In contrast to glucose and fatty acids, amino acids can be stored until needed.

Energy Transformation

High-energy phosphate compounds

Adenosine triphosphate (ATP)

Creatine phosphate (CrP)
 (phosphorylcreatine)

ATP: "Energy Currency"

- The key substance in energy transformationand utilization
- ATP is generated by combustion of carbohydrates, fats and proteins
- Energy from ATP can be used
 - Synthesis and growth
 - Muscular contraction
 - Glandular secretion
 - Nerve conduction
 - Active absorption

A combination of adenine, ribose and three phosphate radical.

Two phosphate radicals are connected with the reminder of the molecule by so called high-energy bonds. The amount of free energy in each of these high –energy bonds per mole of ATP is about 12,000 calories in the body.

It functions as an intracellular energy source.

CrP: an ATP "buffer"

- Another energy-rich
 phosphate compound
 found in muscle
- CrP is an important

energy store for ATP

This keeps the concentration of ATP at an almost constant high level as long as any Crp remains.

Output:

- Performing essential metabolic functions of the body
- Performing various physical activities
- Digesting ,absorbing, etc
- Maintaining body temperature

obesity

Energy intake>energy expenditure

Abnormal feeding regulation Psychogenic factors Neurogenic abnormalities Genetic factors Childhood overnutrition

Your 'body mass index' or **BMI** is a measure of body fat based on height and weight. A BMI of:

•under 20 = underweight

420-25 = normal

$BMI = Weight/(Height)^2(Kg /m^2)$ For example: A 70kg person with a height of 180cm $BMI = \frac{70}{(1.8)^2} = 21.6 \text{ (Kg /m^2)}$

(1) Metabolic rate

Total energy expenditure per unit time.

Usually expressed as the heat production per hour, per square body surface area (kJ/m² ·h).

(2) Measurement of energy metabolism

Laws of Thermodynamics

In the closed system, energy is neither created nor lost.

$\Delta \mathbf{E} = \mathbf{H} + \mathbf{W}$

- ΔE Internal energy liberated
 - H heat
 - **W** Energy used to perform work

A person ordinarily is not performing any external work, the whole body metabolic rate can be determined by simply measuring the total quantity of heat liberated from the body in a given time.

Measurement of metabolic rate

Direct calorimetry

Indirect calorimetry

Insulation airtight room

Indirect calorimetry

In a normal chemical reaction, the quantity of products are proportionable to the quantity of the substrate, this is called **constant proportional law.**

 $C_6H_{12}O_6 + 6O_2 = 6CO_2 + 6H_2O + \triangle H$

1)Thermal equivalent

The number calories produced by 1gm of food stuff, when it is completely oxidized ,is called thermal equivalent of the food.

 Oxidized in the body: biologic thermal equivalent Burnt outside the body: physical thermal equivalent The thermal equivalent of the three nutrition substance (kJ/g) 						
Nutrition substance	physical thermal equivalent	biologic thermal equivalent				
Carbohydrate	17.15	17.15				
Protein	23.43	17.99				
fat	39.75	39.75				

Proteins could not be oxidized totally in the body.

2)Thermal equivalent of oxygen

The amount of calories produced by per liter of oxygen.

When 1 liter of oxygen is metabolized with glucose, 5.01 cal are released; with fat, 4.70 cal; and with protein, 4.60 cal.

3) Respiratory quotient (RQ)

The ratio of the volume of carbon dioxide (CO_2) produced to the volume of oxygen (O_2) consumed per unit of time

 $RQ = \frac{CO_2 \text{ produced (ml)}}{O_2 \text{ consumed (ml)}}$

- Carbohydrate: 1.0
- Fat: 0.70
- Protein: 0.8
- Average diet: 0.85 (0.70-1.0)

4)non-protein respiratory quotient (NPRQ)

Because oxidization to supply energy is not the major function of the protein, generally, the energy mainly comes from the catabolism of carbohydrate and fat.

Usually, the RQ is calculated by the ratio of CO_2 production to O_2 consumption on the basis of approximate proportion of mixed carbohydrate and fat, which is called non-protein respiratory quotient (NPRQ).

NPRQ	carbohydrate (%)	fat (%)	thermal equivalent of oxygen
0 707	0.00	400.0	
0.707	0.00	100.0	19.61
0.71	1.10	98.9	19.62
0.72	4.76	95.2	19.67
0.73	8.40	91.6	19.72
0.80	33.4	66.6	20.09
0.81	36.9	63.1	20.14
0.82	40.3	59.7	20.19
0.83	43.8	56.2	20.24
0.84	47.2	52.8	20.29
0.85	50.7	49.3	20.34
0.86	54.1	45.9	20.40

Different composition

_ _ _ _ _ _ _ _

Measuring the metabolic rate

- Measurement of O₂ consumption and CO₂ production.
- Measurement of urea nitrogen----protein oxidized and the heat produced by protein.
- Calculation of O₂ consumption and CO₂ production of nonprotein nutrition----NPRQ----heat produced by non-protein nutrition
- Total heat = heat produced by protein + heat produced by non-protein nutrition

3. Factors affecting energy metabolism

- Muscular exertion
- Emotional state
- Specific dynamic action, SDA
- Environmental temperature

Other factors affecting energy metabolism

(1) Muscular exertion

Exercise $\rightarrow O_2$ consumption $\checkmark \rightarrow$ metabolic rate \checkmark

Energy expenditure during different types of activity for a 70 kg person

FORM OF ACTIVITY	ENERGY Kca	
Lying still, awake	77	
Sitting at rest	100	
Typewriting rapidly	140	
Dressing or undressing	150	
Walking on level, 4.3 km/h (2.6 mi/h)	200	
Bicycling on level, 9 km/h (5.5 mi/h)	304	
Walking on 3 percent grade, 4.3 km/h (2.6 mi/h)	357	
Sawing wood or shoveling snow	480	
Jogging, 9 km/h (5.3 mi/h)	570	
Rowing, 20 strokes/min	828	

Oxygen debt

Physiological state produced by vigorous exercise, in which the lungs cannot supply all the oxygen that the muscles need. In other words, the lungs and bloodstream pumped by the heart, cannot supply sufficient oxygen for aerobic respiration in the muscles.

In such a situation the muscles can continue to break down glucose to liberate energy for a short time using anaerobic respiration. This partial breakdown produces lactic acid, which results in a sensation of fatigue when it reaches certain levels in the muscles and the blood. (2) Emotional state

- The O₂ consumption of brain is
 20 times of muscle.
- There is no difference between

sleep and consciousness.

But at some emotional states

(fear, vexation, agitation), energy production increase.

Anxiety Tension of muscles Metabolic rate 🛹 Thyroid hormone Epinephrine Norepinephrine

(3) Specific dynamic action of food (SDA)

Specific dynamic action of a food is the obligatory energy expenditure that occurs during its assimilation into the body.

- Protein: 30%
- Carbohydrate: 6%
- * Fat: 4%
- Mixed diet: 10%
(4) Environmental temperature

- 20~30° steady
- ♦ <20 ° shivering→metabolic rate </p>
- acceleration of metabolic

process → metabolic rate ✓ ↓ chemical reactions in the body

(5) Other factors

Age

Hormones

Body temperature Sleep

4、Basal metabolism

- Basal metabolism means energy metabolism under basal condition.
- Basal metabolic rate (BMR) means basal metabolism per unit of time (kJ/m²h).
- BMR is expressed as the energy metabolism per unit of time, per square of body surface. KJ/(m2.h)

Stevenson formula

```
Body Surface Area (m<sup>2</sup>) =
```

0.0061 x Height (cm) +0.0128 x Weight (kg)-0.1592

(1) Basal conditions:

- a. Must not have eaten any food for at least 12 hours
- b. After a night of restful sleep
- c. No strenuous exercise
- d. Eliminate all psychic and physical factors
- e. The room temperature is between 20-25 $\,^\circ\!\mathrm{C}$

Basal metabolic rate(BMR): The metabolic rate determined at rest in a room at a comfortable temperature in the thermoneutral zone 12-14 hours after the last meal.

The averaged normal value of BMR (kJ/m²·h)

Age	11-15	16-17	18-19	20-30	31-40	41-50	>50
Male	195.5	193.4	166.2	157.8	158.6	154.0	149.0
Female	172.5	181.7	154.0	146.5	146.9	142.4	138.6

For convenience, the BMR is usually expressed as a percentage increase or decrease above or below the standard normal values.

Measured value – standard value × 100% Standard value

For example

One man, 20 years old, O₂ consumption is:15L/h, body surface area:1.5 m² NPRQ=0.82; Thermal equivalent of oxygen: 20.19 KJ/L BMR:

20.19 KJ/L \times 15L/h \div 1.5 m² = 201.9 KJ/(m².h)

The standard BMR for a man of 20 years old is 157.8 KJ/(m2.h), so the BMR is (201.9- 157.8) \div 157.8 \times 100%=28% above standard. Expressed as +28%.

(3) Significance of BMR

- ♦ normal range : ±10-15%
- pathologic significance: > $\pm 20\%$
- hyperthyroidism: $+ 25 \sim 80\%$
- hypothyroidism : $-20 \sim 40\%$
- The BMR increases about 13% for every 1 rise in body temperature.

Summary

- Energy metabolism refers to the production, storage, transform, release and utility of energy during the process of material metabolism.
- ATP functions as an "energy currency" in metabolism.
- The metabolic rate is the amount of energy liberated per unit of time.
- Strenuous exercise is the factor that causes the most dramatic effect on metabolic rate.
- BMR is usually measured under so-called basal conditions. 47

Section 2 Body temperature and temperature regulation

- Body temperature
- The balance between heat production and heat loss
- Thermoregulation

Poikilothermal

(cold-blooded) animals

Homeothermic animals

身体细长,腿特别长,动作矫健灵活,是陆地上跑得最快的动物,最高时速可达 110 、里。主要分布在非洲开阔的草原上。

Body tempe
1. Shell temperature

Shell temperature

Core temperature

a: 20° C b: 35° C

- Axillary temperature: 36.0~37.4°
- Oral temperature: 36.7~37.7 °C
- Rectal temperature: 36.9~37.9 °C

Esophagus (食管): the temperature in the middle of the esophagus is the same as the temperature in the right atria (右心房) so that in some experiment it is often used as an index of the core temperature.

➤ Tympanic (鼓膜): the temperature of the tympanic is similar to the temperature in hypothalamus (下丘脑), it is often used as the temperature in brain in research.

Important to maintain a stable body temperature

Core Temperature (°C)	Symptoms		
28	muscle failure		
30	loss of body temperature control		
33	loss of consciousness		
37	normal		
42	central nervous system breakdown		
44	death		

1.2 Arrangement of body temperature

Circadian rhythm

Circadian rhythm

Typical temperature chart of a hospitalized patient who does not have a febrile disease. Note the slight rise in temperature, due to excitement and apprehension, at the time of admission to the hospital, and the regular circadian temperature cycle. 56

Lowest at 6:00 am, highest at 6:00 pm (< 1°C)

Suprachiasmatic nucleus in the hypothalamus hyperthyroidism

Sex Adult female > male (0.3°C)

In women, an additional monthly cycle of temperature variation is characterized by a rise in basal temperature at the time of ovulation

A newborn child has a slightly higher temperature than an adult, and the body temperature of a young child is more variable due to the higher metabolic rate.

The old persons have lower body temperature due to the decreased metabolic rate.

Body temperature

	age	6:00	9:00	12:00	15:00	18:00	21:00	24:00	average
mother	43	36.2 ℃	36.8 ℃	37.0 ℃	37.1 ℃	36.9 ℃	36.9 ℃	36.8 ℃	36.8 ℃
father	45	36.3 ℃	36.5 ℃	36.9 ℃	37.0 ℃	36.8 ℃	36.7 ℃	36.6 ℃	36.7 ℃
child	15	36.4 ℃	36.7 ℃	37.1 ℃	37.3 ℃	37.0 ℃	36.9 ℃	36.8 ℃	36.9 ℃

>environmental temperature

2. Balance of body heat

- Heat production (Thermogenesis)
- Heat loss (Thermolysis)

Body temperature is constant when heat gain and heat loss are balanced

2.1 Heat production

- - ≪Extra metabolism caused by
 - Muscular activity
 - Hormones (thyroxine)
 - Sympathetic nervous system
 - *Dietary intake

Main organs of heat production

At rest: viscera (liver) During exercise: skeletal muscles Main organs of heat production in the body

	Percentage in	heat production (%)			
	Body Weight	at rest	working		
Brain	2.5	16	1		
viscera (especially liver)	34	56	8		
Skeletal muscle	56	18	90		
Others	7.5	10	1		

Form of heat production

- > shivering thermogenesis
- > non-shivering thermogenesis

Shivering thermogenesis

Primary controlled by hypothalamus

>Rhythmic, oscillating skeletal muscle contractions

The first muscle changes in response to a decrease in core body temperature are a gradual and general increase in skeletal muscle contraction.

Shivering constitutes the major control of heat production for temperature regulation. Muscle contractions during shivering may increase the metabolism rate of the body about 4-5 times.

Non-shivering thermogenesis

- Mediated by sympathetic stimulation and
- thyroid hormone
- Observed in the following natural cituations
- In small children
- >In cold adaptation
- >In hibernating animals

brown adipose tissue. It has a high rate of metabolis

Regulation of heat production

Cold { Brown fat tissue

Thyroid hormone, epinephrine, norepinephrine

Metabolic rate 🥕

Heat production 🛃

Skin structure

Hair follicle

Oil gland

Sweat gland

Subcutaneous fat

vessel

Factors affecting the heat loss

How rapidly heat can be conducted from the body core to skin.

How rapidly heat can be transferred from the skin to the surroundings.

Heat transfer from core to skin

Heat transfer from core to skin

Iow of blood

controlled by the sympathetic nervous system

Heat is lost from the skin

Forms of thermolysis ➤ Radiation (辐射): 60%

➤Conduction (传导)

➤Convection (对流)

➢Evaporation (蒸发散热)

Radiation

Radiation is transfer of heat by infrared electromagnetic radiation from one subject to another at a different temperature with which it is not in contact.

Affecting factors

- temperature difference between the skin surface and surrounding object
- the effective radiation area of the

body surface

Conduction

Conduction is heat exchange

between objects or substances

at different temperatures that

are in contact with

one another.

heating pad

> 15% of heat conducted to the air.

- Affecting factors
 - temp. difference between two objects in contact.
 - heat conduction rate in the materials.

Convection

Convection is heat exchange

by the movement of air

molecules.

Affecting factors: wind velocity

Copyright © 2005 Pearson Prentice Hall, Inc.

Convection is always occurring because warm air is less dense and therefore rises, but it can be greatly facilitated by external forces such as wind or fans. A small amount of convection almost always occurs around the body because of the tendency for the air adjacent to the skin to rise as it becomes heated.

Evaporation

Evaporation is transferring heat by vaporization of water on the skin and mucous membrane of the mouth and respiratory passages.

Vaporization of 1 g of water removes about 0.6 kcal of heat.

Evaporation

- The only effective mechanism of heat loss when the environmental temperature is above skin temperature.
- Evaporation takes place in two forms:
- Insensible perspiration
- Sweating

Insensible perspiration

- Insensible perspiration means a certain amount of water is vaporized at all times.
- Insensible perspiration: 50ml/h; 1000ml/24h
- Insensible perspiration from skin:
 600~800ml/24h
- Panting

>1%-solid component (NaCl)

> Hyposmolarity

The degree of reabsorption depends

on the rate of sweating.

Sweating

Sweating is a reflexible activity.

The preoptic anterior hypothalamus (PO/AH) is the sweating center.

The sweat glands are innervated by sympathetic cholinergic fibers.

Epinephrine and norepinephrine

Heat is lost from the skin

Heat Exchange

Direction of arrows denotes direction of heat transfer

Regulation of thermolysis

- Regulation by circulatory system Hot \rightarrow sympathetic nerve arteriovenous anastomosis open →cutaneous blood flow / →skin temperature /
 - →heat loss /

Regulation of thermolysis

Regulation by sweating Hot \rightarrow_{\uparrow} skin warm receptor(+) \rightarrow afferent nerves brain T \nearrow warm sensitive neurons (+) → sweating center (PO/AH) → sympathetic cholinergic fibers → sweating (thermal sweating)

Mental sweating:

> Autonomic thermoregulation

Behavioral thermoregulation

Thermoregulatory center

Preoptic/anterior hypothalamus (PO/AH)

Autonomic thermoregulation

Sody temperature is controlled by balancing heat production against heat loss

3.1 Thermoreceptor

Peripheral thermoreceptor **Cold** receptor Warm receptor Central thermoreceptor Warm sensitive neuron **Cold** sensitive neuron

Peripheral thermoreceptor:

Located in the skin and a few deep tissues of the body, such as mucosa, spinal cord and abdominal viscera. They are actually unspecified free nerve endings.

There are far more cold receptors than warm receptors.
 Therefore, peripheral detection of temperature mainly concerns detecting cool and cold instead of warm temperature.

Both the skin and deep body receptors are concerned with preventing hypothermia, that is, preventing low body temperatures.

Figure 27-2

Static discharge frequency of cold and warm nerve fibers as a function of skin temperature.

The warm sensitive neurons increase their firing rate as the temperature rise. The cold sensitive neurons by contrast, increase their firing rate when the body temperature falls.

How dose the body actively maintain a constant body temperature despite changes in ambient temperature?

Cold exposure

Immediate reflex effects

_{Shivering}

Some state in the second state of the secon

- Chronic effect
 - _s Thyroxine

When the body is too hot

Vasodilatation

Sweating

Decrease in heat production

3.2 Set point theory

Set point is the level at which the body attemps to maintain its temperature.

When set point is raised, the result is a fever.

Most fevers are caused by infectious disease.

Time course of a typical fever

Days

Control of human thermoregulatory re-

the set point (T_{set}) to generate an error signal, which is integrated

Summary

- Energy metabolism
- Measurement of energy metabolism
- Factors affecting the metabolic rate
- Basal metabolism
- Body temperature
- Forms of thermolysis
- Thermoregulation

Measurement of O₂ consumption and CO₂ production

Measurement in a closed way

Measurement in a open way
Measurement of O₂ consumption and CO₂ production

Measurement of urea nitrogen

Urea nitrogen(g) \times 6.25 \rightarrow protein oxidation(g)

The Caloric Values of Foods and The Relative Data

Food	leat prod Physical calorie	luction (KJ/g) Biological calorie	Consumption of O2 (L/g)	Production of CO2 (L/g)	Thermal equivalen (kJ/g)	Respiratory t quotient (RQ)
Glucose	e 17.16	17.16	0.83	0.83	20.94	1.00
Protein	23.44	18.00	0.95	0.76	18.83	0.80
Fat	39.77	39.77	2.03	1.43	19.67	0.71

For example: 24h O₂ consumption 400L, CO₂ production 340L, urea nitrogen 12g.

- Protein oxidation=12 × 6.25=75g
- Protein heat production=18 ×75=1350kJ
- Protein O₂ consumption=0.95 ×75=71.25L
- Protein CO₂ production= $0.76 \times 75 = 57L$
- NPRQ=(340-57)/(400-71.25)=283/328.75=0.86
- Non-protein heat production=20.4 ×328.75=6706.5kJ
- Total heat production=1350+6706.5=8056.5kJ

NPRQ	carbohydrate (%)	fat (%)	thermal equivalent of oxygen
0.707	0.00	100.0	19.61
0.71	1.10	98.9	19.62
0.72	4.76	95.2	19.67
0.73	8.40	91.6	19.72
0.80	33.4	66.6	20.09
0.81	36.9	63.1	20.14
0.82	40.3	59.7	20.19
0.83	43.8	56.2	20.24
0.84	47.2	52.8	20.29
0.85	50.7	49.3	20.34
0.86	54.1	45.9	20.40

Heat is the end product of almost all the energy released in the body

