Section 2: Gas exchange

Dr. Ze-Gang Ma Mazegang2000@163.com

Diffusion: Diffusion rate (D):

Gas law

The total pressure of a mixture of gases is the sum of the pressure of the individual gases (Dalton's law)
2. Gases singly or in a mixture, move from areas of higher pressure to areas of lower pressure
3. If the volume of a container of gas changes, the pressure of the gas will change in an inverse manner (Boyle's law)

Boyle's Law: $\mathbf{P}_{\mathbf{1}} \mathbf{V}_{\mathbf{1}}=\mathrm{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}$

Partial pressure

- In a gas mixture the pressure exerted by each individual gas is partial pressure (P)
$P_{\text {gas }}=\%$ of total gases $\times P_{\text {total }}$

= oxygen $\sim 21 \%$
O nitrogen $\sim 79 \%$
Air pressure $=760 \mathrm{~mm} \mathrm{Hg}$
$\mathrm{P}_{\mathrm{O} 2}=160 \mathrm{~mm} \mathrm{Hg}$
$\mathrm{P}_{\mathrm{N} 2}=600 \mathrm{~mm} \mathrm{Hg}$
-Graham's law When gases are dissolved in liquids, the relative rate of diffusion of a given gas is proportional to its solubility in the liquid and inversely proportional to the square root of its molecular mass.
-Fick's law
The net diffusion rate of a gas across a fluid membrane is proportional to the partial pressure, proportional to the area of the membrane and inversely proportional to the thickness of the membrane.

Factors affecting gas

exchange

\triangle P.T.A.S

Diffusion coefficient

D:
T:
A:
S:
$\Delta \mathrm{P}$:
d:
MW:

Diffusion rate
Absolute temperature
Area of diffusion
Solubility of the gas
Partial pressure
Distance of diffusion
Molecular weight

Gas partial pressrue (mmHg)

Alveoli Arterial Venous Tissue

$$
\begin{array}{lrrrr}
\mathrm{PO}_{2} & 104 & 100 & 40 & 30 \\
\mathrm{PCO}_{2} & 40 & 40 & 46 & 50 \\
\hline
\end{array}
$$

Process of pulmonary gas exchange

Thickness: $0.6 \mu \mathrm{~m}$ Area: $70 \mathrm{~m}^{2}$

Respiratory membrane

Thickness of respiratory membrane
Area of respiratory membrane
Partial pressure differences and the gas diffusion coefficient
alveolar ventilation
pulmonary blood flow
speed of chemical reaction

Ventilation/perfusion ratio

Ventilation in alveoli is matched to perfusion through pulmonary capillaries

通气／血流比值

－－D念
肺泡通气量／防血流量 （4．2L） （5L）

－ VA / Q

functional shunt功能性短路

肺血管栓塞
Pulmonary 支气管痉挛

V／Q 正常
thrombosis

V／Q 增大

Bronchospasm

V / Q 减小

Emphysema: destruction of alveoli means less surface area for gas exchange.

Asthma: increased airway resistance decreases airway ventilation.

Fibrotic lung disease: thickened alveolar membrane slows gas exchange. Loss of lung compliance may decrease alveolar ventilation.

Pulmonary edema: fluid in interstitial space increases diffusion distance. Arterial PCO_{2} may be normal due to higher CO_{2} solubility.

- Gas exchange in tissue affected by:
- Distance
- Blood flow in tissue
- Metabolic rate in tissue

Section 3

Gas Transport in the Blood

Forms of Gas Transported

- Physical dissolve
- Chemical combination

Transport of oxygen

- Forms of oxygen transport
- Combination of oxygen with hemoglobin
- Oxygen-Hb dissociation curve
- Factors affecting oxygen-Hb
dissociation curve

Transport of Oxygen

O_{2} is carried in blood in two forms:

- dissolved in solution 1.5%
- bound to hemoglobin 98.5\%

Oxygen transport in blood without hemoglobin. Alveolar $\mathrm{PO}_{2}=$ arterial PO_{2}

In a situation: blood has no Hb , only 3 ml of O_{2} will dissolve in plasma, O_{2} consumption at rest: $250 \mathrm{ml} / \mathrm{min}$
$\mathrm{O}_{\mathbf{2}}$ content of plasma $=\mathbf{3} \mathbf{~ m L ~ O} \mathbf{2}_{\mathbf{2}} / \mathrm{L}$ blood O_{2} content of red
blood cells

Total O_{2} carrying capacity

Hemoglobin

Each Hb molecule is a protein made up of four subunits bound together. Each subunit consists of a molecule group termed heme and a polypeptide attached to the heme.

Each of the four heme groups contains one atom of iron, to which oxygen binds. Thus, a single hemoglobin molecule can bind four molecules of oxygen.

$+4 \mathrm{O}_{2} \underset{\text { Low } \mathrm{PO}_{2}}{\stackrel{\mathrm{High} \mathrm{PO}_{2}}{\rightleftarrows}}$

Oxygen combines loosely and reversibly with the heme portion of Hb . Oxygen binds with the Hb when PO 2 is high, but when PO 2 is low, oxygen is released from the Hb .

Fast and reversible, depend on the Po2
Oxygenation rather than oxidation

There are two forms of Hb : deoxyhemoglobin (deoxyHb) and oxyhemoglobin (HbO2).

The HbO2 looks in red and deoxyHb looks in blue. If the deoxyHb concentration is higher than $50 \mathrm{~g} / \mathrm{L}$, the mucosa of the body looks in lilac.

This condition is called cyanosis.

Cyanosis

- deoxy Hb>50g/L

A "blue baby" is an infant born with a congenital heart defect. The defect prevents oxygen-rich blood from circulating to the body, which gives the infant's skin a bluish tint.
－Oxygen capacity（氧容量） the maximum amount of $\mathrm{O}_{\mathbf{2}}$ that can combine with $\mathbf{H b} \quad 100 \mathrm{ml}: 14 \mathrm{~g} \times 1.34 \mathrm{ml} / \mathrm{g}=18.8 \mathrm{ml} \mathrm{O}_{2}$
－Oxygen content（氧含量）
the amount of O_{2} that combine with $\mathrm{Hb} .15 \mathrm{ml}_{2}$
－Oxygen saturation $15 \mathrm{ml} / 18.8 \mathrm{ml} \times 100 \%=80 \%$ $\left(\mathrm{O}_{2}\right.$ content $/ \mathrm{O}_{2}$ capacity）$\times 100 \%$

Hemoglobin- O_{2} dissociation curve

The relationship between plasma PO_{2} \& oxygen saturation

The curve is sigmoid shaped. Because the 4 subunits react sequentially, with each combination facilitating the next one.

The curve has a deep slope between 15 and 60 mmHg PO2 60 mmHg : a further increase in PO2 produces only a small increase in SaO 2 Upper part: (plateau) PO2 fell, only a few decrease of the total quantity of O2 (pulmonary disease or high altitude) The plateau provides an excellent safety factor such that a significant limitation of lung function can still allow almost normal oxygen saturation of Hb .

The middle portion of the curve is ideal for unloading O2 in the tissues, because any further decreases in PO2 can results in a large amount of oxygen unloaded in the capillaries of the peripheral tissue.

The lower portion of the curve reflexes the reserve of O 2 in the blood.

When the metabolism is enhanced, PO2 continues to fall , even down to 15 .

Each 100 ml of blood unloads 15 more mL of oxygen.

Factors that shift O_{2} dissociation

 curve- $\quad \mathrm{P}_{\mathrm{Co} 2}$ and $\left[\mathrm{H}^{+}\right]$
- Temperature
- 2,3-DPG

Effects of PCO_{2} \＆ pH

Bohr effect

（波尔效应）
－Mechanism：［H＋］affect the conformation of $\mathbf{~ H b}$
－Physiological significance：
－Lung：combination of oxygen \＆Hb
－Tissue：dissociation of oxygen \＆Hb

Effect of temperature

- Exercise, fever - Anaesthesia Low temperature

Effect of DPG（diphosphoglycerate）

－Product by glycolysis（糖酵解）in RBC
－Hypoxia
－Stored blood
（＞3 weeks）
Glycolysis cease
DPG decrease

Carbon Monoxide Poisoning

- CO competes for O_{2} sides in Hb
- CO has extremely high affinity for Hb

Transport of Carbon dioxide

Forms of CO_{2} transport

- Carbon dioxide dissociation curve
- Factors affecting carbon dioxide dissociation curve

Forms of CO_{2} transport －Dissolved state：7\％
 Chemical combination：93\％

（1）Carbaminohemoglobin（氨基甲酰血红蛋白）
$\underset{\mathrm{HbNH} 2}{\mathrm{HbNH}} \mathrm{O}_{2}+\mathrm{H}^{+}+\mathrm{CO}_{2} \underset{\text { Lung }}{\stackrel{\text { Tissue }}{\rightleftarrows}} \mathrm{HHbNHCOOH}+\mathrm{O}_{2}$
CO 2 react reversibly with the amino groups of Hb form CH ． This reaction goes rapidly without enzyme assistance．

Hb is more powerful to bind CO 2 and form CH than HbO 2 . In the tissues, HbO 2 releases O 2 to from Hb , which binds CO 2 to from CH .

In the lungs, more HbO 2 is produced, causing CH to release CO 2 and $\mathrm{H}+$.

(2) Bicarbonate ion $\left(\mathrm{HCO}_{3}{ }^{-}\right)$

 Body tissue Blood capillary

Blood capillary

Lung

Carbon dioxide dissociation curve

图 5－15 CO_{2} 解离曲线
A ：静脉血 B ：动脉血 $(1 \mathrm{mmHg}=0.133 \mathrm{kPa})$

