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Individual Vesicle Fusion Events Mediated by Lipid-Anchored DNA
Bettina van Lengerich,6 Robert J. Rawle,6 Poul Martin Bendix, and Steven G. Boxer*
Department of Chemistry, Stanford University, Stanford, California
ABSTRACT Membrane fusion consists of a complex rearrangement of lipids and proteins that results in the merger of two lipid
bilayers. We have developed a model system that employs synthetic DNA-lipid conjugates as a surrogate for the membrane
proteins involved in the biological fusion reaction. We previously showed that complementary DNA-lipids, inserted into small uni-
lamellar vesicles, can mediate membrane fusion in bulk. Here, we use a model membrane architecture developed in our lab to
directly observe single-vesicle fusion events using fluorescence microscopy. In this system, a planar tethered membrane patch
serves as the target membrane for incoming vesicles. This allows us to quantify the kinetics and characteristics of individual
fusion events from the perspective of the lipids or the DNA-lipids involved in the process. We find that the fusion pathways
are heterogeneous, with an arrested hemi-fusion state predominating, and we quantitate the outcome and rate of fusion events
to construct a mechanistic model of DNA-mediated vesicle fusion. The waiting times between docking and fusion are distributed
exponentially, suggesting that fusion occurs in a single step. Our analysis indicates that when two lipid bilayers are brought into
close proximity, fusion occurs spontaneously, with little or no dependence on the number of DNA hybrids formed.
INTRODUCTION
Membrane fusion is central to many biological processes,
including endo- and exocytosis and the transfer of membrane
proteins between cellular compartments. The process of
vesicle docking and fusion is mediated by formation of the
SNARE protein complex, made up of recognition partners
on the vesicle and target membranes, with many other acces-
sory proteins assisting or regulating the process (1–3).
Although extensively studied, essential questions about
vesicle fusion, including the number of components involved
and the precise physical mechanism, are not well understood
and seemingly small differences in procedures and compo-
nents among labs lead to different conclusions. Due to the
complexity of the fusion reaction and the proteins involved,
reductionist model systems can complement in vivo data to
yield a better understanding of this biological process.
Many such systems have been described that use the SNARE
proteins (4–19) or synthetic surrogates for them (20–27), and
these are providing valuable insight, as well as stimulating
the development of increasingly realistic assays.

We have developed a model system (25–27) that employs
synthetic DNA-lipid conjugates as surrogates for the
SNARE machinery. This model system affords easy control
over DNA sequence, binding geometry, and length—factors
less easily probed in SNARE-mediated fusion—and it al-
lows us to examine how fusion proceeds once the vesicle
and target membrane are brought close together in the
absence of accessory factors. The binding specificity of
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these DNA-lipid conjugates avoids having to deal with
dead-end complexes due to promiscuous binding of incor-
rect partners, and the conjugates spontaneously insert into
lipid membranes without requiring detergent dialysis—
two issues that can be troublesome in reconstituted SNARE
systems (1,2,28). Hybridization of complementary DNA
pairs on different membranes, when anchored in the correct
orientation, enables fusion between small vesicles in bulk
(25,26). Both lipid and content mixing are observed. Previ-
ously, the mechanism of this multistep reaction could not be
addressed as the kinetics of the docking and fusion reactions
are convoluted in such ensemble measurements.

We recently developed a model membrane architecture—
a DNA-tethered bilayer patch—that allows direct observa-
tion of individual vesicle-to-planar bilayer fusion events to
better investigate the mechanism of DNA-mediated vesicle
fusion ((27), Fig. 1 A). In this system, we use DNA in two
independent roles. The first is used to construct the target
tethered patch with the DNA linked to the lipid anchor at
its 50 end on both surfaces—DNA hybridization in this
configuration is referred to as the tethering orientation. A
second, orthogonal DNA sequence is used to initiate vesicle
docking and fusion, with the DNA anchored at its 30 on one
surface and its 50 end on the other—hybridization between
these strands is referred to as the zippering orientation and
brings the membranes into close apposition to facilitate
fusion. This is directly analogous to the proposed geometry
of the docked SNARE complex at the presynaptic mem-
brane (27,29), an improvement over many model systems
that study fusion only between vesicles.

Herein, we use the information gathered from this system
to construct a mechanistic model of the DNA-mediated
fusion process and thereby provide insight into several
important questions for the biological fusion reaction: Is
fusion a linear pathway or is it heterogeneous? What is
http://dx.doi.org/10.1016/j.bpj.2013.05.056
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FIGURE 1 (A) Vesicle-to-tethered membrane patch assay. The target membrane patch, tens of mm in diameter, is tethered by 50anchored 24mer DNA

(magenta strand, 8 nm in height) to a modified glass coverslip, and also displays 50anchored zippering DNA (blue) (27,30). DNA strands (magenta and

blue) are on both leaflets of the tethered patch—not shown in the schematic to avoid confusion. A vesicle ~50 nm in diameter, with 2% Texas Red-labeled

lipids (red dots, both leaflets) and displaying 30coupled zippering DNA (blue, outer leaflet only) docks via DNA hybridization and then fuses to the tethered

membrane patch, monitored by fluorescence microscopy. Nothing is drawn to scale. (B) Example traces of different fusion behaviors, showing the integrated

fluorescence intensity in a ROI around each vesicle over time: (i) docking-only, (ii) hemi-fusion-only, (iii) hemi-then-full-fusion, (iv) full-fusion-only. (C)

Proportions of fusion outcomes observed (65 DNA/vesicle, 30PolyA). Error bars ¼ STD of three experiments. To minimize sampling bias, only events that

docked>60 s before the end of the 100 s video stream were included (N> 400 for all experiments). (D) The distribution of % intensity decrease upon hemi-

fusion. (E) The distribution of % of dye-labeled-lipid in the outer leaflet of vesicles, as determined by dithionite quenching of NBD-PE fluorophores in the

outer leaflet of DNA-tethered vesicles.
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the role of hemi-fusion? How many binding partners are
needed for fusion to proceed? Does DNA hybridization
(or SNARE partnering) actively transduce zippering into
membrane fusion? We observe that heterogeneous fusion
behavior, with an arrested hemi-fusion state being the pre-
dominant outcome, emerges when the two membranes are
brought into close apposition via DNA hybridization. The
kinetics and fusion outcomes of the system are not substan-
tially altered by the DNA sequence or number density on the
vesicle and there is a gap of seconds between completion of
DNA hybridization and a fusion transition. Furthermore, we
observe that very few hybrids, possibly just one, are suffi-
cient to allow this fusion behavior to proceed, and that the
kinetics of the system are not greatly limited or enhanced
by the formation of additional hybrids.
MATERIALS AND METHODS

Reagents

1,2-Dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC), 1,2-dioleoylphos-

phatidyl-sn-glycero-3–ethanolamine (DOPE), and cholesterol (Ch) were

purchased from Avanti Polar Lipids. Texas Red-DHPE and Oregon

Green-DHPE were purchased from Invitrogen (Grand Island, NY). Ethynyl

phosphonic acid and triethyl 2,20,200’-(4,40,400-nitrilotris(methylene)tris(1H-

1,2,3-triazole-4,1-diyl))triacetate (TTMA) was generously provided by the
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Chidsey lab at Stanford. DNA oligonucleotides were synthesized at the Pro-

tein and Nucleic Acid facility at Stanford.
Preparation of vesicles displaying DNA

DNA-lipids were prepared as in (25) by covalent attachment of a synthetic

lipid-phosphoramidite as the final base to either the 30 or 50 end of an oligo

on resin (sequences in Table S1), and subsequent purification on HPLC.

Fluorescent dyes were conjugated to lipid-DNA postdeprotection using

NHS chemistry (see the Supporting Material Section 1.1).

Vesicles were prepared by extrusion. A mixture of 2:1:1 DOPC/DOPE/

Ch was dried from chloroform under a stream of nitrogen, then under vac-

uum for 3 h. For lipid mixing experiments, 2% Texas Red-DHPE (TR-

DHPE) or 2% Oregon Green-DHPE (OG-DHPE) was also added. The lipid

film was rehydrated to 0.4 mg/mL in 10 mM sodium phosphate, 240 mM

sodium chloride buffer, pH 7.4 and extruded 29 times through a 30 nm pol-

ycarbonate membrane (Avanti Polar Lipids, Alabaster, AL). The resulting

vesicle diameters were 48 5 12 nm, measured by dynamic light scattering

(Fig. S1). DNA-lipids (at tens of mM) were added to 5 mL of vesicles at

0.4 mg lipids/mL to yield the desired DNA density and are only displayed

on the outer vesicle leaflet.

Giant unilamellar vesicles (GUVs) destined for tethered bilayers were

made by gentle hydration (27). Their lipid composition was 2:1:1 DOPC/

DOPE/Ch with 0.01% OG-DHPE added to locate the tethered membrane.

They contained two different DNA-lipids (tethering strand: 0.5% Sequence

3, and zippering strand: sequence and concentration as specified). DNA-

lipids are in both leaflets. For experiments using dye-labeled DNA, the

OG-DHPE was left out. Instead, 0.01% dye-labeled DNA-lipid was

included as the zippering strand.
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Fusion experiments

A DNA-alkyne (Sequence 2-alkyne) was covalently attached to an alkyl

azide-functionalized glass coverslip using click chemistry. GUVs with

complementary tethering DNA (Sequence 1) and the specified zippering

DNA were incubated with the substrate until the GUVs deformed and

ruptured to form tethered bilayer patches, ~20–30 min (30). Membrane

patches were thoroughly rinsed to remove any lipid debris and were char-

acterized by uniformity of fluorescence and absence of lipid structures

such as tubules. Once a suitable patch was located, vesicles (~10 mL at

1 mg lipids/mL) with the complementary zippering strand were added to

the solution above the membrane patch. In the lipid mixing experiments

(e.g., Fig. 1 A), docking was observed by appearance of a fluorescent,

diffraction-limited vesicle on the patch. Hemi-fusion was observed by a

sudden decrease of fluorescence within the vesicle region of interest

(ROI) as some portion of its lipid dye was transferred to the target patch

and rapidly diluted via diffusion. In full fusion, the fluorescence intensity

completely disappeared (operationally defined as losing >90% of original

intensity). Analysis was performed in a homemade MATLAB program

(The MathWorks, Natick, MA). For all experiments, we only analyzed

events >5 mm away from the edge of the tethered patch to avoid edge

effects.

In the dye-DNA experiments (see Fig. 3 A), the tethered patches dis-

played 0.01% 50PolyT-Alexa546 DNA-lipid and the vesicles displayed

30PolyA DNA-lipid (and no lipid dye). Analysis and calculation of number

of DNA hybrids formed is given in the Supporting Material Section 1.4.
NBD-dithionite quenching

Vesicles were prepared as previously mentioned, but containing 5% NBD-

PE (headgroup labeled) instead of 2% TR-DHPE and displaying many

50PolyT DNA lipids (~195 DNA/vesicle). These vesicles were tethered to

an Egg PC glass supported lipid bilayer (SLB) displaying the complemen-

tary 50PolyA DNA-lipids. This DNA-lipid pair will hybridize in the teth-

ering orientation (cf. Fig. S7) and can form many hybrids, holding the

vesicle immobilized and apart from the SLB membrane. After an initial

fluorescence micrograph was taken of many tethered vesicles, 8 mL of

100 mM sodium dithionite was added to the ~40 mL solution above the ves-

icles. Following 2 min incubation, the chamber was rinsed with buffer and

then a final micrograph was taken. A comparison of the initial and final

fluorescence intensities of many vesicles yielded a distribution of percent-

age of NBD fluorophores in the outer leaflet (see Fig. 1 E).
Microscopy

All fusion experiments were performed on a Nikon Ti-U microscope with a

100� oil immersion objective (Nikon Instruments, Melville, NY; NA ¼
1.49). The excitation source was a Nikon Intensilight, which illuminated

the sample uniformly using a liquid light guide. Images were recorded us-

ing an Andor iXon 897 (Andor Technology, Belfast, United Kingdom), and

were processed with Metamorph software (Molecular Devices, Sunnyvale,

CA). See the Supporting Material Section 1.3 for details on image acquisi-

tion and processing.
RESULTS

In a typical experiment, a dilute suspension of vesicles
displaying DNA was manually pipetted into the solution
above a tethered membrane patch displaying the comple-
mentary DNA sequence. Individual docking and fusion
events were monitored via fluorescence microscopy by
observing a lipid dye or a dye-labeled DNA-lipid. We previ-
ously observed that DNA-mediated fusion resulted in
content transfer across the tethered bilayer and was distin-
guishable from vesicle rupture above the target bilayer
(27), a common outcome observed by groups studying
vesicle fusion to SLBs (15). These content transfer events
were rare (~10%), therefore, in this report we focus on under-
standing theDNA-mediated fusion process from the perspec-
tive of the lipids andDNA-lipids.Using these fusionmarkers,
we examined the fusion outcomes and kinetics, dependence
on DNA sequence and number density, and behavior of
DNA-lipids during fusion, each discussed separately below.
Fusion outcomes and kinetics

We first investigated the various fusion outcomes in lipid
mixing experiments, in which we monitored the transfer
of a lipid dye from vesicle to target patch (Fig. 1 A). The
incoming vesicle displayed a moderately high density of
DNA-lipids (65 DNA/vesicle, comparable to the reported
number of ~70 synaptobrevin proteins on an average synap-
tic vesicle (31), as did the target bilayer (0.5 mol % or ~2500
DNA/mm2 on the top-facing leaflet). The high density on the
target ensures that the DNA-lipids will not become depleted
during an experiment, in which hundreds of fusion events
may occur on an individual patch. We analyzed the docking
to fusion waiting times and behavior for hundreds of
vesicles and observed four different outcomes following
docking, classified as docking-only, hemi-fusion-only,
hemi-then-full-fusion, and full-fusion-only—each discussed
below. In control experiments, where we used noncomple-
mentary sequences in the two membranes, or where the
incoming vesicle contained no DNA-lipids, neither docking
nor fusion was observed to occur (data not shown). Further-
more, if the tethering rather than zippering orientation of
DNAwas used to dock vesicles to the target bilayer, fusion
did not occur (see the Supporting Material Section 7).

Docking-only

A substantial proportion of vesicles (~25–35%) were ar-
rested following docking. These vesicles never transferred
any of their lipid dye to the tethered patch during the exper-
iment (Fig. 1 B(i)) and were classified as docking-only
events. At least some docking-only events could be
observed for hours without change, suggesting a rather
permanently arrested docked state of the vesicle (see
Fig. S2, b and d).

Hemi-fusion–only

The predominant behavior (~60–80%) of vesicles following
docking was to transfer some, but not all, of their lipid dye to
the tethered patch after some waiting time (twait, e.g., Fig. 1
B(ii)), and then to retain the remaining dye for the rest of the
experiment. These events are classified as hemi-fusion-only.
These hemi-fused vesicles appeared to be quite stable and
could be observed for minutes and even hours without
Biophysical Journal 105(2) 409–419
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undergoing any change in fluorescence intensity beyond
photobleaching (Fig. S2, a and c).

To understand the docking to hemi-fusion transition, we
performed a kinetic analysis of these events. Fig. 2 A shows
the docking to hemi-fusion waiting times as a cumulative
distribution function (CDF). This CDF could be fit to an
exponential function using maximum likelihood estimation
(mean waiting time twait ¼ 11.3 s, 75 DNA/vesicle), sug-
gesting that the transition from docking to hemi-fusion oc-
curs in a single step.

To further characterize the hemi-fusion-only events, we
quantified the percent decrease in fluorescence intensity
upon hemi-fusion for hundreds of events (Fig. 1 D).
Assuming that the lipid dye is distributed randomly between
the inner and outer leaflets of the vesicle, we can estimate
the expected mean percent intensity decrease upon hemi-
fusion as the ratio of the outer to the total surface area
of the vesicle. Using the average diameter of our vesicles
FIGURE 2 (A) Cumulative distribution function (CDF) of docking to

hemi-fusion waiting times (blue) in vesicle-to-tethered membrane lipid

mixing experiments (cf. Fig. 1A, 0.3 mol % 50PolyT DNA-lipids in target

membrane), with single exponential model (black line) fit by maximum

likelihood estimation (see the Supporting Material Section 6). (B) CDFs

across various average numbers of DNA/vesicle (1 to 65 DNA/vesicle,

30PolyA). Complementary 50PolyT DNA-lipids in the target membrane

were kept constant at 0.5 mol %. See Table 1 for statistical data and

Fig. S4 for actual DNA/vesicle distributions.
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(48 5 12 nm, measured by dynamic light scattering) and
an estimated bilayer thickness of 5 nm, we calculated an ex-
pected mean percent intensity decrease of 61%.

Our observed mean (~68%) was near the expected mean,
however the distribution was much wider than expected
(~40–90%). Such wide-ranging values should not be
possible for vesicles of reasonable size (vesicle diameter
would need to be <20 nm to obtain a value of >80%, and
values <50% should never be possible for a spherical
vesicle). Although it is plausible that the wide distribution
is due to nonrandom distribution of the lipid dye in the
inner and outer leaflets, NBD-quenching of the lipid dye in
the outer leaflet of tethered vesicles shows a narrow distribu-
tion of the percent dye in the outer leaflet (Fig. 1E). Rather, it
is possible that some apparent hemi-fusion events are in fact
a transient merging of both leaflets, leading to a wider distri-
bution of lipid dye transfer percentages than expected for
pure hemi-fusion. Although this is a tentative interpretation,
it is also consistent with our previous observation in content
transfer experiments that some vesicles release only a
portion of their contents during fusion events (27).

Hemi-then-full-fusion

Consistent with a canonical picture of vesicle fusion as
proceeding from docking through a hemi-fused inter-
mediate to full fusion (content transfer), we observed events
that transferred a portion of their lipid dye to the tethered
patch following docking, and then, after a further waiting
period, transferred their remaining dye to the patch (Fig. 1
B(iii) and Movie S1). These events are classified as hemi-
then-full-fusion events. Interestingly, these hemi-then-full-
fusion accounted for <2% of events, even though this
might be expected to be the canonical pathway. Because of
their rarity, we performed no further analysis of these events.

Full-fusion–only

A small percentage (<5%) of vesicles transferred all their
fluorescent dye to the target tethered membrane in one
step, after a short waiting period following docking (Fig. 1
B(iv) and Movie S2). These are classified as full-fusion-
only events because they appeared to transition directly to
full fusion without passing through an observable hemi-
fused intermediate.

Both the full-fusion-only and hemi-then-full-fusion
events should result in content transfer across the tethered
membrane. Together they account for ~5% of all events
observed, consistent with our previous report (27) that
DNA-mediated content transfer across a tethered patch
was very rare—only ~10%. That report also showed that
lipid-mixing and content transfer occurred simultaneously
for our system (see Fig. 3 in (27)).

As with the hemi-fusion-only events, we performed
a kinetic analysis of full-fusion-only events (N ¼ 68),
although their rarity means that this provides at best only



TABLE 1 Docking to hemi-fusion wait time statistics

DNA Sequence Number density Mean twait
a Nb

Vesicle: 30Poly A; 1 DNA/vesicle 9.3 5 1.3 sec 369

5 DNA/vesicle 5.3 5 0.7 sec 410

10 DNA/vesicle 4.8 5 0.9 sec 248

Target: Poly T 25 DNA/vesicle 6.7 5 1.1 sec 513

65 DNA/vesicle 7.2 5 1.2 sec 531

DNA Sequence Number Density Mean twait
a N

Vesicle: 30 Seq 2; 5 DNA/vesicle 11.5 5 2.0 sec 159

10 DNA/vesicle 9.5 5 2.1 sec 148

Target: Seq 1 25 DNA/vesicle 12.7 5 2.6 sec 115

65 DNA/vesicle 12.3 5 2.1 sec 230

aErrors for the mean waiting time are 95% CI determined from bootstrap

resampling of the docking to hemi-fusion wait times (Nbootstraps ¼
10,000). The bootstrap distribution of mean waiting times was symmetrical

on either side of the mean to within 0.2 s and the higher error estimate was

chosen.
bN is the number of docking to hemi-fusion events in the data set.
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an estimate of the full fusion kinetics. The CDF of the dock-
ing to full fusion wait times was also exponential (see
Fig. S3), with an average waiting time of 15 s.
Dependence on number of DNA-lipids/vesicle

To examine the dependence of fusion on the number of
available binding partners, we varied the number of DNA-
lipids on the incoming vesicles from 65 DNA/vesicle to 1
DNA/vesicle (corresponding to 0.25 to 0.004 mol %
DNA) while keeping the number density of DNA-lipids
on the target tethered patch constant, and characterized
the fusion behavior of vesicles at each number density.

Consistent with earlier work that quantified the rate of
docking between mobile DNA-tethered vesicles with
strands in the tethering orientation (32), we qualitatively
observed that docking to the tethered patch (hybridizing in
the zippering orientation) became rarer as the number of
DNA/vesicle was reduced.

Surprisingly, decreasing the number of DNA/vesicle did
not substantially alter the probability of achieving a certain
fusion outcome, even at 1 DNA/vesicle. For all numbers of
DNA/vesicle, hemi-fusion-only events predominated over-
whelmingly, although interestingly we observed that dock-
ing-only events decreased to <10% for 1, 5, and 10 DNA/
vesicle (data not shown) with a concomitant increase in
hemi-fusion events. Even more surprisingly, and in contrast
to conclusions inferred from bulk experiments (25,26),
decreasing the number of DNA/vesicle did not dramatically
alter the kinetics of the docking to hemi-fusion transition
(Table 1 and Fig. 2 B). Down to 5 DNA/vesicle, the CDFs
showed quite similar kinetic behavior with averages ~5–7
s. At 1 DNA/vesicle, the CDF was consistently slower, but
the increase in average waiting time was not dramatic,
increasing only to ~9 s.

In contrast to the fusion kinetics and outcome probabili-
ties, the lateral mobility of the docked vesicles was signifi-
cantly dependent on the DNA/vesicle number density (see
Movie S3). At 65 DNA/vesicle, docked vesicles were
mostly immobile; at 10 DNA/vesicle, some docked vesicles
were slightly mobile; and at 1 DNA/vesicle, most docked
vesicles were highly mobile on the surface of the tethered
membrane. Presumably, mobility reflects the number of
tethers formed between the vesicle and the tethered patch.
However, the increased mobility of vesicles at lower
numbers of DNA/vesicle did not hinder the transition to
hemi-fusion. After diffusing for some time, mobile vesicles
underwent hemi-fusion to the tethered patch and then re-
mained fixed thereafter, presumably because the outer
leaflet of the vesicle had merged with the tethered mem-
brane, disallowing further diffusion.

Across several experiments, we observed that the slight
pattern in the CDFs in Fig. 2 B for the number densities
ranging from 65 to 5 DNA/vesicle appeared to be consistent
and not entirely the result of experimental noise. A close in-
spection of these CDFs reveals that a slow population grows
in at 25 and 65 DNA/vesicle, at which number densities the
vesicles are immobile. This might indicate that having too
many available tethers can actually inhibit the transition to
hemi-fusion. A discussion of this, including kinetic models
and fits to the data are outlined in the Supporting Material
Section 5.

We note that the DNA/vesicle number densities in these
experiments are the expected averages and are calculated
using the average vesicle diameter (48 5 12 nm). We
confirmed that the actual average number density was near
the expected average by using a dye-labeled DNA-lipid,
but the width of a typical DNA/vesicle distribution is broad
(Fig. S4). These distributions raise a potential issue for the
limiting case of 1 DNA/vesicle, as the data may be biased
toward the tail of the distribution via selection during dock-
ing. In that case, having 1 DNA/vesicle may not be enough
to mediate fusion, or may only mediate it very slowly, but
that would not be reflected in the data. As an approximate
measure, the fusion of vesicles containing 0.25 DNA/vesicle
on average, where by Poissonian statistics it would be rare
for a vesicle to have >1 DNA, was measured (data not
shown). For these vesicles, the docking rate is so low that
it became impractical to collect statistical information, but
we observed that docked vesicles could undergo hemi-
fusion on timescales similar to the nominally 1 DNA/vesicle
experiment. This issue is likely to complicate other reports
of number dependence, and the best solution would be to
work with populations of vesicles purified by the number
of DNA (or SNARE)/vesicle (in progress).
Effect of DNA sequence

Previously, we observed that a PolyA/T repeating sequence
mediated both faster vesicle-vesicle docking in individual
vesicle dockingmeasurements (32) and faster vesicle-vesicle
fusion in bulk experiments (25) than a fully overlapping
Biophysical Journal 105(2) 409–419



FIGURE 3 (A) Schematic for DNA hybrid formation experiment. The

tethered bilayer contains a low percent (0.01% ~100 DNA-lipids/mm2) of

Alexa546-50PolyT (green stars), and the vesicles contain 30PolyA. Docking
is observed by the appearance of a spot as DNA hybrids form between teth-

ered patch and vesicle, indicated by a (B) fast <1 s or (C) fast then slow

(~10 s) rise in the intensity of the ROI against a dim background of laterally
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sequence (Sequences 1 and 2 in Table S1). However, the
docking study could not measure fusion, and the bulk exper-
iments convolved docking and fusion, therefore it was not
possible to discern the effect of DNA sequence on the fusion
reaction. To determine how DNA sequence (and conse-
quently the energetics of DNA hybridization) influences
fusion behavior following docking, we performed lipid-mix-
ing experiments as previouslymentioned, but usingSequence
1 and 30Sequence 2 (Tm ¼ 68.3�C) as the zippering DNA
strands (blue strands in Fig. 1 A) instead of the PolyA/T
DNA sequences (Tm¼55.3C). These TM values are calcu-
lated values for DNA oligomers (not DNA-lipids) in solution
using the OligoAnalyzer tool on the www.idtdna.com web-
site ([Naþ] ¼ 250 mM, [DNA] ¼ 0.25 M (arbitrarily cho-
sen)). The values are meant only to be a comparison
demonstrating a difference in energetics of hybridization
and cannot be directly extrapolated to DNA-lipid hybridiza-
tion where the lipid anchors constrain the DNA to apposing
membrane surfaces and the relevant concentration is the
number density on each membrane. However, note that if
the energy of DNA hybridization influences fusion behavior,
DNA duplexes of the same length but with different Tm
should exhibit different behavior.

Across four DNA/vesicle number densities (65, 25, 10,
and 5 DNA/vesicle), only very moderate changes in kinetics
or fusion outcomes were observed between the different
DNA sequences. For the fully overlapping sequence,
hemi-fusion-only was still the predominant outcome and
the docking to hemi-fusion transition still followed expo-
nential kinetics (Fig. S6), with an average wait time of
~10–12 s for all number densities (Table 1). This indicates
that DNA sequence (and the energetics of DNA hybridiza-
tion) does not strongly influence the fusion behavior of ves-
icles following docking; implying that the increased rate of
fusion observed in bulk experiments (25) reflected a higher
rate of docking, consistent with previous measurements of
the sequence dependence of docking between individual
tethered vesicles (32).

Also consistent with that implication, we observed that
docking to the tethered patch was qualitatively much slower
for the fully overlapping DNA sequence compared to the
PolyA/T pair, presumably the result of increased geomet-
rical constraints placed upon the fully overlapping se-
quences to initiate contact at the correct sequence location
to successfully hybridize. This dramatically decreased dock-
ing rate made it impractical to collect data on vesicles con-
taining 1 DNA/vesicle for the fully overlapping sequence,
where docking became so rare that meaningful statistics
could not be gathered.
mobile-labeled DNA on the patch. Hemi/full fusion is detected by a sharp

decrease in the intensity to baseline levels, as the labeled DNA-lipid hybrids

diffuse into the much larger membrane patch area. DNA is displayed only

on the outside of the vesicle, so hemi/full fusion is indistinguishable. (D)

Distribution of the number of DNA hybrids formed between vesicle and

tethered patch before undergoing hemi- or full fusion. Calculation of num-

ber of hybrids is given in the Supporting Material Section 1.4.
Behavior of DNA-lipids during fusion

To gain insight into fusion from the perspective of the DNA-
lipids, we investigated DNA hybrid formation subsequent to
docking to determine how quickly and how many hybrids
Biophysical Journal 105(2) 409–419
form between the vesicle and target membrane. To accom-
plish this, DNA-lipids labeled at the membrane distal end
with a fluorescent dye (typically Alexa546) were incorpo-
rated into the target tethered bilayer and the number of
dye-labeled DNA-lipids that formed hybrids with a docked
vesicle as illustrated in Fig. 3 Awas quantified. In these ex-
periments, the DNA-lipid density in the tethered patch is
~50 DNA-lipids per mm2 on the top leaflet. To ensure that
this lower density did not cause DNA-lipid diffusion to limit
the observed rate of hybrid formation, we performed a sim-
ple calculation. The diffusion coefficient of lipids in the
tethered membrane is ~5–6 mm2/s (30). Assuming a similar
diffusion coefficient for DNA-lipids in the target membrane,
the encounter time of a DNA-lipid diffusing randomly on
the patch with a docked vesicle is ~0.3 ms, and should not
be rate-limiting. Likewise, a DNA-lipid diffusing randomly
on a 50 nm vesicle will have a mean encounter time of
<0.5 ms to reach any given target 5 nm in radius on the
vesicle surface (33).

http://www.idtdna.com
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Before vesicle addition, the tethered bilayer has a dim,
uniform background due to the rapidly diffusing dye-labeled
DNA-lipids in the target patch. Upon vesicle docking
(defined as the video frame in which a bright spot is first de-
tected), dye-labeled DNA-lipids gather at the site of the
docked vesicle as DNA-lipids on the vesicle hybridize to
dye-labeled DNA on the target patch. This produces a local
increase in the density of dye-labeled DNA at the site of the
docked vesicle, resulting in a bright spot above the back-
ground (Fig. 3 B). The background-subtracted intensity of
this spot is proportional to the number of DNA hybrids
formed, which can be calculated using a calibration curve
(see the Supporting Material Section 1.4). Due to the back-
ground created by the dye-DNA-lipids in the tethered patch
(translated into DNA hybrid effective units, the noise is ~15
DNA hybrids for a vesicle-sized ROI), this experiment must
be performed at high—65 and 42—DNA/vesicle densities.
Upon hemi-fusion or full fusion (indistinguishable here),
the spot rapidly disappears as the hybridized DNA duplexes
diffuse into the membrane patch.

Two control experiments were performed. To verify the
simultaneity of lipid transfer and DNA duplex release, we
performed an experiment in which we monitored lipid mix-
ing and DNA hybridization together, and observed that the
release of the hybridized DNA duplexes into the membrane
patch always coincided with a lipid transfer event (Fig. S9).
To more directly measure DNA hybridization, we also per-
formed a fluorescence resonance energy transfer experiment
using a dye-labeled DNA on the vesicle and on the patch. As
expected, the fluorescence resonance energy transfer ratio
within a vesicle-sized ROI increased rapidly upon vesicle
docking and diminished to background upon fusion (data
not shown). However, we opted to use the one color hybrid-
ization experiment shown in Fig. 3 A for our analysis
because of higher signal to noise.

When measuring how quickly hybrids form between
vesicle and target membrane, we observed two behaviors
(Figs. 3 B-C). For many vesicles, the intensity of the spot
reached its maximum value in the initial frames upon dock-
ing, and then remained flat until fusion occurred. This indi-
cates that most DNA hybrids formed rapidly upon docking
(<1s), and that the number of hybrids remained constant
during twait (Fig. 3 B). Other vesicles underwent a rapid
rise in intensity during the first frames upon docking, but
then the intensity slowly continued to rise for some longer
time periods (often 10 s or more after docking, see Fig. 3
C). This suggests that many DNA hybrids are formed
upon docking but then additional hybrids form more slowly
over the next few seconds. The maximum number of hybrids
formed did not seem to be correlated with the time it took to
form them, suggesting that this slower accumulation of hy-
brids was not due to having more available tethers on the
vesicle.

We next looked at the maximum number of hybrids
formed by many docked vesicles and compared that to the
number of DNA-lipids added, on average, to the vesicles
(Fig. 3 D and Fig. S11). As expected, the distributions
were wide (see the Supporting Material Section 4), but
were surprisingly centered near the number added to the
vesicles, suggesting that all DNA on the vesicles could hy-
bridize with DNA on the tethered bilayer—as many as 60–
70 duplexes on average in Fig. 3 D, with even higher
numbers at the tail of the distribution. The minimum contact
area between the vesicle and tethered bilayer that would be
required to accommodate this many DNA hybrids was esti-
mated by assuming that the duplexes hybridize completely
and that they are equally spaced around the perimeter of
the contact area. Then, if the width per duplex is 2 nm, a cir-
cular contact area of diameter >140 nm/p ¼ 44 nm would
minimally be required to accommodate 70 hybrids. Because
the average diameter of our vesicles is ~50 nm, this suggests
that the vesicles are greatly deformed and/or that incomplete
hybridization (i.e., hybridization only at the membrane
distal end) allows a staggered configuration of duplexes
that would not require so large a contact area. Atomic force
microscopy studies of vesicles adsorbed onto a glass surface
have indicated that vesicles can deform quite dramatically
upon adhesion, flattening to a width/height ratio of approx-
imately five (34). Furthermore, recent cryo-electron micro-
scopy images of tightly docked vesicles via SNARE
complex formation suggest that such deformation may be
possible for docked vesicles (Fig. 2 D and Fig. 3 C in
(35)). It is also possible that the target membrane deforms
locally to increase the contact area with the incoming
vesicle, however similar results were obtained with SLBs
as the target, a membrane that should be less deformable
(data not shown).
DISCUSSION

In this study, we examined vesicle-to-tethered bilayer fusion
events mediated by DNA-lipids (Fig. 1 A) as a model system
for SNARE-mediated vesicle fusion. In our system, the
incoming vesicles dock and fuse to a target membrane
(tens of microns in diameter) that is held 8 nm from the sur-
face by 24mer DNA tethers to minimize bilayer-surface in-
teractions. This geometry mimics the curvatures of bilayers
in the synapse, where synaptic vesicles (~40 nm in diameter,
(31)) fuse to the locally planar plasma membrane. Using
DNA-cholesterol conjugates, others have studied lipid-mix-
ing events between vesicles and planar SLBs (36); using our
DNA-lipid conjugates, we also observe lipid-mixing, but not
content transfer between vesicles and SLBs (data not
shown). Because content transfer is not observed (presum-
ably due to bilayer-surface interactions, see also (15)), we
prefer tethered bilayers to SLBs as planar target membranes.

Fig. 4 contains a graphical summary model of DNA-
mediated vesicle fusion to a tethered bilayer based on the re-
sults described herein. Each state is discussed in detail
below.
Biophysical Journal 105(2) 409–419



FIGURE 4 Graphical summary model of DNA-mediated fusion to a teth-

ered patch. The locations of dye-labeled lipid molecules and DNA-lipids at

each step reflect the understanding derived from the current study. The

thickness of the arrows at each step represents the proportion of vesicles

observed to undergo the various transitions. The dotted arrows to and

from partial fusion represent our incomplete understanding of this transi-

tion—we have observed evidence of these transitions, but have not charac-

terized them as a percentage of total events.
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DNA hybrid formation and vesicle mobility upon
docking

By assaying DNA hybrid formation during vesicle docking
and fusion (Fig. 3), we observed that all available DNA-
lipids on the vesicle (at least ~70/vesicle on average) can
form hybrids with the target tethered patch. The number
of DNA/vesicle (and consequently the number of hybrids
formed upon docking) appears to govern the lateral mobility
of the vesicle once docked to the tethered patch by DNA hy-
bridization (Movie S3). As the number of DNA/vesicle de-
creases, vesicle mobility on the surface increases.
Vesicles arrested after docking

A significant proportion of vesicles with 65 DNA/vesicle
(~25–35%, see Fig. 1 C) were arrested after docking. Vesi-
cles arrested after docking have been observed in a variety
of SNARE-based fusion model systems, with proportions
varying widely from 0% to 90% (6,9,13,16–18). What
causes these vesicles to become arrested remains unknown.
One possibility is that fusion components (DNA-lipid, syn-
aptobrevin, etc.) may become trapped between vesicle and
target membranes, disallowing fusion by keeping the mem-
branes apart. If this were the case, one would expect in our
system that lower DNA/vesicle densities should produce
fewer vesicles arrested after docking. At these lower den-
sities, the vesicles are highly mobile and any trapped
DNA-lipid could presumably easily escape or, in the case
of a single hybrid, there would be no obvious mechanism
to trap anything. Consistent with that expectation, we
observed fewer docking-only vesicles (<10%) at low
numbers of DNA/vesicle (data not shown). Lipid composi-
tion and vesicle curvature may also have a role in arresting
vesicles after docking—these are discussed further in sec-
tions below.
Biophysical Journal 105(2) 409–419
Multiple fusion outcomes following docking

Several fusion outcomes were observed and are proportion-
ately represented by the thickness of the arrows in Fig. 4.
Most vesicles (thick black arrow) underwent hemi-fusion,
where they were able to remain stable for minutes to hours
(Fig. S2). <2% of hemi-fused vesicles (thinnest black
arrow) later transitioned to full fusion and <5% (medium
black arrow) of vesicles transitioned directly from docking
to full fusion without passing through a measurable hemi-
fusion intermediate. Based on the range of values observed
for the percent intensity decrease upon lipid-mixing (Fig. 1
D), we inferred that there are also some partial fusion events
in which both leaflets exchange momentarily with the target
membrane—consistent with reports of transient fusion pore
opening in SNARE-based systems (9,37,38) as well as par-
tial content transfer events we observed previously (27). The
exact proportion of such events, presumed to be small, is un-
known (dotted lines). Surprisingly, the division among the
various fusion pathways was not dramatically influenced
by the DNA/vesicle number density or by the DNA
sequence. Once the two membranes are brought close
enough together, the various fusion behaviors emerge spon-
taneously, with hemi-fusion predominating in all cases. A
very rough estimate of that distance, based on the width of
a DNA duplex and linkage to the lipid anchor, is ~2–
3 nm, although this distance could be even smaller should
the duplex be pulled out of the way.

Other researchers have suggested that vesicle curvature
may play an important role in determining fusion inter-
mediates, kinetics, and outcomes (e.g. (39)). However, we
did not observe a correlation between the initial intensities
of the vesicles and the division among the fusion pathways
or kinetics (data not shown), suggesting that the role of
vesicle size and consequently curvature is not the major
deciding factor in our data set, which only examined vesi-
cles from a limited size distribution (Fig. S1). This is consis-
tent with our observation that DNA-mediated fusion
between mobile vesicles tethered to an SLB occurred on a
similar timescale to fusion in our vesicle-to-tethered patch
system (40).
Hemi-fusion kinetics and mechanistic
implications

As the predominant outcome in our system, the hemi-fused
state is of particular interest. Based on experiments moni-
toring lipid mixing (Fig. 1 D) and those monitoring dye-
labeled DNA-lipids (Fig. 3 and Section 9 in the Supporting
Material), we infer that this intermediate has fully
exchanged its outer leaflet, including any DNA-lipids or hy-
brids, with the target membrane, as drawn in Fig. 4.

We observed that the CDFs for hemi-fusion wait times
were exponential (Fig. 2), with k on the order of 0.1 s�1.
The CDF can reveal information on the number of steps
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before fusion. If there are one or more steps before fusion
(and if they occur on dissimilar timescales), the waiting
times will follow a gamma distribution and the CDF will
have an initial lag before rising. This has been observed in
both SNARE-mediated and virus-mediated fusion of vesi-
cles to planar bilayers, where the rate-limiting steps were
attributed to the formation of more fusion pairs during the
waiting time (6,41). A gamma distribution did not fit our
CDFs at all, indicating that hybridization of DNA-lipids
may be occurring much faster than protein binding in
SNARE- or virus-based systems. In our system, the waiting
time CDFs were always exponential, implying a stochastic
process from docking to fusion.

Consistent with the implication that forming a certain
number of DNA hybrids is not a rate-limiting step, the
hemi-fusion rate was very similar across a wide range of
DNA/vesicle and for different DNA sequences (Table 1).
Vesicles with >1 DNA/vesicle underwent slightly faster
hemi-fusion, with a possible minimum near 10 DNA/vesicle,
but the difference was not dramatic, especially considering
that docked vesicles with low DNA/vesicle densities were
quite mobile—suggesting they were not held as closely to
the target membrane as those with higher DNA/vesicle den-
sities. Furthermore, the observation that many DNA hybrids
could form shortly after vesicle docking and then remain
constant in number until fusion occurred (Fig. 3 B) also sug-
gests that DNA hybrid formation is not directly coupled to
the fusion event. The lack of strong dependence of the rate
of hemi-fusion on the sequence or number of DNA hybrids,
in combination with the seconds timescale between docking
due to hybridization and (hemi)fusion, suggests that the en-
ergy of DNA hybridization is not actively transduced into
membrane fusion (hemi- or full) as any energy gained in
the binding event is dissipated prior to the fusion event.

What, then, is the nature of the waiting time between
docking and fusion? To explain slow SNARE-mediated
vesicle-to-SLB fusion events on the order of seconds, others
have suggested that local lipid tail fluctuations could initiate
fusion between apposing membranes (12). In that case, the
waiting time between docking and hemi/full fusion would
be the time until a local lipid fluctuation occurred to initiate
fusion. This mechanism, where lipid tails infrequently sam-
ple the polar interface leading to nucleation of a fusion pore,
has been demonstrated in simulations, although only for
highly constrained, curved vesicles on timescales much
shorter than our experiments (42,43). This stochastic pro-
cess should produce an exponential distribution of waiting
times, consistent with our observations, but is difficult to
verify experimentally.
Vesicles arrested after hemi-fusion

Vesicles arrested at hemi-fusion have been observed in other
model systems, although typically at lower percentages than
observed here (9,13). One explanation for why hemi-fusion
is the predominant endpoint of our system is that the lipid
anchor of our DNA-lipids spans only one leaflet of the
vesicle bilayer. The importance of the SNARE transmem-
brane domains for promoting full fusion has been suggested
by a number of reports (10,14,44–47), although one study
showed fusion could be achieved with the addition of
several accessory proteins even if the SNARE transmem-
brane domain was replaced with an anchor spanning only
one leaflet (44). Because our DNA-lipids only span half
the bilayer, all hybridized pairs can diffuse into the target
bilayer upon hemi-fusion, leaving the hemi-fused vesicle
without any DNA-lipids as depicted in Fig. 4. This could
explain why the hemi-fused state is the predominant
endpoint in our system.

Lipid compositionmay also have a role to play in arresting
the vesicles at hemi-fusion (or at docking). The particular
lipid composition used here (2:1:1 DOPC/DOPE/Chol)
was chosen based on other model membrane fusion systems
(21) and because we observed the greatest extent of DNA-
mediated lipid and content mixing in bulk experiments,
while ensuring no leakage of vesicle contents or nonspecific
fusion (25). However, this composition may stabilize the
hemi-fused intermediate so that transition to full fusion
becomes difficult. Indeed, other researchers have demon-
strated that lipids with negative curvature (such as PE) can
stabilize the hemi-fused intermediate (9,13,48), and removal
of negatively curved lipids can in some cases lead to an
increased propensity for full fusion events (13). PE is, how-
ever, a significant component of the synaptic vesicle lipid
composition (31) suggesting that the biological fusion ma-
chinery must be able to overcome or avoid any hemi-fusion
intermediates stabilized by lipid composition.
Implications for biological fusion

The conclusions emerging from our study of DNA-mediated
fusion have several implications for the biological fusion re-
action and lend support to several mechanistic proposals.

One, our data suggest there are multiple fusion pathways
that can be accessed merely by bringing the vesicle and
target membrane into close apposition upon DNA binding
in the zippering orientation, and the kinetics of these pro-
cesses imply a stochastic mechanism of fusion. This implies
that the role of the biological fusion machinery is not just to
encourage progression along a single trajectory toward con-
tent release, but rather to select from among several possible
fusion pathways so that fusion will occur both properly and
at the correct time, as recently proposed (5). In combination
with our content mixing data (27) this also supports the idea
that in biological fusion an inhibitory mechanism may exist
in which docked vesicles are prevented from fusing until the
correct moment (3). This inhibitory state could be achieved
by holding the membranes and SNAREs a sufficient dis-
tance apart so they do not zipper until the correct moment,
or by physically blocking the membranes from coming
Biophysical Journal 105(2) 409–419
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into close proximity following SNARE zippering or partial
zippering.

Two, our data support the emerging proposals that very
few fusion-mediating complexes (DNA, SNAREs, etc.),
possibly even just one, may be required to achieve the mem-
brane proximity that allows fusion to occur (6,8,14),
although in the biological system it is likely that other fusion
components are necessary to encourage the correct fusion
pathway at the right time. In our data, we observed that
fusion behavior and kinetics were relatively unchanged
down to one DNA/vesicle on average, suggesting that addi-
tional complexes do not play a significant role in driving
fusion.

Three, our results suggest that the hemi-fused intermedi-
ate is actually quite stable and can be a predominant
endpoint. The hemi-fused intermediate has been observed
in pure lipidic systems (49), and recent data suggests that
hemi-fusion may produce a kinetically trapped fusion state
for synaptic vesicle fusion as well (5,35), indicating that a
stable hemi-fused structure can occur across a variety of
model systems.

Four, in contrast to mechanistic hypotheses that propose
the zippering of the SNAREs is directly transduced into
membrane fusion (e.g. (45)), our data show a lag time be-
tween DNA zippering and membrane fusion and suggests
a stochastic mechanism. This may be a limitation of not hav-
ing a transmembrane anchor for our DNA-lipids or it could
suggest an alternate fusion mechanism.

Finally, an exponential distribution of wait times with an
average of several seconds might be acceptable for some
biological fusion pathways, but it is clearly too slow for
the exquisite timing needed for synaptic vesicle fusion (1).
Indeed, slower-than-expected fusion has been a problem
in nearly all in vitro membrane fusion systems to date and
a variety of accessory proteins have been suggested to be
the principal timing mechanisms (50). Ultimately, this high-
lights the importance of further experimentation to under-
stand the molecular mechanism of vesicle fusion.
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28. Chen, X., D. Araç, ., J. Rizo. 2006. SNARE-mediated lipid mixing
depends on the physical state of the vesicles. Biophys. J. 90:2062–
2074.

29. Sutton, R. B., D. Fasshauer, ., A. T. Brunger. 1998. Crystal structure
of a SNARE complex involved in synaptic exocytosis at 2.4 A resolu-
tion. Nature. 395:347–353.

30. Chung, M., R. D. Lowe, ., S. G. Boxer. 2009. DNA-tethered mem-
branes formed by giant vesicle rupture. J. Struct. Biol. 168:190–199.

31. Takamori, S., M. Holt,., R. Jahn. 2006. Molecular anatomy of a traf-
ficking organelle. Cell. 127:831–846.

32. Chan, Y.-H. M., P. Lenz, and S. G. Boxer. 2007. Kinetics of DNA-
mediated docking reactions between vesicles tethered to supported
lipid bilayers. Proc. Natl. Acad. Sci. USA. 104:18913–18918.

33. Linderman, J. J., and D. A. Lauffenburger. 1986. Analysis of intracel-
lular receptor/ligand sorting. Calculation of mean surface and bulk
diffusion times within a sphere. Biophys. J. 50:295–305.

34. Schönherr, H., J. M. Johnson,., S. G. Boxer. 2004. Vesicle adsorption
and lipid bilayer formation on glass studied by atomic force micro-
scopy. Langmuir. 20:11600–11606.

35. Hernandez, J. M., A. Stein, ., R. Jahn. 2012. Membrane fusion inter-
mediates via directional and full assembly of the SNARE complex.
Science. 336:1581–1584.

36. Simonsson, L., P. Jönsson, ., F. Höök. 2010. Site-specific DNA-
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1. Supporting Materials and Methods 

1.1 Preparation of dye-labeled DNA-lipids 

DNA-lipids were prepared as in Ref. 1 by covalent attachment of a synthetic 

lipid-phosphoramidite as the final base to either the 3′ or 5′ end of an oligo on resin 

(sequences in Table S1), and subsequent purification on HPLC.  For fluorescently labeled 

DNA-lipids, a C3-amino modifier was added during the DNA synthesis prior to the first 

base at the appropriate end (5′ or 3′, see Table 1).  After coupling the lipid at the opposite 

end (3′ or 5′, respectively), the DNA was deprotected and cleaved from the resin, then the 

free amine was subsequently reacted with a dye-N-hydroxysuccinimide (NHS) ester to 

form the dye-labeled DNA-lipid, which was separated from excess dye on a PD-10 

Sephadex desalting column (GE).  This results in a dye-labeled DNA-lipid with a lipid at 

one end and a dye at the opposite end, so that the dye is attached to the DNA at the 

membrane-distal end.  The labeling efficiency was calculated as the ratio of absorbance 

peak heights between the dye maximum and the DNA maximum (260nm), which was 

corrected for dye absorption at 260nm.   Labeling efficiencies for dye-DNA-lipids used in 

the current study are given in Table 1. 
TABLE S1. DNA sequences and coupling orientations. 

Name Sequence (5' to 3') % Labeled*

3'PolyA AAA AAA AAA AAA AAA AAA AAA AAA - lipid n/a 

5'PolyA lipid - AAA AAA AAA AAA AAA AAA AAA AAA  n/a 

5'Poly A-Alexa488 lipid - AAA AAA AAA AAA AAA AAA AAA AAA - Alexa488 >100% 

5'PolyT lipid - TTT TTT TTT TTT TTT TTT TTT TTT n/a 

5'PolyT-Alexa546 lipid - TTT TTT TTT TTT TTT TTT TTT TTT - Alexa546 ~85% 

3'PolyT-Alexa546 Alexa546 - TTT TTT TTT TTT TTT TTT TTT TTT - lipid >95% 

Sequence 1 lipid - TAG TAT TCA ACA TTT CCG TGT CGA n/a 

Sequence 2 lipid - TCG ACA CGG AAA TGT TGA ATA CTA n/a 

Sequence 2-alkyne alkyne- TCG ACA CGG AAA TGT TGA ATA CTA n/a 

3'Sequence 2 TCG ACA CGG AAA TGT TGA ATA CTA - lipid n/a 

Sequence 3 lipid - TCC TGT GTG AAA TTG TTA TCC GCA  n/a 

Sequence 3-alkyne lipid - TCC TGT GTG AAA TTG TTA TCC GCA - alkyne n/a 

Sequence 4 TGC GGA TAA CAA TTT CAC ACA GGA – lipid n/a 

* % Labeled calculated as the ratio of absorbance peak heights between the dye maximum and the DNA 
maximum (260nm), which was corrected for dye absorption at 260nm 
 



1.2 Dynamic light scattering 

Dynamic light scattering (DLS) measurements were performed on a Brookhaven 

90 Plus machine, utilizing the Particle Sizing Software with the Zeta Pals option.  

Measurements were performed on freshly extruded vesicles (concentration ~0.3 mg 

lipids/mL in buffer that had been passed through a 0.03 μm polycarbonate filter to 

remove dust particles).  Vesicles, prepared as in the lipid-mixing experiments with 2% 

TR-DHPE, were extruded at a pore size of 30 nm. The average hydrodynamic diameter 

was determined to be 48±12 nm (average ± standard deviation of the distribution, see 

Figure S1). 

 

Figure S1. Distribution of vesicle sizes (hydrodynamic diameter) as measured by DLS for 
vesicles extruded at 30 nm.  The relative number of vesicles (blue, scaled to 100) and cumulative 
distribution (red) are shown. 

 

1.3 Image Acquisition and Processing 

For the vesicle-to-tethered bilayer lipid mixing experiments, video streams of 

typically 1000-2000 frames were acquired with an acquisition time of 30 to 100 ms using 

14-bit image settings for the lipid mixing experiment.  The Texas Red labeled vesicles 

were excited using the Nikon Intensilight lamp and a 522-582 nm excitation filter, and 

the fluorescence was filtered through a 604-644 nm emission filter.   

For the experiments using Alexa 546-labeled DNA-lipids, the dye was excited 

using a 532-550 nm excitation filter, and its fluorescence was filtered using a 572-642 nm 

emission filter.  For the experiments measuring hybrid formation using Alexa 546-DNA-

lipid and for the corresponding calibration curve, images were acquired with 144 ms 

acquisition time and using 16-bit image settings.  For the single-step photobleaching 



experiments using Alexa 546-DNA-lipid (see SI Section 10), images were acquired using 

150 ms acquisition time, 2x2 binning, and 16-bit image settings. 

1.4 Calculation of the Number of DNA Hybrids Formed (Nhybrids) in Dye-DNA 

Hybrid Formation Experiment (Fig. 3 and Fig. S11) 

As discussed in the main text, there is a sharp increase in the local concentration 

of Alexa546-labeled DNA-lipid at the diffraction limited spot where the vesicle docks, 

due to hybridization of many fusion DNA pairs between the tethered patch and the 

docked vesicle. Fusion (or hemi-fusion) was detected by rapid disappearance of the 

bright spot due to the rapid dilution of the hybridized pairs into the membrane patch.  

Note that hemi-fusion and full fusion would both lead to complete dilution of the dye in 

the spot because the dye-labeled DNA in the hybrid is only on the outer leaflet of the 

vesicle (as drawn in Fig. 3A).  Analysis of the hemi-fusion or fusion events was 

performed in a homemade Matlab program.  Each trace was reviewed to ensure that only 

one docking event, and zero or one fusion event, occurred.  An average background 

subtraction from a nearby (and unoccupied) region on the tethered membrane was applied 

to each vesicle so that the change in intensity upon docking could be measured 

accurately.  The maximum integrated intensity of the vesicle before undergoing hemi/full 

fusion (IntensityVesicle) is proportional to the number of dye-labeled DNA-lipids gathered 

(i.e. number of DNA hybrids formed) by the docked vesicle (as shown in Fig 3B and 3C).  

The number of DNA hybrids formed Nhybrids is calculated as 

Nhybrids = IntensityVesicle

IntensityFluorophore

 

where the fluorescence intensity per fluorophore (IntensityFluorophore) is calculated from a 

calibration curve as described in SI Section 11 below. 

2. Long Timescale Vesicle-to-Patch Fusion Experiment 

In order to gain a qualitative understanding of the stability of the vesicles that 

were arrested at the docked or hemi-fused states, we performed a vesicle-to-tethered 

patch lipid mixing experiment in which the vesicles were observed over the course of 

many hours.  An initial video micrograph of ~1 min was collected, during which vesicles 

were observed to dock and undergo fusion transitions (mostly hemi-fusion).  Subsequent 



to the video micrograph, time-lapse images of the docked and hemi-fused vesicles were 

acquired over the course of ~9 hours.  Time-lapse images were taken at increasingly 

sparse time points to avoid photobleaching. 
 

 
Figure S2. Example fluorescence intensity time traces showing various fusion behaviors that 
occurred over a very long time (hours) in a vesicle-to-tethered patch fusion experiment, 195 
DNA/vesicle on average. (A) Arrested hemi-fusion—a vesicle docks and almost immediately 
hemi-fuses at ~0.4 min, then remains stably hemi-fused for the duration of the experiment.  (B) 
Arrested docking—a vesicle docks at ~0.6 min and undergoes no further change.  (C) Fast hemi-
fusion, full fusion much later—a vesicle docks at ~0.7  min, undergoes hemi-fusion at ~0.8 min, 
and then transitions to full fusion at ~300 min. (D) Hemi-fusion after a long waiting period—a 
vesicle docks at ~0.5 min, hemi-fuses at ~200 min, and then remains stably hemi-fused for the 
duration of the experiment.  Note the change in timescale and density of data points before and 
after the break in the x-axis. 

 

We observed that both the docked and hemi-fused vesicles could be quite stable.  

Figure S2A and S2B show example traces of vesicles which were stably hemi-fused or 

stably docked over ~9 hours.  Some stably docked or hemi-fused vesicles did eventually 

undergo full or hemi-fusion after many hours.  Figure S2C shows an example trace of a 



hemi-fused vesicle which underwent full fusion after ~5 hours and Figure S2D shows the 

trace of a docked vesicle which eventually hemi-fused after ~3 hours. 
 

3. Full Fusion Kinetics 

 
Figure S3. CDF of the docking to full fusion wait times for events identified as full-fusion-only 
in vesicle-to-tethered membrane lipid-mixing experiments. Because full-fusion-only events were 
so rare, we compiled events from several different data sets in order to generate the CDF.  Mean 
wait time = 15 sec, N = 68. 
 

 
4. Distribution of DNA-lipids in Vesicles 

The actual distributions of DNA-lipids in vesicles (Figure S4) were determined by 

incorporating a dye-DNA-lipid (3'PolyT-Alexa546) at varying DNA/vesicle number 

densities into vesicles which contained a very small amount of Oregon Green-DHPE lipid 

dye (<0.1 mole percent, equivalent to ~25 dyes/vesicle).  Vesicles were adhered to a glass 

slide at low density such that hundreds of individual vesicles could be easily 

distinguished in a widefield epifluorescence image.  The Oregon Green (OG) 

fluorescence and Alexa546 fluorescence for each set of vesicles was captured.  The OG 

intensity was used to identify vesicles and the Alexa546 intensity of each vesicle was 

used to calculate its number of DNA-lipids.  Both intensities were quantified by a 

homemade MATLAB program which performed a 2D Gaussian fit for each vesicle in 

order to calculate the local background signal, which was subtracted from the integrated 

fluorescence intensity.  The small amount of OG was not enough to produce any 

significant bleedthrough into the Alexa546 image.  To translate the Alexa546 



intensity/vesicle into number of Alexa546 dyes/vesicle (and consequently number of 

DNA-lipids/vesicle), stepwise photobleaching of Alexa546 was performed on many 

vesicles containing a low number of DNA/vesicle and the average step size (i.e. 

fluorescence intensity/Alexa546 dye) was calculated (c.f. Figure S10). 
 
Figure S4. The observed distributions of DNA-lipids in vesicles to which on average were added 
(A) 1 DNA/vesicle, (B) 5 DNA/vesicle, (C) 10 DNA/vesicle, (D) 25 DNA/vesicle, or  (E) 65 
DNA/vesicle.  The observed mean of each distribution is reported as well as the total number N of 
vesicles observed. 

 

The observed mean DNA/vesicle number densities were very close to the 

expected average number densities which had been added to the vesicles (calculated 

using the average size of the vesicle, 48±12 nm in diameter, as determined by DLS—see 

Fig. S1), indicating that the DNA-lipids were inserting quantitatively1.  However, the 

distributions each had very long tails, much longer than what would be expected from 

Poissonian statistics.  This suggests that entire DNA-lipid micelles might occasionally 
                                                 
1 At higher DNA/vesicle number densities (> 0.5 mole% DNA-lipid, which corresponds to ~125 
DNA/vesicle for a 50 nm vesicle), we have observed that the DNA-lipids no longer insert quantitatively.  
This can be seen quite easily in the characterization method described above as many Alexa546 spots 
(presumably micelles of 3'PolyT-Alexa546) which are not co-localized with any Oregon Green signal (i.e. 
not co-localized with any vesicle). At the DNA/vesicle number densities used in this report, these micelles 
are seen only infrequently, consistent with the conclusion that the DNA-lipids have inserted quantitatively. 



fuse with vesicles during the insertion process, generating the long tails in the 

distributions. 

 
5. Modeling of Docking to Hemi-fusion Wait Times by Maximum Likelihood 
Estimation 
 

The cumulative distribution functions (CDF) of the docking to hemi-fusion 

waiting times exhibited exponential behavior in all of our experiments, suggesting that 

the docking to hemi-fusion transition is a Poissonian process.  Within the time resolution 

of those experiments, we never observed a lag at the beginning of the CDFs which would 

suggest that there might be multiple rate-limiting steps between docking and hemi-fusion 

(see Discussion in main text). 

Using maximum likelihood estimation (MLE), we found that most of our data 

was modeled well by a single exponential distribution of the form CDF(t) =1− e− t /τ wait , 

where τwait is the parameter varied in the MLE and represents the mean wait time of the 

fit.   Example fits to this distribution are shown in Figure S5 (black line) and Figure 2A in 

the main text (black line). 
 

 
Figure S5. Example fits of a single or double exponential distribution to the docking to hemi-
fusion waiting time cumulative distributions for (A) 5 DNA/vesicle and (B) 65 DNA/vesicle 
number densities (poly A/ poly T DNA sequence).  This is the same data as shown in Figure 2B 
of the main text. 

 

Interestingly, when we examined the dependence of the docking to hemi-fusion 

rate on DNA/vesicle number density for the poly A/ poly T sequence (Figure 2B in main 

text), we found that the CDFs for 25 and 65 DNA/vesicle were not as well modeled by a 



single exponential distribution (see Figure S5(B)).  These CDFs were, however, well 

modeled by a double exponential distribution of the form 

CDF(t) =1− A 1 e− t /τ1 + A 2 e−t /τ 2 .  This distribution would suggest that a slow and a fast 

fusing population may exist.  In that case, A1 and A2 would represent the proportion of 

data that fell into either population and τ1 and τ2 would be their respective mean waiting 

times.  Indeed the CDFs shown in Figure 2B of the main text look as though a slow 

population may contribute more strongly at the higher number densities (25 and 65 

DNA/vesicle). 

An explanation consistent with this observation would be that vesicles with a 

higher DNA/vesicle number density may be more likely to have a DNA-lipid become 

trapped between the vesicle and the target membrane during docking, arresting fusion 

until the trapped DNA-lipid can escape.  In support of that explanation is the observation 

that vesicles with 25 and 65 DNA/vesicle were mostly immobile upon docking 

(presumably mobile vesicles are less likely to have a DNA-lipid become trapped between 

the two membranes).  Also, we observed an apparent increase in docking-only events at 

higher DNA/vesicle number densities, which would be expected if this explanation were 

correct (data not shown).  On the other hand, the CDFs for the high DNA/vesicle number 

densities for the fully overlapping Sequence 1 & 2 did not show a similar trend away 

from a single exponential distribution (see Figure S6), nor did the data in Figure 2A (75 

DNA/vesicle, poly A/poly T DNA sequence). 

Ultimately, we decided not to pursue experiments that might tease out the source 

of this deviation away from a single exponential distribution because the overall change 

in kinetics was modest at best across the different DNA/vesicle number densities.  It 

seemed likely that experiments designed to extract the source of the slightly different 

kinetic behaviors could easily be confounded by experimental noise.  Our central 

observations are that changing the DNA/vesicle number density across a very wide range 

(1 to 65 DNA/vesicle) did not alter the kinetic behavior significantly and that no lag time 

was observed in the CDFs for any of our data sets. 

 

 
 
 



6. Vesicle-to-Patch Fusion Experiments Using Fully Overlapping DNA Sequences 

 
Figure S6. Cumulative distributions of the docking to hemi-fusion wait times for vesicle-to-
tethered patch lipid mixing experiments using the fully overlapping Sequence 1 & 3’Sequence 2 
(see Table S1) to mediate fusion.  The DNA/vesicle number density was varied from 5 to 65 
DNA/vesicle and the DNA density in the tethered patch was held constant at 0.5 mole %.  
Because of the decreased docking rate at low number densities, it was not practical to collect data 
at 1 DNA/vesicle for this DNA sequence.  Statistical information for each DNA/vesicle number 
density is given in Table 1 in the main text. 
 
 
7. Importance of DNA Binding Orientation 

 
Figure S7. Schematic of vesicle-to-tethered membrane fusion experiment where the DNA-lipids 
in both vesicle and target membrane are coupled to their respective lipid anchors on the 5' end of 
the DNA (tethering orientation).  Hybridization in this case will locally hold the apposing 
membranes apart by the length of the DNA duplex (8 nm in our experiments). We observed that 
this tethering orientation prevented any fusion transitions (hemi-fusion or full fusion) following 
the docking event. 

 

The importance of DNA binding orientation was determined by performing a 

vesicle-to-tethered bilayer lipid mixing experiment, where the DNA-lipids on both 

membrane surfaces were anchored to the membrane at their 5' end (5' PolyA and 5' PolyT 

sequences, see Table S1), rather than on the 3' end on one surface and the 5' end on the 

other (zippering orientation), as is the case for all the other fusion experiments described 



in this report.  Upon hybridization, this tethering orientation should locally keep the 

vesicle and target membranes apart by the length of the ∼8 nm 24mer duplex (see 

schematic in Figure S7), rather than bringing them close together, as is the case for the 

zippering orientation.  We observed that docking, but not fusion, occurred when the 

tethering orientation was used to dock the incoming vesicles to the patch (data not 

shown).  Similar to the experiments performed with the zippering orientation, the docked 

vesicles were mobile at a low DNA-lipid number density in the vesicle, while at a high 

number density they were immobile, suggesting that more hybrids had formed (see 

mobility discussion in SI Section 8).  In both cases, no fusion behavior was observed to 

occur.  Overall, this indicates that the correct binding orientation is essential in order to 

allow fusion to proceed. 

 
8. Mobility of DNA-tethered Vesicles 

In previous reports (2, 3) we have extensively examined and characterized the 

mobility of vesicles tethered by DNA-lipid conjugates to glass supported bilayers (SLB), 

where the DNA tethers were hybridized in the tethering orientation (i.e. conjugate DNA-

lipids were both anchored at the 5' end).  In one of those reports (2), we found that the 

average diffusion coefficient of tethered vesicles was not significantly different for 

vesicles with a high number of DNA/vesicle (25 DNA per 100 nm vesicle) as compared 

with a low number of DNA/vesicle (0.1 DNA per 100 nm vesicle).  This suggested that 

only one DNA-lipid was anchoring the vesicle to the SLB, even if the vesicle contained 

more than one DNA-lipid.  This report is in apparent contradiction with the observation 

in the present report that the mobility of vesicles docked to DNA-tethered membrane 

patches was reduced and ultimately abolished as the number of DNA/vesicle was 

increased (see SI Section 7 and Movie S3). 

Since the differing mobility of vesicles is not the focus of the current report, we 

have not quantified the average diffusion coefficients of docked vesicles herein, however 

several qualitative observations about differences between the current and previous 

methods may clarify the apparent discrepancy.  First, the differences between DNA-

tethered membrane patches and SLBs are not sufficient to explain the difference in 

mobility.  In follow-up experiments (data not shown), we have observed the change in 



vesicle mobility as a function of DNA/vesicle number density for both tethered patches 

and SLBs.  Second, DNA binding orientation is not sufficient to explain the difference—

we observed similar behavior for vesicles docked in both the tethering and the zippering 

orientations, although the effect was more pronounced for the zippering orientation, as 

might be expected.  Third, there are subtle differences in the chemistry linking DNA to 

the lipid and in the lipid composition compared to the previous reports.  The DNA-lipid 

linkage used in ref. 2 was based on in situ thiol/maleimide coupling chemistry (see ref 4) 

while that in the current report is based on phophoramidite chemistry (see ref 1); this 

more recent approach gives much greater control over the number of DNA-lipids/vesicle.  

The lipid composition of the vesicles was also different—EggPC in ref. 2 and 2:1:1 

DOPC:DOPE:Chol in the current report.  However, neither of these differences is 

expected to account for the observed difference in mobility. 

The most likely candidate to explain the apparent discrepancy is that the DNA-

lipids used in this report are primarily the polyA/polyT pairs whereas those in the 

previous reports are fully overlapping sequences.  In both tethering and zippering 

orientations, we have consistently observed that the fully overlapping sequences are more 

mobile at a given number density of DNA-lipids as compared to the polyA/polyT pairs.  

This is likely due to the ability of the repeating polyA/polyT sequences to hybridize with 

only partial overlap between partner strands, something unlikely to occur for a fully 

overlapping sequence.  In the tethering orientation (the relevant comparison between this 

and the previous reports), this ability may allow enough hybrids to form between vesicle 

and the underlying membrane to significantly reduce or abolish mobility.   

While the previous report (2) demonstrated that the size of the tethered vesicle did 

not affect its mobility, we have not as yet examined the combined effect of DNA/vesicle 

number density and vesicle size, and that may also explain somewhat the differing results 

(in the previous report, where the dependency on DNA/vesicle number density was not 

the principal focus, we only compared 0.1 DNA/vesicle with 25 DNA/vesicle for 

nominally 100 nm vesicles, while in the current report we have dealt exclusively with 50 

nm vesicles across a wide range of DNA/vesicle number densities). 

 

 



9. Transfer of DNA-lipids from Vesicle to Tethered Membrane During Hemi- or 
Full Fusion 
 

 
Figure S8. (A) Schematic of a vesicle-to-tethered membrane fusion experiment in which fusion is 
monitored as the transfer of dye-DNA-lipids (red stars) from vesicle to unlabeled tethered 
membrane. The dye-DNA-lipid is contained only in the outer leaflet of the vesicle.  (B) Example 
fluorescence time trace of a vesicle with dye-labeled DNA-lipids (3'Sequence 2-Alexa546, 125 
DNA/vesicle) docking (at t=3s) and fusing (at t=8s) to a target tethered membrane patch 
(Sequence 1, 0.5 mole %).  When the vesicle fuses to the target membrane (likely hemi-fusion), 
the dye is completely transferred to the membrane patch indicating that all DNA-lipids are 
transferred to the target membrane during hemi-fusion (or full fusion).  This event (as well as 
others) is shown in Movie S4.  Time t=0 is arbitrary. 

 

To confirm that the DNA-lipids on the vesicle are fully transferred to the tethered 

bilayer upon hemi-/full fusion, we performed two experiments.  In the first, shown in 

Figure S8, dye-labeled DNA-lipids are incorporated into the vesicle and their 

fluorescence is used to monitor docking and hemi/full fusion. For essentially all fusion 

events in this experiment, we observed that, after a short waiting time following docking, 

the fluorescence signal from the dye-DNA-lipid was transferred completely into the 

target membrane patch.  Partial transfer events were rarely observed.  Consistent with the 

expectation that the DNA-lipid is displayed only on the outside of the vesicle, this result 

indicates that upon hemi-/full fusion, all DNA-lipids (hybridized or not) from the SUV 

rapidly diffuse into the tethered target membrane and become diluted. 



 
Figure S9. (A) Schematic of a fusion experiment in which DNA hybridization and lipid mixing 
are monitored simultaneously.  The DNA in the tethered membrane (0.01%, Alexa546-5’PolyT) 
is labeled with Alexa-546 at its membrane distal end (red stars).  The incoming vesicle displays 
3’PolyA (65 DNA/vesicle) and is labeled with Oregon Green-DHPE lipids (5 mole%). (B) 
Example fluorescence time trace of the OG-DHPE signal (green trace, background subtracted) 
and Alexa546 signal (red trace, background subtracted and corrected for cross-talk) during a 
hemi-fusion event.  The vesicle docks at t=4s and hemi-fuses at t=24s as shown in the lipid-
mixing (green) trace. When the vesicle hemi-fuses, the Alexa546 signal abruptly disappears, 
indicating that all hybridized DNA pairs are able to freely diffuse away from the vesicle into the 
much larger membrane patch area.  Time t=0 is arbitrary. * indicates dequenching of OG upon 
hemi-fusion. 

 
 In the second experiment, shown schematically in Figure S9A, DNA hybrid 

formation and lipid-mixing were monitored simultaneously.  The two-color fluorescence 

time trace in Figure S9B shows an example hemi-fusion event.  Upon docking at t=4 s 

(indicated by abrupt appearance of the vesicle in the OG-DHPE channel), the vesicle 

slowly forms DNA hybrids with target tethered membrane (Alexa546 trace) until a 

maximum number is reached around t=12 s.  Upon hemi-fusion at t=24 s (detected as 

incomplete loss of OG-DHPE signal) the Alexa546 signal simultaneously disappears.  

Similar behavior was observed for all hemi-fusion events in this experiment, indicating 

that all DNA hybrids formed between vesicle and tethered membrane are able to freely 



diffuse away from the hemi-fused vesicle immediately upon membrane merger.  Note 

that the spike in the OG-DHPE signal upon hemi-fusion (indicated with *) is due to 

fluorescent dequenching of the OG dye.  OG was included at a self-quenched 

concentration (5 mole%) in the vesicle because of its propensity to photobleach over the 

length of an average experiment. 

 
10. Calibration of the Number of DNA Hybrids Formed at a Docked Vesicle  

To quantitatively relate spot intensity to the number of DNA duplexes (SI Section 

1.4), we constructed a calibration curve by depositing vesicles containing a very low 

number density of dye-labeled DNA-lipid on a glass coverslip and determining the 

intensity per fluorophore by single step photobleaching (Fig. S10).  The intensities of 

vesicles with higher number densities of dye-labeled DNA-lipids were also measured, 

demonstrating that the dependence of the average intensity per vesicle on number density 

of DNA-lipid was linear up to 65 DNA/vesicle (data not shown). 
 

 
Figure S10. (A) Single step photobleaching of a vesicle prepared with 0.01 mole % Alexa 546-
DNA-lipid (blue trace).  The green trace is a fit to a change point function based on Ref. 5, and its 
gradient. (B) Fluorescence intensity of vesicles as a function of the number of fluorophores. The 
slope of the line determines the intensity per fluorophore.  The step sizes were similar for each 
photobleaching step (data not shown).  Note that different acquisition settings were used to 
acquire data in A and B, hence the intensity per step is different. 
 

One potential issue with this type of calibration curve is that the fluorescent dye 

molecule may be very sensitive to the environmental differences between the conditions 

under which the hybrid formation data was collected (vesicles docked to a tethered 



membrane patch) and the conditions under which the data for the calibration curve was 

collected (vesicles adsorbed to a glass surface).  For example, the hybridized DNA may 

assume a more horizontal orientation (i.e. more parallel to the lipid bilayer) at a docked 

vesicle and this orientation change may alter its observed fluorescence intensity due to 

polarization effects.   Ideally, the calibration curve would be collected under conditions 

nearly identical to those of the actual experiment (i.e. vesicles docked to a tethered 

membrane patch).  Unfortunately, auto-fluorescent background of the tethered membrane 

patches makes single-step photobleaching experiments technically challenging for that 

system.  Therefore, it became necessary to verify that the environmental differences 

between the calibration curve and the hybrid formation experiment did not significantly 

affect the fluorescence of the dye-DNA-lipid. 

In order to examine the effect of those environmental differences, a glass-

supported bilayer was used as the target membrane in order to approximate the 

environment of a tethered membrane patch.  Vesicles containing dye-DNA-lipid (at a low 

number density of dye-DNA/vesicle to guarantee that all DNA on the vesicle would be 

hybridized) were allowed to dock to the unlabeled glass-supported lipid bilayer 

displaying the complementary DNA.  The bilayer was composed entirely of EggPC 

lipids—a composition that does not allow fusion to proceed (i.e. all vesicles are docking-

only)—which permitted stable imaging of the docked vesicles.  The intensities of these 

docked vesicles were then compared side-by-side to vesicles from the same stock that 

were adsorbed to a glass surface at high dilution.  The ratio of the slopes of these two 

calibration curves was approximately 1.1 (data not shown), indicating that the 

environmental differences did not significantly affect the dye fluorescence. 
 



11. Number of DNA Hybrids Formed for Vesicles with 42 DNA/vesicle 
 

 
 
Figure S11. Distribution of the number of DNA hybrids formed between vesicles (42 
DNA/vesicle added on average) and a tethered patch before undergoing hemi- or full fusion.  
Number of DNA hybrids formed is calculated from the fluorescence intensity of the docked 
vesicle before fusion, using a suitable calibration curve (see SI Section 10 above).  
 
 



12. Supporting Movie Information  
 
Movie S1. Example Hemi-then-full fusion event in vesicle-to-tethered patch lipid mixing 
experiment. 
 
Movie S2. Example Full Fusion only event in vesicle-to-tethered patch lipid mixing 
experiment. 
 
Movie S3.  A comparison of the mobility of vesicles with 1, 10, and 65 DNA/vesicle in 
separate vesicle-to-tethered patch lipid mixing experiments.  Hemi-fusion events are 
captured in each movie. 
 
Movie S4. Transfer of Alexa546-DNA-lipid from vesicle to patch.  Trace is shown in 
Fig. S8. 
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