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Resonance Stark effects are nonclassical Stark effects associated with excited-state charge-transfer processes.
The theory of resonance Stark effects developed in Part 2 of this series is generalized in a number of respects.
The equations are modified to allow for violations of the Condon approximation and to allow for inhomogeneous
contributions to absorption and Stark line shapes. A distinction is drawn between higher-order Stark spectra
and Stark spectra that depend on integral powers of the applied electric field, and it is shown how this can
affect analyses of resonance Stark effects. Covariances among the parameters that are used to fit absorption
spectra and resonance Stark effects are described, and their impact is described in the context of the data for
photosynthetic reaction centers that is presented and analyzed further in Part 4 (Treynor, T. P.; Yoshina-Ishii,
C.; Boxer, S. G.J. Phys. Chem. B,2004, 108, 13523. Equations are derived that provide a mapping between
the parameters used in Marcus theory and those used in radiationless transition theory.

Resonance Stark spectroscopy is a new spectroscopic tech-
nique that can provide information on many factors that affect
excited-state charge-transfer reactions. In Part 1, we described
the discovery of the resonance Stark effect (RSE) in the course
of studies of the higher-order Stark (HOS) spectra of photo-
synthetic reaction centers (RCs).1 RSEs can be readily distin-
guished from classical Stark effects2 due to their different line
shapes and relative intensities. In Part 2, a theoretical model
was developed showing that the resonance Stark effect is a
natural consequence of the physics of photoinduced charge-
transfer reactions in applied electric fields and should therefore
be useful for studying excited-state charge-transfer dynamics.3

Additionally it was shown that for reasonable values of charge-
transfer parameters, the wide range of intensities and unusual
HOS line shapes observed for reaction center variants could be
captured. In this paper, we develop the theory further with
particular attention to underlying assumptions and the analysis
of data. We also consider how experimental factors can affect
the analysis and conclude with a prescription for a more
quantitative analysis of resonance Stark spectra, which is applied
in Part 4 to a series of reaction center variants.4

To develop the theory of the resonance Stark effect such that
it connects directly to the more familiar treatments of electron
transfer,5 we must establish a conceptual framework and notation
that emphasizes these connections and eliminates some subtle
sources of confusion among these treatments. These treatments
invariably calculate electron-transfer kinetics as a function of
two factors: the geometry of the initial and final state potential
energy surfaces and the coupling between those surfaces. For
example, the rate of a thermally activated electron-transfer
reaction,ket, is typically expressed as

where V0 is the electronic coupling and FC is the Franck-

Condon factor.5,6 This product reflects a separation of the
electronic and nuclear coordinates of the initial and final state
wave functions, which is achieved by imposing both the Born-
Oppenheimer and Condon approximations.

Eq 1 may look simple, but even the simplest theories of
electron transfer require two additional parameters to determine
FC.5 Generally these two parameters are the driving force,∆νj,
and the reorganization energy,λ, as illustrated in Figure 1A.
Although the notation that we have chosen suggests that these
are spectroscopically observable internal energies, for reasons
that will become more evident below, these symbols could just
as well represent standard free energies. Complicating things
further, this simplest description hinges upon the assumptions
that both the initial and final state surfaces are parabolic and
have the same curvature. The result of this treatment of electron
transfer, credited to Marcus,7 is that ∆νj and λ determine the
free energy of the transition state,νjq, such thatket can be
calculated using an Arrhenius expression that resembles eq 1:

In some experiments∆νj can be measured under the same
conditions asket, but even in these optimal circumstances,
experimentalists are unable to separate the contributions ofV0

and λ to ket. They are forced to vary the conditions of the
electron-transfer reactions in one way or another to tease apart
these contributions from the coupling and the reaction surface
geometry by increasing the dimensionality of the data sets. For
example, it is common to measure rates at many different
temperatures, although∆νj, λ, and V0 may themselves be
functions of temperature. Likewise,∆νj can be perturbed by
ligand substitution, functional derivatization, or changes to an
organized host matrix such as a protein, yet it is usually assumed
that V0 and λ are not perturbed when the kinetic data are
analyzed.

The Hush treatment of charge transfer demonstrated that one
could separate the influences ofV0 and the reaction surface

* To whom correspondence should be addressed. Phone: (650)723-4482.
Fax: (650)723-4817. E-mail: Sboxer@stanford.edu.

ket ) 2π
p

V0
2FC (1)

ket )
2V0

2

h x π3

λkBT
exp[-(∆νj + λ)2

4λkBT ] (2)

13513J. Phys. Chem. B2004,108,13513-13522

10.1021/jp048988x CCC: $27.50 © 2004 American Chemical Society
Published on Web 08/07/2004



geometry upon an electron-transfer event in a single experiment
if the observable were a spectrum instead of a rate constant.8

Such charge-transfer spectra arise when the coupling between
the ground state and an otherwise dark charge-transfer state
permits the direct optical excitation of the electron transfer. In
these situations, again illustrated in Figure 1A,V0 can be
determined from the integrated intensity of the charge-transfer
band and an estimate of the distance of charge transfer. When
the Born-Oppenheimer and Condon approximations are im-
posed in a weak coupling limit, this oscillator strength is
distributed into a vibronic progression, FC0l

vert, with intensities
proportional to the square of the overlap integral between the
vibrational wave functions of the initial and final states:

where æ0
i denotes the ground vibrational state of the initial

electronic stateψi, andæl
f denotes thelth vibrational state of

the final electronic stateψf. The superscript vert refers to the
fact that the charge-transfer transition is made vertically, along
the energy axis in Figure 1A. Like FC in eq 1, FC0l

vert is also a
Franck-Condon factor. The two Franck-Condon factors are
not identical, although they embody identical assumptions.
Whereas FC is a single value calculated using the transition-
state energy,νjq, FC0l

vert is multivalued with its largest values
corresponding to states with energies necessarily larger thanνjq.
The values of these FC0l

vert, once culled from a spectrum, can be
used to determine∆νj and λ. Like RSEs, the Stark effects of
these charge-transfer bands may be nonclassical in nature.9,10

Spectral analysis can also yieldV0 and a description of the
reaction surface geometry for excited-state charge-transfer
reactions, where the charge-transfer state is coupled not to the
ground state but rather to an excited state prepared by the
absorption of a photon. This situation is illustrated in Figure
1B. Drawn from radiationless transition theory,11 the appropriate
Franck-Condon factor is one that describes ahorizontal
transition between the surfaces corresponding to the excited and
charge-transfer states:

whereæ0
e denotes the ground vibrational state of the excited

electronic stateψe, andæm
CT denotes themth vibrational state

of the charge transfer stateψCT. This is athird definition for a
Franck-Condon factor used to describe a third kind of charge-
transfer process. Nevertheless, this third definition embodies
identical assumptions as the two before. This third kind of
charge-transfer process is most sensitive to a region of the
reaction surface geometry that is typically distinct from either
of the regions that most strongly influence thermally activated
electron-transfer rates or charge-transfer absorption bands: the
FC0m

horiz that have the largest effect on the absorption spectrum
are generally those that are quasidegenerate withψeæ0

e.
The distinction between vertical and horizontal transitions

makes a tremendous difference on the appearance and inter-
pretation of the optical spectra. For one, the value ofV0 does
not influence the integrated absorption intensity when the
charge-transfer process is an excited-state horizontal transition.
Second, in the weak coupling limit the width of a charge-transfer
absorption band is sensitive only to thehorizontaldisplacement
between the initial and final state surfaces; in contrast, the width
of an absorption band coupled to an excited-state horizontal
transition is sensitive both to horizontal and to vertical displace-
ments of theψCT surface. Moreover, in the limit where the
vibrational wave functions on theψCT surface are densely
packed and the discrete FC0m

horiz are replaced with the continu-
ous Franck-Condon weighted density of states,FFC(νj), the
contribution to the homogeneous absorption line width from
electron transfer,Γet, is related toket according to

in accord with the limiting equality of Heisenberg’s time-
energy uncertainty relationship.12 The contribution to the
absorption line width from a vertical charge-transfer transition
cannot be interpreted this way.

Thus, ifΓet dominates the contributions to the absorption line
width, thenket can be estimated directly from that line width.
Moreover, when this line width is taken together with the higher
moments of the line shape, one has enough information to
determineV0, as well as the mean,νjCT, and higher moments of

Figure 1. Three different kinds of charge-transfer processes. Panel A
depicts the two potential energy surfaces involved in both thermally
activated electron transfer and the direct optical excitation of charge
transfer; Panel B depicts the three surfaces involved in excited-state
charge transfer. If Panel A is used to describe thermally activated
electron transfer, the vertical axis should be considered a standard free
energy axis as opposed to a spectroscopic energy axis. The parameters
qeq

i , qeq
f , qeq

e , andqeq
CT are the equilibrium nuclear configurations of the

initial, final, excited, and charge-transfer electronic states, denoted
ψi, ψf, ψe, andψCT, respectively. The ground electronic state for the
case of excited-state charge transfer, denotedψg, is drawn as having
the same equilibrium nuclear configuration asψe to emphasize the
horizontal displacement betweenψe and ψCT. Other parameters are
defined in the text.
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the normalized distributionFFC(νj), the very parameters that are
convolved using Fermi’s golden rule to yield the value ofket in
an expression reminiscent of eq 1:

where νj0 is the vertical displacement between the potential
energy surfaces corresponding toψe and the ground electronic
state, denotedψg. However, there are few examples in the
condensed phase where an excited-state charge-transfer process
is the dominant source of line broadening.13

Resonance Stark spectroscopy makes it possible to determine
V0, νj0 - νjCT, and the full width at half-maximum ofFFC(νj),
denoted∆CT, even when the contribution of charge transfer to
the total line width is slight.3 The change in an absorption
spectrum due to an applied electric field,FB, is called a Stark
spectrum. Resonance Stark spectroscopy utilizes the interaction
of FB with the difference between the electric dipole moments
of theψe andψCT surfaces,∆µbCT, to characterize the coupling
and the reaction surface geometry in the absence of the field
by changing the vertical displacement of these surfaces with
respect to one another:

The parameterf in eq 7 is the scalar approximation to the local
field correction tensor. This tensor is intended to account for a
possible difference betweenFB, the externally applied field, and
FBint, the internal field at the position of a chromophore:FBint )
f‚FB. It is generally believed that for most frozen organic or
aqueous glasses the value off should be between 1.0 and 1.3.2,14

If it were assumed that the electric field changes only the
absorptionenergyand intensity and not the absorptionline
shape, one would analyze the Stark spectrum

with equations first derived by Liptay.15,16 These equations
include the interactions of the field with the dipole moments
and polarizabilities of the ground and excited electronic states
and other electrooptic factors. In the following, we will refer to
these Stark effects as classical Stark effects. For most isolated
molecules studied to date, this formulation provides an adequate,
if not perfect, description of the observed electronic and
vibrational Stark spectra.2 In the case where excited-state
electron transfer occurs, however, the electric field will perturb
not just the peak shift induced by the coupling ofψe to ψCT but
the lifetime broadening as well. This Stark effect is fundamen-
tally different from a classical Stark effect, Liptay’s equations
cannot describe it at all, and we call it a resonance Stark effect.

Theoretical Foundations

The phenomenological foundation of resonance Stark theory
is the same as that of radiationless transition theory, which
attempts to explain the irreversible decay of a state under the
influence of any nonradiative relaxation mechanism, including
charge transfer.11 This foundation is constructed by analogy to
radiative decay by postulating a continuous bath of accepting
states to which the initial state is coupled. This analogy is
straightforward, for example, when considering autoionization
in the gas phase, where an atom excited to a discrete metastable
state,φ, decays into a continuum of free electron states, denoted
by their energies,νj. The Hamiltonian for this problem is

and has been diagonalized exactly by Fano.12 The probability
density |a(νj)|2 of the stateφ in the eigenstates, themselves
denoted byνj, is given by a simple pseudo-Lorentzian expression
for any arbitrary form of the off-diagonal matrix elements,V(νj):

where

andP denotes the Cauchy principal value of the integral.U(νj),
the Hilbert transform of|V(νj)|2, is the interaction-induced shift
to the absorption spectrum for excitation from the ground state
to φ, whereasπ|V(νj)|2 is the interaction-induced broadening to
this spectrum. In cases where the Condon approximation is
applicable,|V(νj)|2 can be written asV0

2FFC(νj), a product of terms
with electronic and vibrational origins, respectively.

In contrast, the analogy with radiative processes is not at all
straightforward when considering decay into a bound state, such
asψCT, the vibrational levels of which are inherently discrete.
Our desire to demonstrate the applicability of this analogy stems
from the ease with which we can use eq 10 to develop an
analytical description for resonance Stark spectra, in which case
the statesψeæ0

e andψCTæm
CT are analogous to the statesφ andνj

in eq 9, respectively. Thus we step back and consider the
conditions under which these equations for decay into a
continuum can be relevant to decay into a bound state.

Single-Mode Model.We begin by assuming that there is no
difference in the equilibrium nuclear configurations of theψg

andψe surfaces (as illustrated in Figure 1) such that the only
Franck-Condon allowed transition from the ground vibrational
state ofψg is to the ground vibrational state ofψe, provided
there is no coupling betweenψe andψCT. We assume also that
the difference in the equilibrium nuclear configurations of the
ψe andψCT surfaces is along a single normal vibrational mode,
q. With respect to the stateψeæ0

e, the vibrational states on the
ψCT surface will appear to be effectively continuous in the limit
where the couplings betweenψeæ0

e and the statesψCTæm
CT

nearest in energy are considerably larger thanνjq, the vibrational
spacing for the modeq. In this limit, the statesψCTæm

CT are
mixed significantly with each other by their mutual interactions
with ψeæ0

e such that the envelope of the vibronic transition
from the ground state is relatively insensitive to the value of
νjq. We will refer to this as the single-mode continuum condition:

If the horizontal displacement between the two surfaces (see
Figure 1),

is zero and the Condon approximation is assumed, then FC0m
horiz

is δ(m), and eq 12 can only be satisfied for the single stateψCT

æ0
CT. Nonzero displacement, also referred to as linear elec-

tron-phonon coupling, will broaden thisδ function. The

ket ) 2π2V0
2FFC(νj0) (6)

νjCT(FB) ) νjCT - FB‚f∆µbCT (7)

∆A(F) ) A(F*0) - A(F)0) (8)

〈φ|H|φ〉 ) νj0

〈φ|H|νj〉 ) V(νj)

〈νj|H|νj′〉 ) νj′δ(νj′ - νj) (9)

|a(νj)|2 )
|V(νj)|2

[νj - νj0 - U(νj)]2 + π2|V(νj)|4
(10)

U(νj) ) P∫ dνj′
|V(νj′)|2
νj - νj′ (11)

〈ψeæ0
e|H|ψCTæm

CT〉 . νjq (12)

∆ ) qeq
CT - qeq

e (13)
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Franck-Condon spectrum is then Poisson-distributed:

whereS is the Huang-Rhys parameter, given by

WhenSg 3, eq 14 resembles a slightly skewed Gaussian with
mean equal toS, maximum atS- (1/2), and standard deviation
of xS. Multiplication of these dimensionless values byνjq

places them onto an energy scale; in particular,

However, whenever the single-mode continuum condition is
satisfied, one cannot ignore the presence of higher vibrational
states on theψe surface, as is done implicitly in eq 9, because
their overlap integrals with the vibrational states on theψCT

surface are significant as well. As a result, there is a considerable
superexchange coupling between vibrational states on theψe

surface mediated by their couplings to theψCTæm
CT states. Thus

one suspects that eq 10 cannot successfully approximate the
results from diagonalizing this complete Hamiltonian, and we
must consider a different model for the charge-transfer process.

Multiple-Modes Model. We therefore assume that the linear
electron-phonon coupling involves displacement along multiple
normal vibrational modes,qj. As suggested by the analysis of
the single-mode model, our goal with the multiple-modes model
is to show that the mixing among vibrational states on theψe

surface is insignificant. If this is true, then we can effectively
ignore all but the ground vibrational state on theψe surface by
using eq 10 to describe the effect of the coupling betweenψe

andψCT on the transition from the ground vibronic state of the
system.

When multiple modes are dealt with explicitly, the expression
for the Franck-Condon factor becomes

whereæ0
e,j is the ground vibrational wave function along thejth

normal mode on theψe surface, andæmj

CT,j is themth vibrational
wave function along thejth normal mode on theψCT surface.
The simplest treatment of displacement along multiple modes
is that introduced by Huang and Rhys to describe vertical
transitions.17 With regard to a sample ofN atoms with a number
of vibronically coupled modes on the order ofN, they made
two assumptions: (i) a single mean frequency,νjmean, is used to
describe each mode, and (ii) the displacement of each mode is
on the order of 1/xN. Sturge et al.18 argued that a similar
model was valid for horizontal transitions influencing the
absorption spectra of transition-metal impurities in solids, and
we use a similar argument here, one which recognizes the
intrinsic dispersion of the vibrational frequencies aboutνjmean,
for the case of an excited-state charge-transfer reaction.

Like the single-mode continuum condition, the multiple-
modes continuum condition is that the couplings between the
ground vibrational state ofψe and the vibrational states ofψCT

nearest in energy are larger than the spacing between those
states. Whereas this spacing was equal toνjq in the single-mode
model, in the multiple-modes model this spacing rapidly
approaches zero as the total vibrational energy ofψCT increases
due to the deviations of the frequencies of many modes from

νjmean; this spacing decreases because various numbers of
vibrational quanta in the different modes can be combined in
an increasing number of ways such that the total vibrational
energy falls within a given interval. The multiple-modes
continuum condition is then equivalent to the statement that
the mean number of vibrational quanta gained by crossing from
the ψe surface to theψCT surface is large:

In this limit, the vibrational states on theψCT surface are densely
packed for all values ofνj nearνj0. Because displacements are
on the order of 1/xN, the squared vibrational overlap between
ψeæ0 and anysingle statewith energyνj0 on theψCT surface is
on the order of (1/N)∆νj/νjmean, where the exponent is the mean
number of vibrational quanta gained by the horizontal transition
from ψeæ0 to ψCT. Since the density of vibrational states on
the ψCT surface at energyνj0 is on the order ofN∆νj/νjmean, the
vibrational contribution to the mixing ofψeæ0 with this
particularenergy leVel, FFC(νj0), is on the order of one.

The vibrational contribution to theψCT-mediated mixing
betweenψeæ0 and otherstateson theψe surface is a function
of the product of two squared vibrational overlap integrals. For
the case of one quantum of vibrational excitation (i.e., states
with energy νj0 + νjmean), its value is on the order of (1/
N)1+(∆νj/νjmean) × (1/N)(∆νj/νjmean). Although the density of vibrational
states on theψCT surface is roughlyN1+(∆νj/νjmean) at this energy,
the density of states on theψe surface is onlyN. In this way, it
can be shown that when eq 18 is satisfied, the vibrational
contribution to theψCT-mediated mixing betweenψeæ0 and
nearbyenergy leVels on theψe surface is essentially zero.

As we had hoped, we can ignore all but the ground vibrational
state on theψe surface and apply Fano’s formula to excited-
state charge transfer, a problem of decay into a bound state,
provided we have a form forFFC(νj). Sturge et al. demonstrate
that their spectra are fit well using a continuous analogue to eq
14, as justified by Markham for a low-temperature limit (kBT
, νjmean).18,19 The form of this equation is determined by
replacingm with νj′/νjmean, whereνj′ ) νj - (νj0 - ∆νj), and by
replacingm! with Γ[(νj′/νjmean) + 1]:

whereS ) ∑Sj, the sum of the Huang-Rhys parameters for
displacements along theqj modes. This continuous version of
a Poisson distribution has been referred to as a Pekarian.18,19

Markham argues that, as temperature is raised, the form of
FFC(νj) evolves from the Pekarian into a Gaussian due to an
increasingly significant population of the higher vibrational
states on theψg surface.19 As seen below, the choice of the
functional form forFFC(νj) affects the analyses of RSEs.

A More General Resonance Stark Theory.The derivation
of resonance Stark theory in Part 2 assumed thatFFC(νj) was a
normalized Gaussian. We will refrain from making this as-
sumption in what follows since Markham has demonstrated that
the form of FFC(νj) may in general lie somewhere on the
spectrum from Pekarian to Gaussian. Moreover, violations of
the Condon approximation may prevent the decomposition of
|V(νj)|2 into V0

2 andFFC(νj) in the first place. By deriving a more
general resonance Stark theory than that presented in Part 2,
one might use resonance Stark effects to investigate these details
of V(νj).

As in Part 2, we begin with the full complex dielectric
function:

FC0m
horiz )

Sm exp(-S)
m!

(14)

S) ∆2/2 (15)

λ ) νjqS (16)

FC0{mj}
horiz ) ∏

j

|〈æ0
e, j|æmj

CT, j〉|2 (17)

∆νj . νjmean (18)

FFC(νj) )
Sνj ′/νjmeanexp(-S)

Γ[(νj′/νjmean) + 1]
(19)
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the absorptive part of which is given by eq 10 whenΓ0 ) 0.
The phenomenological broadening term,Γ0, is inserted to
account for any exponential decay mechanisms that are not the
electron-transfer reaction of interest, for example, fluorescence,
internal conversion, and intersystem crossing, each of which
we will treat as independent of the applied electric field,FB.

In the presence ofFB, the entire curve

will shift with respect toνj0 according to eq 7. To determine
the effect of this shift on the complex dielectric function, we
expandε(νj) as a Taylor’s series in∆W(νj,FB) to get

where we have substituted (k - 1)!εk(νj) for the (k - 1)th
derivative of ε(νj) with respect to∆W. In turn, ∆W can be
expanded as a Taylor’s series inFB‚f∆µbCT, such that

whereW(n) is thenth derivative ofW with respect toνj.
When eqs 22 and 23 are combined, it is clear how the RSE

for any single charge-transfer system can be decomposed into
terms that depend on thenth power of the projection ofFB onto
∆µbCT. Additionally, the magnitude of the Stark spectrum is
proportional to the magnitude of the absorption spectrum, which
depends on the square of the projection of the polarization of
light, ê, onto the transition moment,mb. An expression for the
Stark spectrum of an ensemble will reflect the connection
between these two phenomena with terms of the form

whereR is the angle betweenmb andê, â is the angle between
FB and∆µbCT, and〈...〉 denotes an average over the distribution
of orientations of the charge-transfer systems in the ensemble.
The calculation of this orientational average can be simplified
by noting that (i) the angleø betweenFB and ê is fixed in the
lab frame (and can be varied experimentally) and (ii) the angle
úCT between∆µbCT andmb is fixed in the molecular frame (and
depends on the intrinsic properties of the charge-transfer
system). For an isotropic sample, these two frames take any
relative orientation with equal probability, simplifying eq 24 to

If we let n equal zero, this equation applies to the absorption
spectrum itself. For all values ofn, this factor contains a divisor
of three; thus, comparisons between absorption and Stark spectra
would be unchanged if we were to ignore this factor of 3, as
was done in Part 2.

In the weak coupling limit, whereΓ0 is large compared to
V(νj) for all νj, the absorptive line shape from eq 20 is Lorentzian.
For real systems in the condensed phase, this line shape is often
significantly inhomogeneously broadened.ε(νj) must then be
convolved with an inhomogeneous broadening function,b(νj):

If we assume that eq 20 yields the same homogeneous line shape
for each value ofνj0 across the inhomogeneously broadened
band, then we express the Stark spectrum as

For a particular choice ofΓ0, the determination ofb(νj) by
deconvolution is unique. Conversely, if one were to impose a
restriction on the functional form ofb(νj) (e.g., a Gaussian with
full width at half-maximum equal toΓGaus), then there should
exist a best fit value ofΓ0, the physical meaning of which is
only as deep as the accuracy of this restriction.

Combining eqs 20-27 yields general expressions for theFn-
dependent resonance Stark effects, similar to eq 7 in Part 2.
For example,

where

As discussed in Part 2, in cases where

is nonzero, that is,νj0 depends onFB, eq 28 accurately describes
the resonance Stark effect contribution to the total Stark effect
when∆µbCT is replaced by

Experimental Issues. Adding together each of theFn-
dependent pieces in eq 28 would yield a result equivalent to
subtracting a field-off absorption spectrum from a field-on
absorption spectrum, as in eq 8. However, it is preferable to
modulate the external field sinusoidally at a frequencyω and
to isolate the time-dependent changes in absorbance that occur
at the second, fourth, sixth, etc. harmonics of this frequency
using lock-in detection (the odd harmonics have zero signal for
an isotropic sample, eq 25). These signals are then multiplied
by 2n-1 to yield higher-order Stark (HOS) spectra,∆A(nω,F).20

Since in the HOS experiment the field is described by

the Fn-dependent terms in eq 25 yield nonzero terms at

ε(νj) ) 1

νj - νj0 - U(νj) - iπ|V(νj)|2 - iΓ0

(20)

W(νj) ) U(νj) + iπ|V(νj)|2 (21)

∆ε(νj,FB) ) ε
2(νj)∆W(νj,FB) + ε

3(νj)∆W2(νj,FB) +
ε

4(νj)∆W3(νj,FB) + ... (22)

∆W(νj,FB) ) W(1)(νj)FB‚f∆µbCT +
W(2)(νj)

2!
(FB‚f∆µbCT)

2 +

W(3)(νj)
3!

(FB‚f∆µbCT)
3 + ... (23)

m2(Ff∆µCT)
n〈cos2 R cosn â〉 (24)

m2(Ff∆µCT)
n

3(n + 1)(n + 3)[(n + 3) + n
2
(3 cos2 ø - 1)(3 cos2 úCT - 1)] for evenn

0 for oddn

(25)

ε′(νj) ) ∫-∞

∞
dνj′ ε(νj - νj′)b(νj′) (26)

∆A(νj,F) ) Im[∆ε(νj,F)]* b(νj) (27)

∆A(νj,F2) ) Im{ε(νj)2W(νj)(2)

2!
+ ε(νj)3[W(νj)(1)]2} ×

(Ff∆µCT)
2CCT

2ω*b(νj) (28a)

∆A(νj,F4) ) Im[(ε2W
(4)

4!
+ ε

3[(W(2)

2! )2

+ 2W(1)W
(3)

3! ] +

ε
43(W(1))2W

(2)

2!
+ ε

5(W(1))4)](Ff∆µCT)
4CCT

4ω*b(νj) (28b)

CCT
nω ) 1

(n + 1)(n + 3)[(n + 3) +

n
2
(3 cos2 ø - 1)(3 cos2 úCT - 1)] (29)

∆µbge ) µbe - µbg (30)

∆µb′CT ) ∆µbCT - ∆µbge (31)

F ) F0 cos(ωt + θ) (32)
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frequencies for all even harmonics ofω from zero ton. The
weighting of each contribution is given by the expansion of
cosn(ωt + θ) in terms of order one. Thus, for example,

The relative importance of these terms clearly depends on the
size of the field applied.

The HOS method was first applied to classical Stark effects
where, for example, the contribution from∆A(F6) to ∆A(4ω)
was less than a few percent of the contribution from∆A(F4).
Thus one could treat∆A(4ω) as anF4-dependent spectrum
without introducing much error. However, as suggested by the
sizes of the HOS spectra in Parts 1 and 2, resonance Stark effects
can be so large that these terms are not at all negligible for a 1
MV/cm field. In Parts 1 and 2, this complication due to lock-in
detection was not ignored, but it was not dealt with properly.
The contribution of ∆A(F6) to ∆A(4ω) was successfully
removed by subtracting the appropriate weight of∆A(6ω) (from
eq 33); however, this method failed to eliminate a substantial
contribution from ∆A(F8) to ∆A(4ω). Moreover, since no
∆A(8ω) spectra were acquired, no similar correction was applied
to ∆A(6ω).

There is an important side note to this phenomenon. To
standardize the reporting of Stark spectra, we typically scale
all spectra to 1 MV/cm assuming that∆A(nω) is equal to
∆A(Fn). In the plots shown for resonance Stark effects, we
continue to scale spectra to 1 MV/cm as if this assumption
applied, but the fitting procedure for all resonance Stark spectra
is carried out using the actual value of the field as applied in
the experiment. This procedure is an effective compromise
between the desire to make published Stark spectra readily
comparable and the necessity of fitting to the precise value of
electric field with which the data were acquired.

Results and Analysis

The Form of V(νj). We need not assume the Condon
approximation or other assumptions aboutV(νj) to make the
general result from combining eqs 28 and 33 applicable to the
analysis of HOS spectra.úCT is the only factor that contributes
to the variation in the HOS spectra withø; thus, its determination
is straightforward ifø can be varied experimentally.21 If HOS
spectra can also be obtained for just two values ofn, the distinct
contributions of∆µCT andV(νj) to the line shapes and amplitudes
of these spectra can be revealed through simulations. The
determination ofV(νj) in this manner then provides opportunities
to identify the physical model that gives rise toV(νj).

If instead we do assume the Condon approximation and
consider only the couplings between the ground vibrational state
of theψe surface and an effective continuum of vibrational states
on theψCT surface, we are led, as described above, to consider
either Gaussian (ifkBT . νjmean) or Pekarian (ifkBT , νjmean)
forms for FFC(νj) and thus for|V(νj)|2. Figure 2 compares the
6th and 12th derivatives of normalized Gaussian (dashed) and
Pekarian (solid) distributions plotted against a reduced coordi-
nate, ê ) (νj - νjCT)/∆CT; νjCT is the frequency where each
achieves its maximum, and∆CT is the full width at half-
maximum (fwhm) of each curve.22 Plotting these curves in this

way highlights their difference in skewness and higher moments;
the Pekarian,P(νj), often referred to as a Poisson distribution,
is slightly narrower than the Gaussian,G(νj), to negative values
of ê and is slightly wider to positive values. With increasing
derivative order, the derivatives ofP(νj) get steadily larger than
those ofG(νj) for negativeê and smaller for positiveê. There
is also a significant shift of the zero crossings of the derivatives
of P(νj) toward negativeê. These observations apply to the
Hilbert transforms of these functions as well (not shown).

These differences can affect analyses of HOS spectra (eq 28)
and estimations of rates based on these analyses (eq 6). Figure
3 illustrates how the substitution ofG(νj) for P(νj) can affect
simulated HOS spectra using the fit to the absorption spectrum
and the resonance Stark effect of the BL band in M203GD
mutant of bacterial RCs, as described in Part 4 of this series;
using ∆CT ) 1000 cm-1 and νjCT ) 12 870 cm-1 for these
simulations, the region betweenνj ) 12 000 and 13 000 cm-1

plotted in Figure 3 corresponds to the region betweenê ) -0.87
and 0.13 in Figure 2. The different amplitudes of the HOS
simulations calculated usingP(νj) (black) andG(νj) (red) can
thus be readily traced to the generally larger values of the
derivatives of P(νj) in this vicinity. The shift of ∆A(6ω)
calculated usingG(νj) with respect to∆A(6ω) calculated using
P(νj) can also be traced to Figure 2, being caused by the shift
between the derivatives.

As described above, the use of the Pekarian is consistent with
a physical model for excited-state charge transfer in which (i)
there is no horizontal displacement between the ground- and
excited-state surfaces, (ii) the Condon approximation is valid,
(iii) many normal vibrational modes are linearly electron-

Figure 2. A normalized Pekarian (solid), Gaussian (dashed), and their
derivatives. Plotting these functions against the reduced coordinateê
is equivalent to setting equal their positions of maximum amplitude,
νjCT, and their full widths at half-maximum,∆CT.

∆A(2ω) ) 2(12∆A(F2) + 1
2
∆A(F4) + 15

32
∆A(F6) + ...)

∆A(4ω) ) 8(18∆A(F4) + 3
16

∆A(F6) + 7
32

∆A(F8) + ...) (33)

∆A(6ω) ) 32( 1
32

∆A(F6) + 1
32

∆A(F8) + 45
512

∆A(F10) + ...)
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phonon coupled with small displacements, (iv) these many
modes can be described by a mean frequency,νjmean, and (v)
νjmeanis larger than the thermal energy available at 77 K. Because
this thermal energy, only 54 cm-1, is smaller than the energies
of most intramolecular vibrations and many collective supramo-
lecular modes and because fit quality is consistently better using
P(νj) to fit resonance Stark effects associated with the BL band
in bacterial RCs,4 we choose to useP(νj) as the basis for other
calculations below; nevertheless, the accompanying conclusions
are the same whether a normalized Gaussian or a normalized
Pekarian is used forFFC(νj).

Fitting Spectra: Definition of Fit Quality and Covariances
among Resonance Stark Parameters.Because resonance Stark
spectroscopy promises to provide information on parameters
that affect rates of charge transfer that have not been available
before in most cases, it is important to understand the process
used to extract parameters and pitfalls that may result. We have
suggested that, within this model, resonance Stark effects depend
on parameters controlled by experiment (n,F,ø), parameters from
radiationless transition theory (V0,νjCT,∆CT), parameters that
describe the distance and direction of charge separation
(∆µCT,úCT), and parameters that describe the absorption spec-
trum in the absence of the applied field (νj0,Γ0,ΓGaus).23 No two
of these parameters are completely orthogonal, yet of all of these
parameters only two pairs have identical effects on∆A(nω):
these pairs areF and∆µCT andø andúCT. Fortunately, bothF
and ø are experimental parameters, which can be quantified
separately from an analysis of the HOS spectra.24 Similarly,
the parameters with which the absorption spectra are fit might
be determined separately from an analysis of the HOS spectra,
reducing the number of unknowns with which the resonance
Stark effects are fit to five:V0, νjCT, ∆CT, ∆µCT, andúCT.

The contributions of these five parameters can be separated
by collecting Stark spectra for multiple values ofø andn. First,
úCT alone affects the HOS spectra obtained as a function ofø.
Second, whereas the weighting of each term in the determination
of ∆A(νj,Fn) depends identically upon∆µCT, many of those
contributions have differing dependences uponV0. Third, the
line shape of each of these terms is influenced differently by
the relative positions of the maxima of Im[ε(νj)] andV(νj), νj0 -
νjCT, as by their relative widths, (Γ0 + Γet)/∆CT. These distinc-
tions among the effects of these parameters upon the HOS
spectra are what make them separable.

When data are fit, two questions arise: (i) how does one
define the best fit, and (ii) what are the covariances among the
fit parameters? With regard to the first question, one might want
to weight differently the residuals from different∆A(nω). For
example, overlapping signals due to classical Stark effects
should distort RSEs to a lesser extent asn increases.3 In contrast,
if there are deviations of eitherε(νj) or V(νj) from the line shapes
that are imposed in the analysis, the effects of those deviations
should become increasingly important with increasingn. Also,
as is evident from Figure 7 below, RSEs can have significant
features over a much broader region of the spectrum than that
defined by the fwhm of the absorption band. Thus, judging fit
quality by the sum of the squared residuals across the entire
spectrum may give too much weight to the features on the wings
of the HOS spectra in the case that there are overlapping Stark
effects there due to other bands. With these considerations in
mind, for the fits here and in Part 4, we choose to confine the
sum of the squared residuals to a region within 500 cm-1 to
either side ofνj0 and to weight the residuals from the 4ω and
6ω spectra identically.

With regard to the second question above, substantial
covariances between some of these parameters do arise. In
particular, if the value of∆CT cannot be obtained precisely from
a fit to the HOS spectra, then the values ofV0

2, ∆µCT, andνj0

- νjCT are at least as uncertain as∆CT. The reasons for this are
most easily demonstrated using a Gaussian form for|V(νj0)|2:

|V(νj)|2 is evaluated atνj0 for this demonstration to provide a
reference energy for the effect of the field on|V(νj)|2 generally.
The change in|V(νj0)|2 for a donor-acceptor system due to the
applied field is a product of (i) the factor 2[ln 2/π]1/2(V0

2/∆CT)
and (ii) the change in the value of the above exponential when
νjCT is altered by the interaction of∆µCT with the field. This
second term can be considered as a product of the value of this
exponential in the absence of the field and the percentage change
in this exponential due to the field. As evident from eqs 7 and
34, the percentage change in this exponential due to the field
depends not only upon∆µCT but also upon∆CT; specifically, it
depends on the ratio of these two parameters. Similarly the
evaluation of this exponential in the absence of the field depends
on the ratio ofνj0 - νjCT to ∆CT. Taken together, the contributions
to the HOS spectra fromV0

2, ∆µCT, and νj0 - νjCT, although
separable from each other, are themselves inseparable from a
factor of 1/∆CT.

Even though the covariances are substantial between these
parameters and∆CT, the previous paragraph suggests that the
covariances may be small between∆CT and either

or

Whereas∆µR andδ are the same reduced dipole moment and
energy, respectively, that were introduced in Part 2 to simplify
equations analgous to eq 28 above, Part 2 introduced a reduced
coupling, denotedRand equal toV0/∆CT, which is not the same
reduced coupling as that defined by eq 35.WR, discussed in
Part 2 as∆CTR2, is preferred toR because fit values ofWR can

Figure 3. Resonance Stark effects depend on the form ofFFC(νj). The
black and red curves were calculated using Pekarian and Gaussian
forms, respectively. In both cases,F ) 0.67 MV/cm,ø ) 90°, ∆CT )
1000 cm-1, WR ) 1.3 cm-1, δ ) -0.34,f∆µR ) 1.06 cm/MV,úCT )
45°, νj0 ) 12 530 cm-1, Γ0 ) 90 cm-1, ΓGaus ) 50 cm-1, and the
absorption peak height is 0.22.∆A(4ω) and∆A(6ω) spectra are scaled
to an applied field of 1.0 MV/cm by dividing them byF4 and F6,
respectively.

|V(νj0)|2 ) 2[ln 2
π ]1/2V0

2

∆CT
exp[-4 ln 2(νj0 - νjCT

∆CT
)2] (34)

WR ) V0
2/∆CT (35)

∆µbR ) ∆µbCT/∆CT (36)

δ ) (νj0 - νjCT)/∆CT (37)
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be shown to have the smaller covariance with fit values of∆CT.
As demonstrated in Part 2, when HOS spectra are considered
as a function of∆CT, ∆CTR2, ∆µR, andδ, the effect of increasing
∆CT when the other parameters are held constant is primarily
to decrease the sharpness of the features at the shoulders and
wings of the HOS spectra. The features at the center of the HOS
spectra, both their line shapes and amplitudes, are nearly
unaffected by changing∆CT. Thus, if these features at the center
could be used to determineWR, ∆µR, and δ uniquely, the
covariances among these parameters and∆CT would indeed be
small. The uniqueness of a fit to these features usingWR, ∆µR,
andδ was demonstrated in Part 2, though it was not discussed
in exactly these terms. We revisit some aspects of that
demonstration here to estimate the covariances among these
three terms.

Figure 4 illustrates that∆A(4ω) and ∆A(6ω) are roughly
linearly proportional to the value ofWR. The black spectra in
panels A and B were calculated using the fit to the absorption
spectrum and the resonance Stark effect of the BL band in the
M203GD mutant of bacterial RCs (δ ) -0.34); the black
spectra in panels C and D were calculated using the fit for the
QA

- preparation of this mutant (δ ) -0.88) (see Part 4). In
each case, the red spectra are calculated for a value ofWR that
is one-half that of the value used for the corresponding black
spectra; the red spectra have additionally been multiplied by 2
to aid comparison.

Figure 5 illustrates that∆A(nω) is roughly proportional to
thenth power of∆µR. The black spectra are the same as those
in Figure 4. The red spectra in this case were calculated for a
value of∆µR that is a factor ofx2 smaller than the value used
to calculate the corresponding black spectra; the red∆A(4ω)
and ∆A(6ω) have additionally been multiplied by 4 and 8,
respectively, to aid comparison. The differences between these
spectra are larger than those between the spectra whereWR was
altered; nevertheless, the scaled red∆A(nω) are similar to the
black spectra within a factor ofx2 over much of the spectrum.
Such deviations from strict proportionality are less severe for
smaller percentage changes in∆µR.

These dependences of∆A(nω) upon the first power ofWR

and thenth power of∆µR make it straightforward to quantify
the covariance between these parameters when multiple∆A(nω)
are fit simultaneously.25 For example, ifWR is increased by 20%,
these relationships suggest that∆µR must be decreased by 5%

to recapture the original∆A(4ω); however,∆A(6ω) will now
be 10% smaller than it was originally. Similarly, a 3% decrease
in ∆µR may recapture the original∆A(6ω), but ∆A(4ω) will
now be 7% too large. Thus, if for any reasonWR is uncertain
by 20%,∆µR is uncertain by roughly 4%.

The HOS line shapes in Figures 4 and 5 change only slightly
as the values ofWR and∆µR are changed. Thus the value ofδ
is indeed the principal determinant of line shape, and its fit value
is nearly independent ofWR and ∆µR in the range in which
these parameters may be changed without significantly affecting
the fit quality.

We conclude this discussion of the covariances among the
resonance Stark parameters with a practical example. Figure 6
shows the best fits to the resonance Stark effect of the BL band
in RCs with the M203GD mutation (see Part 4) when∆CT equals
700 cm-1 (panels A and B), 1000 cm-1 (panels C and D), or
1500 cm-1 (panels E and F); in each case, the values ofWR,
∆µR, andδ are varied while other parameters are held constant.
Fit quality was judged by the sum of the squared residuals
calculated over a window of(500 cm-1 aroundνj0 with the
residuals from∆A(4ω) and∆A(6ω) weighted evenly. This sum
was calculated for a large grid of parameter sets{WR,∆µR,δ},
whereWR was incremented by roughly 2% of its fit value,∆µR

was incremented by roughly 1% of its fit value, andδ was
incremented by 0.01 units. Whereas the fit using 700 cm-1 for
∆CT most closely captures the principal features of the observed

Figure 4. Resonance Stark effects are almost linearly proportional to
WR. The black curves in panels A and B are the same as the black
curves in Figure 3. The black curves in panels C and D were calculated
usingF ) 0.64 MV/cm and{WR,∆µR,δ} ) {1.2 cm-1,1.08 cm/MV,
-0.41}; other details are the same as for the black curves in panels A
and B. The corresponding red curves were calculated using the same
values of all parameters exceptWR. For the red curvesWR was divided
by 2, and the resulting spectra were multiplied by 2 to aid comparison.

Figure 5. Resonance Stark effects are almost proportional to thenth
power of∆µR. The black curves in each panel are the same as those in
Figure 4. The corresponding red curves were calculated using the same
values of all parameters except∆µR. For the red curves,∆µR was
divided byx2, and the resulting∆A(4ω) and ∆A(6ω) spectra were
multiplied by 4 and 8 to aid comparison.

Figure 6. Fits (red curves) to the resonance Stark effect of the BL

band in M203GD RCs (black curves) as a function of∆CT. Best fits
for ∆CT ) 700 cm-1 (panels A and B), 1000 cm-1 (panels C and D),
and 1500 cm-1 (panels E and F) use{WR,∆µR,δ} equal to {1.4
cm-1,1.06 cm/MV,-0.32}, {1.3 cm-1,1.06 cm/MV,-0.34}, and{1.1
cm-1,1.09 cm/MV,-0.33}, respectively. Other details of the calculations
are the same as for the black curves in Figure 3.
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∆A(4ω) and∆A(6ω), the fit using 1000 cm-1 is slightly broader
than the observed spectra, and the fit using 1500 cm-1 is broader
still. Nevertheless, the best fit sets{WR,∆µR,δ} using∆CT equal
to 700, 1000, and 1500 cm-1 are quite similar: they are{1.4
cm-1,1.06 cm/MV,-0.32}, {1.3 cm-1,1.06 cm/MV,-0.34}, and
{1.1 cm-1,1.09 cm/MV,-0.33}, respectively. Thus these re-
duced parameters can be well determined, even if the value of
∆CT is difficult to determine from the fit.

Utilizing a Gaussian form forFFC(νj) in eq 6, ket can be
rewritten as a function of only these reduced parameters,

Thusket can also be well determined in the absence of a well
determined value for∆CT. However, as suggested by Figure
3A, different forms forFFC(νj) can lead to different predicted
rates for the same values ofWR and δ. If either Gaussian or
Pekarian forms forFFC(νj) are used, the predicted rates should
be quite similar within a standard deviation ofδ ) 0, but their
relative values may be considerably different at multiple standard
deviations from the mean.

Fitting Spectra: Covariances among Absorption and
Resonance Stark Parameters.In the case of the coupling
between BL

/ and BL
+HL

- in the bacterial RC, the resonance
Stark analysis is complicated by the spectral overlap between
the BL

/ r BL transition and other transitions (this would likely
be much less of a problem for synthetic charge-transfer systems).
This spectral overlap compromises the precision with which the
amplitude, position, and line shape of this transition are known.
Here we assess the covariances that appear generally between
these absorption parameters and the resonance Stark parameters.

To begin with, an underestimation by 10% of the peak
amplitude of the absorption translates to an overestimation by
10% of the amplitudes of all∆A(nω) relative to the absorption.
As we demonstrated above, every∆A(nω) depends roughly
linearly uponWR and as thenth power of∆µR. Thus this factor
of 10% should result in an overestimation of the value ofWR

by close to 10%; any relative change in the fit value of∆µR

should be much smaller than this. An overestimation ofWR by
10% corresponds to a roughly 5% overestimation ofV0.

According to eq 28, homogeneous broadening and inhomo-
geneous broadening enter the calculation of HOS spectra in
distinct ways: whereas powers of the homogeneous line shape
are entangled with derivatives ofFFC(νj), the inhomogeneous
broadeningb(νj) affects∆A(nω) in the same manner as it affects
absorption. Nevertheless, for the accurate analysis of resonance
Stark effects it is more important to determine the overall line
width of an absorption band than to determine the separate
contributions of homogeneous and inhomogeneous broadening
to its line shape. This conclusion can be drawn from Figure 7,
where the black curves from Figure 4 (Γ0 ) 90 cm-1, ΓGaus)
50 cm-1) are plotted against simulations where eitherΓ0 has
been increased to 110 cm-1 (red) orΓGaushas been increased
to 90 cm-1 (blue). Both modifications increase the fwhm of
the absorption bands (panels A and D) by almost 20%. As
evident from the simulations of the HOS spectra, these perturba-
tions to the absorption line shape affect the resonance Stark
effects nearly identically. Thus, for reasonable errors in the
apportionment of an absorption line width to homogeneous and
inhomogeneous contributions, there should not be significant
differences in the fit values ofWR, ∆µR, andδ.

Interestingly, fit quality is quite sensitive to the value ofνj0,
although the fit values ofWR and∆µR are not. This is illustrated
in Figure 8, where we show the best fits to the resonance Stark

effects of the BL band in M203GD RCs upon settingνj0 to either
12 510 cm-1 (panels A and B), 12 530 cm-1 (panels C and D),
or 12 550 cm-1 (panels E and F). The best fit sets{WR,∆µR,δ}
for these spectra are{1.2 cm-1,1.08 cm/MV,-0.41}, {1.3
cm-1,1.06 cm/MV,-0.34}, and{1.4 cm-1,1.04 cm/MV,-0.26},
respectively. As one might expect, since bothWR and∆µR have
been shown to affect line shapes only weakly, the shifts inνj0

are compensated primarily by adjustments to the fit values of
δ.

Relationship of the Resonance Stark Parameters to
Marcus Parameters. As described in the Introduction, the
simplest electron-transfer theories attempt to simplify the
description of the initial and final state potential energy surfaces
to two parameters,∆νj andλ, often called Marcus parameters.
This minimal description hinges upon the assumption that both
the initial and final state potential energy surfaces are parabolic
with the sameνjmean. As long asνjmean is the same for both
surfaces, one can uniquely determine the energy of the transition
state from∆νj andλ and hence the rate of electron transfer as
well using eq 2. This equation neglects nuclear tunneling and

ket ) 4[π3 ln 2]1/2WR exp[-4 ln 2‚δ2] (38)

Figure 7. Analogous perturbations to the values ofΓ0 andΓGausaffect
resonance Stark effects similarly. The black curves in panels B, C, E,
and F are the same as those in Figure 4, panels A, B, C and D,
respectively (Γ0 ) 90 cm-1 and ΓGaus ) 50 cm-1). The red curves
correspond toΓ0 ) 110 cm-1 andΓGaus ) 50 cm-1. The blue curves
correspond toΓ0 ) 90 cm-1 and ΓGaus ) 90 cm-1. Panels A and D
illustrate the corresponding absporption spectra.

Figure 8. Fits (red curves) to the resonance Stark effect of the BL

band in M203GD RCs (black curves) as a function ofνj0. Best fits for
νj0 ) 12 510 cm-1 (panels A and B), 12 530 cm-1 (panels C and D),
and 12 550 cm-1 (panels E and F) use{WR,∆µR,δ} equal to {1.2
cm-1,1.08 cm/MV,-0.41}, {1.3 cm-1,1.06 cm/MV,-0.34}, and{1.4
cm-1,1.04 cm/MV,-0.26}, respectively. Other details of the calculations
are the same as for the black curves in Figure 3.
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assumes that the populations of the vibrational levels on the
initial-state surface are at equilibrium.

Similarly, the radiationless transition picture of electron
transfer provides eq 38 for evaluating a rate constant from just
two parameters describing the reaction surface geometry,δ and
∆CT, which is embedded in the factorWR. This calculation also
hinges upon the assumption that both the initial- and final-state
surfaces have the sameνjmean. Although the differences between
eqs 2 and 38 reflect the important conceptual distinction that
the radiationless transition has been assumed to occur exclu-
sively by nuclear tunneling from the lowest vibrational level of
the reactant state, they are nevertheless united by the similarities
illustrated in Figure 1. Transformingδ and∆CT into ∆νj andλ
is not straightforward, however, so we will outline the trans-
formation here.

The parameterνjmean is related toλ by the Huang-Rhys
parameter (eq 16):

Since the standard deviation of the Pekarian,σ, is given by19

and the fwhm of the Pekarian,∆CT, is related toσ by19

(∆CT ) σx5.545 for a Gaussian), we get the following
relationship betweenλ, νjmean, and∆CT:

Referring to Figure 1, onceλ is known,∆νj can be calculated
from δ and∆CT according to

Thus we have demonstrated that one needs a value forνjmeanto
discuss resonance Stark fit parameters in terms familiar to the
bulk of the electron-transfer literature. Either description is
sufficient for the calculation of a rate constant, but one cannot
navigate between the two without this additional information.
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skewed or bowed, these qualities will introduce errors that propagate
primarily into the determination of∆µCT andúCT.

(25) These conclusions were supported by an analysis of eq 7 in Part 2
in a limit whereWR , Γ0; however, this is not a sufficient condition to
ignore all the other terms in this equation since they can be quite significant
when added together. Additionally we have demonstrated in this paper the
importance of including∆A(F6) and other terms in the calculation of
∆A(4ω).

λ ) νjmean‚S (39)

σ ) νjmeanxS (40)

∆CT ) σx5.57 (41)

λ )
∆CT

2

5.57νjmean
(42)

∆νj ) δ‚∆CT + λ (43)
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