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Abstract

This paper describes a development environment for horizontal microcode. The environ-
ment uses Percolation Scheduling—a transformational system for parallelism extraction—and an
interactive profiling system that gives the user control over the microcode compaction process
while reducing the burdensome details of architecture, correctness-preservation, and synchro-
nization. Through a graphical interface the user suggests what can be executed in parallel,
while the system performs the actual changes using semantics-preserving transformations. If
a request cannot be satisfied, the system reports the problem causing the failure. The user
may then help eliminate the problem by supplying guidance or information not explicit in the
code.

Index Terms—microcode, compaction, Percolation Scheduling, environment, transforma-

tion, parallelization, compiler

1 Introduction

We describe an environment for interactive microprogram development. The environment con-
sists of a hierarchy of parallelizing transformations, an interactive profiler, and a graphical user
interface. Our ultimate goal is to automatically generate better horizontal microcode than can

be produced by human experts. However, due to the complexity of code-generation problems, a
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compiler must rely on heuristics which sometimes fail to produce optimal or nearly optimal code.
Furthermore, the compiler’s analysis of a program usually cannot capture the user’s knowledge of
the general problem—the user may be able to make decisions based on information not available
to the compiler. The support environment we are building allows the user to control compaction
and provides an integrated interface through which additional information can be supplied that
may assist in the optimization process.

In our system, the role of the compiler is to exploit the easily extractable parallelism. While
this may suffice, the user can “fine-tune” the code for better performance. The other components
of our system, the profiler and graphical interface, are being designed to support this activity.
The need for such interactive compilation has been widely recognized. An in-depth discussion of
the desirability of such a system and its potential advantages is found in [Veg86].

The current trend toward larger and more complex microprograms and the development of
techniques such as dynamic microcoding [WC86] increases the need for microcode development
tools [DS78]. RISC machines, array processors, and VLIW machines are programmed directly
in microcode, and CISC machines have large microcode programs that interpret higher-level
machine instructions.

Our environment maps programs written in a high-level language onto horizontal micro-
engines. A first version of the environment will generate code for the current IBM/FPS-264
Production Supercomputer (part of the NSF Supercomputing Center at Cornell) as well as more
conventional microengines.

Existing high-level language compilers for parallel machines do not provide the needed support
for exploiting parallelism in microcode. Important advances in parallelizing ordinary code have
been achieved [AK82, Fis81, KKP*81]. Interesting work has also been done in the development
of environments for supporting parallel computation [HK84, Sny83]. However, this work has dealt
with coarse-grained parallelism and has provided support in configuring pre-optimized modules
into coherent concurrent systems. Because the parallelism-extraction of current compilers is
too coarse, humans are generally much better at microcode compaction than available systems.
Thus, in practice, microcode is still compacted by hand when speed is critical. We have designed
a system that supports semi-automatic extraction of fine- and coarse-grained parallelism in a
uniform environment. The mundane aspects of parallelization (i.e., ensuring the preservation of

semantics) are fully automated. The system will eventually incorporate knowledge of the specific



parallel machine for which code is generated, freeing the user of the need to be intimately familiar
with low-level details. Using this environment we hope to achieve code quality comparable or
even superior to that achieved by expert hand-coding in much less time.

A typical interactive session proceeds as follows. The user first requests some aggregate
(global) transformation of the code. Then, with the help of profiler information, the user refines
the code by requesting specific transformations. When such a request is made, the system tries to
instantiate it by a series of semantics-preserving transformations. If the instantiation succeeds,
the code is changed accordingly. Otherwise, the system reports the cause of the failure (e.g.,
a dependency would be violated). The environment’s diagnosis is usually accurate. Sometimes,
however, the system may not be able to achieve the desired results, particularly when the heuristic
application of several transformations is involved. In such cases the user may guide the system
through a sequence of lower-level transformations that could achieve the desired result while still
guaranteeing correctness. For example, transformations sometimes fail due to the inability of
the system to eliminate spurious dependencies. Two indirect references could appear to refer to
the same memory location—thus causing a dependency—when in fact the references are distinct.
The user may realize this based on information available from the problem domain but not
explicit in the code; the user may choose to ignore the conflict and direct the system to perform
the transformation. When dependencies are transient (i.e., two indirect references conflict for
only some of their possible indexes) or if the user is not certain that the conflict detected by
the system is spurious, he may request that the system proceed with the transformation and
provide a safe runtime escape route. Finally, the user may change the code arbitrarily, outside
the transformations provided by the system. In this case, the environment cannot guarantee the
correctness of the transformation. In this context, our work can be seen as complementing that
of formal verification of microcode [MD86].

At the heart of our environment is Percolation Scheduling (PS), which developed out of our
experience with Trace Scheduling in the ELI project at Yale [FERN84]. PS is a hierarchy of
semantics-preserving transformations that convert an original program graph (control-flow graph)
into one with more parallelism. PS globally rearranges code in an attempt to exploit parallelism.
Its core consists of a small set of primitive program transformations; the transformations are
atomic and can therefore be combined with a variety of guidance rules to direct the optimiza-

tion process. Above this core level are guidance rules and transformations which extend the



applicability of the core transformations to exploit coarser parallelism.

Aided by the higher levels of the hierarchy, the core transformations operate uniformly on a
program graph. The transformations can be applied to partially compacted programs, allowing
modification of code produced by other compilers. In addition, the transformations are themselves
highly parallel and can be run on a parallel machine, significantly reducing compilation time.

The remainder of the paper is structured as follows. Section 2 discusses the use of the environ-
ment for particular machine architectures. Section 3 describes the primitive transformations of the
environment. Section 4 develops higher-level transformations and outlines the other components
of the system. Section 5 describes extensions currently being implemented; section 6 describes
the implementation of the existing system. Section 7 contains early experimental results. Section

8 provides a detailed example of program parallelization using the environment.

2 Architectures

Several existing architectures can benefit from our environment. Horizontal microengines and
statically sceduled multiprocessors (i.e., the FPS-264, FPS-164, Mars 432, and the ELI-512)
are the obvious candidates. Vertical lookahead (pipelined) engines could use the large numbers
of sequential operations clustered together by percolation scheduling to efficiently fill pipelines.
Hardware to handle multiple conditional-jumps can also be effectively utilized in our environment.
The design of such a hardware mechanism and its advantages are described in [KN85].
Data-flow microengines are also suited to take advantage of our system [PHS85]. Traditionally,
it has been claimed that data-flow architectures require very little compile-time analysis. From a
pragmatic point of view, however, this lack of compile-time effort imposes a very heavy burden in
terms of communication and runtime synchronization costs and leads to extremely inefficient use
of memory and resources [GPKK82]. Through PS transformations a correct partial order for the
issuing of operations can be obtained at compile time and a reasonable partition of the program
and data between the various functional units can be achieved. This could significantly reduce
runtime communication and synchronization needs as well as the lengths of queues of waiting
operations. The atomic nature of the core transformations and their independence makes PS

attractive for data-flow compilers and for execution on data-flow machines.



3 The Core of Percolation Scheduling

The core transformations are easy to understand and implement and are independent of any
heuristics. They are the lowest layer in the hierarchy of transformations and guidance rules.
Higher levels of this hierarchy direct the core transformations and rearrange the program graph
to allow more code motion by the core transformations.

In the following sections we present an overview of the Percolation Scheduling hierarchy and
the work we have completed. In these sections, the term node (in a program graph) refers to a
microinstruction. An operation is a component of some microinstruction. In the examples, lower
case letters denote operations and capital letters denote nodes. To simplify illustrations, nodes
attached to edges entering or exiting the subgraph of interest are not shown. These nodes are
denoted by “I;” (for incoming edges) or “E}” (for exiting edges).

Four primitive transformations defined in terms of adjacent nodes in a program graph form
the core of PS. Repeatedly applying the transformations allows operations to “percolate” towards
the top of the program graph from the various parts of the code-hence the name Percolation
Scheduling. Operations are packed together in nodes as PS is applied to a program graph,
yielding more efficient microcode.

The details of the transformations deal with maintaining the integrity of all affected paths.
A brief description of each transformation is given below. A formal description of the model of
computation as well as rigorous definitions of the core transformations and proofs of correctness

can be found in [Nic84b].

3.1 Delete Transformation

A node in the program graph can be removed by the delete transformation when the node contains
no operations or when it becomes unreachable. Nodes without any operations may occur as a
result of other transformations or as part of the original program graph. An empty node does
not affect the execution semantics of the program in any way and may be deleted, provided the
outgoing edges of its predecessors are reset to point to the deleted node’s successor. This will
preserve the semantics of the original program. An unreachable node is a node other than the
start node which has no predecessors. Such a node is clearly unnecessary and may be deleted

from the graph. An illustration is given in Figure 1.



Figure 1: The delete transformation.

Figure 2: The move-op transformation.

3.2 Move-op Transformation

The mowve-op transformation moves an operation that does not affect the flow of control from
a node N to a node M through the edge (M, N) provided no data-dependency exists between
operations in M and the operation being moved. Care must be taken not to affect the computation
of paths passing only through N but not through M. To ensure this, the paths are split and

provided with a copy of the original N. An illustration is given in Figure 2.

3.3 Move-cj Transformation

The mowve-c¢j transformation moves a conditional-jump z from node N to node M through an
edge (M, N) provided that no dependency exists between M and the component being moved.

Paths passing only through N but not through M must not be affected. To ensure this, the paths



Figure 3: The move-cj transformation.

are split and NV is copied. Because we allow an arbitrary rooted DAG of conditional-jumps in
a node and the conditional-jump being moved may come from an arbitrary point in that DAG,
N will be split into N; and Ny, where N; and Ny correspond to the true and false branches
of the moving conditional. An illustration of the transformation is given in Figure 3. In the
illustration, a represents the DAG of conditionals (in V) not reached by z, b represents the DAG
of conditionals reached on z’s true branch, and ¢ the DAG of conditionals reached on z’s false
branch. N’ is the copy of N.

A detailed description of a hardware mechanism that efficiently implements general conditional-
jump DAGSs is found in [KN85]. While a multiway jump mechanism will take full advantage of
the power of PS, it is not required for the use of our system. The environment can be used to

generate good code for any horizontal architecture.



Figure 4: The unification transformation.

3.4 Unification Transformation

The unification transformation moves a unique copy of identical operations from a set of nodes
{Ny, N1, No, ...} to a predecessor node M. This is done only when no dependency exists between
M and the component being moved and when the edges (M, N;) exist for all nodes in the set.
Paths passing through N; but not through M must not be affected—as usual, splitting and

copying is used. An illustration is given in Figure 4.

3.5 Inverse Transformations

Inverses of the core transformations can be defined. The formulation is straightforward for the
delete, move-op, and unification transformations. The conditions under which a conditional can
be moved from a node N to a successor node M are somewhat more complex and are not presented
in this paper.

The inverse transformations are used to undo previous transformations. This is sometimes
desirable because an operation ¢ can “percolate” to a node where it prevents another operation
4 from moving. If it would be more advantageous to move j rather than ¢, then ¢ must be moved

by a sequence of inverse transformations to a point where it no longer blocks j.

4 Beyond the Core Transformations

The core transformations are very low-level. Even for small examples the number of transforma-

tions required to compact the graph of a microprogram is considerable; it is simply too tedious for



a user to issue them one at a time. What is required, therefore, is a set of higher-level transforma-
tions. These transformations are partitioned into two levels: scheduling transformations built on
the core transformations that actually compact the program graph and enabling transformations

which rearrange the program graph to expose parallelism.

4.1 Scheduling Transformations

A simple transformation that we have implemented in the environment, called move-path, takes
as its arguments a source node A, an operation ¢, and a destination node B. Mowe-path then
generates a sequence of core transformations that will move operation 7 from A to B if semantic
correctness is not violated. If a potential data dependency violation is discovered, the operation
is moved as far as possible and the conflict is reported to the user.

A more powerful transformation is migrate. Migrate moves an operation as far “up” in the
graph as dependencies allow. This includes moving any copies of the operation that are created
in the process. Unifications are performed whenever possible. Opportunities for unification arise
when an operation is copied on different paths—perhaps several times—and then at least some of the
copies can be moved to the point where the paths rejoin. For example, assume that statements
7 and j in Figure 5 can move on all paths above node A. It would be unfortunate to miss a
unification here. In the case of statement ¢, unnecessary copies of the operation would be left in
the program, wasting space and consuming resources in the final code. Operation 5 cannot move
into nodes A and C unless unifications are performed because of data dependency conflicts with
other copies of j.

As an example we develop the migrate transformation in detail. Let ¢ denote the operation
we wish to move and let C(i,t) denote the set of all copies of ¢ in the program graph at time ¢.
We define the function node(j) to be the node containing operation j. Finally, we assume for the
moment that the program graph is acyclic.

It is easy to show that any algorithm which satisfies the following two conditions will perform

all possible unifications:

1. Let ¢ be the time at which the algorithm terminates. Then there is no j in C(¢,t) such that

j can be moved from node(j) to any predecessor of node(j).

2. Let reach(Y’) denote the graph of all nodes reachable from a node Y. If j is moved from



Figure 5: A unification example.
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Figure 6: An algorithm for migrate.

node(j) to some predecessor X of node(j) at time ¢ and X has multiple successors, then
the operation is a unification and there is no k in C(i,t) such that node(k) is in reach(X)

and k can move to some predecessor of node(k) in reach(X).

The restriction of migrate to acyclic graphs is not acceptable. Fortunately, there is a simple
extension for reducible graphs. Loops pose a problem because operations inside a loop body
cannot be removed from the loop by the core transformations alone; whenever an operation is
moved outside of the loop the node will be copied on the back edge. To overcome this, we combine
magrate with standard techniques to remove loop invariant code. The modifications to migrate

are (with some special cases omitted for clarity):
1. An operation which is initially in a loop L cannot move past the entry node of L.

2. Let 17 be an operation which is initially outside of a loop L and during the course of the
algorithm moves to a node X from which it can enter L. If ¢ is loop invariant with respect
to L it is removed from X (splitting and copying X if necessary to preserve other paths)
and inserted immediately before the entry point to L. If ¢ is not loop invariant, then it is

not permitted to move into L.

The first condition prevents operations in a loop body from being moved indefinitely around

the back edge of the loop. We assume, without loss of generality, that all such operations cannot be
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moved outside of the innermost loop containing them. (In our system, loop invariant code removal
is used as a pre-processing step.) Condition two prevents operations from moving into loops from
which they cannot subsequently be removed. This avoids lengthening loop bodies unnecessarily.
Figure 6 gives a high-level description of migrate for acyclic graphs. Because conditionals are
never unified, a much simplified version of migrate can be written for conditional jumps.

We have also developed transformations that compact the complete program graph. The need
for such transformations is clear; it is unlikely that a user will wish or even need to manually
apply individual transformations to the entire program. Instead, critical sections of code can be
optimized or transformed to expose parallelism, after which global heuristics can be applied to

obtain a good schedule.

4.1.1 Compact-blocks

Compact-blocks is a global heuristic which performs as much compaction as possible within each
single-entry single-exit block of code. No unifications are performed and no instructions are
copied. The speedup achievable by exploiting parallelism within basic blocks is small [NF84].
Compact-blocks is intended for use primarily as a first step in the compaction process; its appli-
cation considerably reduces the number of nodes in the graph without moving any operation to

a point where it blocks—due to a data dependency—an operation that could otherwise move.

4.1.2 Compact-path

Compact-path is a global heuristic which moves operations on the “most-important” path in
a program graph. We assume that for each conditional j we have two real numbers true(y)
and false(j) representing the probabilities that the true and false branches of j will be followed
respectively. In many cases such analysis can be performed automatically with good results
[NF84]. We can extend this idea to a DAG of conditionals, where the probability that a certain
path will be selected through the D AG is the product of the probabilities of the edges on the path.
In the algorithm for compact-path (see Figure 7) p(X,Y) denotes the probability that program
execution continues with node Y after the execution of node X.

The user has the option of selecting the path for compact-path. For a typical program, the
user first explicitly selects the critical paths through the code for optimization. The system then

selects and compacts less important paths automatically.
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Figure 7: An algorithm for compact-path.

Figure 8: The operation cannot move unless a unification is performed.

Compact-path can be viewed as a generalization of the technique of trace-scheduling developed
in the ELI project at Yale [Fis81]. Trace-scheduling also selects the “important” path (or “trace”)
through the program and compacts it. However, trace-scheduling does not perform unifications
and does not allow traces to be merged or altered in any way after compaction. Figure 8 provides
an example for which compacting a single trace without unification results in no improvement.
A further advantage of compact-path is the tendency of unifications to minimize code explosion.
Trace-scheduling introduces code at the entry and exit points of the trace to preserve semantics.
When subsequent traces are selected for compaction, this fix-up code cannot move back onto the
original trace. With compact-path there is some chance that copied instructions can subsequently
be unified, thus limiting the size of the final code. This is a major advantage in microcode

compaction when the size of the available microstore is small.
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4.2 Enabling Transformations

The Enabling level provides transformations of the program graph that rely on global information
and therefore cannot be accomplished by the core transformations. The purpose of these trans-
formations is to expose parallelism for exploitation by the core transformations. A well-known
example of an enabling transformation is variable renaming—the judicious choice of new variable
names can often remove dependencies between statements.

The cycle-breaking transformation guides the application of the core transformations to loops.
Intuitively, cycle-breaking “breaks” a loop by picking an edge e across which no operation may
move. The loop is shifted to make e the back edge. This requires introducing fix-up code
immediately before the loop. The point where a cycle is broken is chosen to minimize the lengths
of dependency chains in the resulting loop. The loop body can then be compacted as a straight-
line piece of code by the core transformations.

The primary loop optimization tool used in the environment is loop quantization, a technique
for unrolling nested loops to expose parallelism across iterations [Nic85, AN87]. This aids com-
paction because the parallelism may not be found in the innermost loop. The techniques of the
previous section can then be used to compact the resulting loop. Tree height reduction techniques
[Kuc76] are very useful in conjunction with quantization. Quantization applies to non-linear as
well as linear recurrences; in fact, quantization is limited ounly by the degree to which indirect
references can be disambiguated.

The idea of loop quantization is to unwind a few iterations of all nested loops; the unwindings
chosen should minimize the lengths of dependency chains. However, the order of data-dependent
statements must not be altered. To quantize n nested loops with loop indices I, Io,..., I,, loop i
is unwound k; times by duplicating the loop body k; times. In the first duplication of the original
body the index I; is unchanged; in the second each occurrence of I; is replaced with I; + 1, and
so on, up to I; — k; — 1. This procedure is repeated for each nested loop proceeding from the
innermost loop to the outermost loop. This is equivalent to unwinding all the nested loops fully
when the upper bounds are kq,...,k,.

When multiple loops are unwound, an iteration of the loop executes an n—dimensional box B
of size k1 X ko X ... X k,. All statements in B are executed before the box is shifted by a “quantum

jump” along any of the dimensions. The movement along the n dimensions, while quantized, is
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in normal loop order. The conditions under which a quantization preserves correctness can be

found in [Nic85].

4.3 General Support

The General Support level finds and records data dependencies. Memory disambiguation and
enhanced flow analysis methods increase the accuracy of data dependencies and permit more
code motions [Nic84a, Har77]. Traditional optimizations, such as dead code removal, are also
used at this level.

A good example of a general support transformation is dead path elimination. Moving a
conditional-jump can produce a program graph with some paths that can never be taken. In
Figure 9, moving conditional ¢ from B to A results in the copy of 7 in A dominating the copies of
i in By and By. Because the truth value of i’s boolean condition cannot change between A and
B, the copies of 7 in By and By are redundant and can be deleted from these nodes. Not all cases
where dead paths are created can be viewed so locally; it is easy to construct examples in which
the movement of a conditional makes another conditional in a distant node redundant.

The technique we use for detecting redundant conditionals is essentially an application of
range analysis [Har77], a type of data-flow analysis. A set FC-REACHING is associated with each
node (FC stands for flow-of-control). Using standard data-flow terminology, FC-REACHING (X))
contains pairs (7,T) and (j,F), where (¢,T) (resp. (j,F)) reaches node X if each path to X
evaluates a conditional 7 (j), the result is true (false), and no subsequent node on the path before
X defines any variable read by ¢ (7). The data-flow equations for FC-REACHING are similar to
the standard equations for copy propagation.

The detection and elimination of dead paths is done as follows. Assume a conditional 7 is
moved from node N to node M. If (¢,T) or (i,F) reaches M, then i is deleted from M and the
appropriate edge discarded. Otherwise, if there is any node X reachable from M such that 7 is an
operation in X and (7,T) or (i,F) reaches X, then ¢ may be deleted from X. The same procedure
is also applied to the copy of N (if there is one). Note that eliminating an edge may leave a node
in the graph (other than the start node) with no predecessors. This node, and possibly some of

its successors, is unreachable and may be deleted.
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Figure 9: Removing a redundant test.
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4.4 The Profiler

The system includes a profiler to provide assistance in the optimization process. The profiler
serves several purposes. The first is to estimate the execution time of the program, as well as
the execution time and execution frequency of the separate parts of the program. The second
function of the profiler is to summarize dependency information in critical regions of the code.
Eventually, the profiler will provide a similar analysis of the program’s resource utilization.

The profiler can be used in two modes. In the first mode, the program is run on “typical”
data; statistics such as the frequency of execution of blocks of code, branching probabilities of
conditional jumps, and frequency of data dependencies between indirect memory references are
gathered automatically. This information is available to the user as attributes of the nodes of
the program graph. The profiler can summarize the statistics in various ways, such as identi-
fying critical dependencies and nodes of the graph that are most frequently executed. Global
transformations (such as compact-path) make use of the profiler information to guide compaction.

If exploratory runs are unrepresentative or too expensive to perform without parallelization,
then an interactive mode can be used. In this mode, the system uses micro-analysis [Coh82]
to estimate the time complexity of the program and to identify “hot-spots.” The profiler also
uses the disambiguation mechanism of the General Support layer to identify critical dependency
chains. As the user or automatic transformations improve the code the profiler must dynamically
update its estimates. This is a non-trivial problem: accurate estimates require knowledge of the
target machine and its influence on the running time of the compacted code. A simple version of

the profiler is currently operational in our system.

5 Current Work

The transformations described above expose parallelism and provide a partial order on the issue
of operations. The transformed graph can be viewed as the code for an idealized machine in
which no resource conflicts ever occur. Obviously this ideal is unrealizable and can only serve
as a bound on the effectiveness of the transformations. Executing the resulting code on realistic
architectures requires conversion of the ideal schedule to a schedule that recognizes resource
limitations. Unfortunately, even for simple architectural models computing an optimal schedule

is NP-hard.
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We are currently implementing the Mapping Layer to cope with this problem. At the heart
of this level is a simplified tabular description of the target machine. It can be easily modified by
the user to match a particular microengine architecture. In the next stage of our work we plan to
use more accurate machine descriptions, drawing on the work of [DWHS86, Dam85]. We will also
improve the retargetability of the environment and extend the environment’s ability to integrate
and exploit realistic machine characteristics.

Two major extensions of the environment are currently being included in the Mapping Layer:
the addition of resource constraints and the elimination of the assumption that all operations
require one cycle to execute. The term resources includes everything that is required to execute
an operation: bus lines, registers, functional units, etc. An operation is not allowed to move into
a node if the node would then require more resources than the machine has available.

Dealing with variable length operations requires changes in the definitions of the core trans-
formations. Besides the constraints already stated, now an operation may move only when there
are no conflicts with operations it overlaps in time.

Representing variable length (pipelined) operations poses a number of design problems. If
each node in the graph represents one clock cycle and the stages of the instructions are stored
explicitly in the graph, then the size of the graph increases substantially. This is especially
true before compaction, when the sequential code must be padded with many empty nodes to
ensure that operations do not overlap. Furthermore, if at some point an operation extends past a
conditional-jump the stages of the operation must be duplicated on both of the conditional’s exit
paths. Similarly, moving an operation above a conditional requires duplicating the stages on both
paths. We choose to store operations in the graph as before and only expand operations into stages
when it is necessary to check the correctness of a transformation. The only other modification is
that edges are assigned lengths to represent the number of cycles between instructions.

An an example of a move-op of a multi—cycle operation is given in Figure 10. For simplicity,
all nodes in the figure represent a single cycle of execution, although the program graph is not
stored in this way.

The following is an algorithm to check the correctness of moving an operation ¢ into a node
M when operations are pipelined. To simplify the presentation, we assume that all edge lengths
are one; an extension of the algorithm works for the case where edge lengths are arbitrary. Define

the distance of a path between two nodes to be the sum of the edge lengths on the path. Let
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Figure 10: A pipelining example.

length(i) denote the time (in cycles) required to execute operation i. Let max be the length of
the longest possible instruction. A stage of operation 7 is said to be active on an edge (P, P') if
the stage is executed as part of the transition from node P to node P'.

Consider operation ¢ in Figure 10. To ensure that the transformation is legal it is sufficient
to ensure that no dependency is violated for any operation j that potentially overlaps ¢ during
execution. Beginning at node M, follow all paths from M to a distance of length(7). Along each
edge on each path, the active stages of each operation j executing at that point must be checked
against the active stage of <. If a conflict is detected the transformation fails. The same procedure
must the be repeated on all paths leading to M beginning at a distance of maz before M.

The Mapping Layer will be transparent; the user will still deal with the high-level represen-
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tation of the program and may rely on the system’s heuristics (e.g., list scheduling [Fis81]) to
perform the mapping of the program to hardware. However, the user may wish to control re-
source allocation and operation pipelining directly. To allow for this operations can be expanded
to display operation stages in the program graph.

Including resource constraints and variable length operations greatly complicates the condi-
tions under which a transformation is correct. Fortunately, these checks can be done automatically
and efficiently. Without such automatic support, compaction is at best a tedious and error-prone
process. The use of an environment to assist in the parallelization process will greatly reduce the

time and effort required to optimize a program and lead to better code.

6 Implementation

The primary consideration in implementing the system was that the user’s view should be as
high-level and abstract as possible. In interacting with the system the user deals only with an
abstract model of computation [Nic84b] that provides access to fine-grained parallelism without
the burden of architectural, semantics-preservation, and synchronization details.

The environment actually resides on two machines, a Vax 11/780 and a Xerox Dandelion
workstation. The code is written in Franz Lisp (on the Vax) and Interlisp (on the Dandelion).
Lisp was selected for its robust environment of system functions and debugging tools. All trans-
formations are executed on the Vax. The workstation serves to display the program graph and
profiler information and to accept user input.

The system was placed on two machines to take advantage of the graphics capabilities of
the Dandelion. Nearly all user commands are issued with the Dandelion’s mouse. A typical
sequence is to click on an operation, select “Move” from a menu of options, and then click on
a destination node. The environment then tries to move the operation to the destination node
using the mowve-path transformation.

The high-level source language currently used by the environment is Tinylisp, a Fortran-like
language with lisp syntax. The machine-level language is called naddr [FERN84]. Naddr can be
easily extended to support typical microcode operations. The choice of language is of no concern
to the environment proper; the environment is only concerned with dependencies and flow of

control. The model of computation [Nic84b] is rich enough to allow typical microcode constructs
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(i.e., arbitrary multi-way jumps, any number of write/read variables in an instruction, etc.).
Tinylisp and naddr were chosen to ease implementation and because of our previous experience
with them. This has allowed us to concentrate on the problems of interest—the environment
issues and transformations. As our work progresses we plan to convert to other languages better
suited for microcode programming [DS78].

We are currently porting the system to Common Lisp on a Symbolics lisp machine. Common
Lisp was chosen to make the new system as easily portable as possible. We believe the environment
and Percolation Scheduling should serve both as a microcode development tool and as a research
vehicle for investigating new automatic code transformations. Therefore, experimentation with
the system beyond the designers’ group is desirable and portability for wide distribution is a main

concern.

7 Early Experimental Results

Our environment is operational and has been used to generate code for several test programs.
Some of the results are presented in Table 1. The figures in the table were obtained with com-
pletely automatic compaction. The programs in our test suite were chosen for several reasons.
While small, they perform important functions that are likely candidates for microcoding, at least
for machines geared towards numerical programming. Of course, due to their importance much
effort has been expended on developing good algorithms and hand-coding the resulting micro-
programs for efficient execution. The results are not meant to impress by absolute performance,
particularly since we intentionally chose to use as a starting point standard algorithms, which do
not yield much parallelism. The examples presented here are meant to demonstrate the viability
of our approach under such adverse conditions as low inherent parallelism (In, sqrt, prime, fft)
and unpredictable flow of control (¢rel, sort, 1124). Results for matmul have been included to
show what can be achieved when the code has a large amount of exploitable parallelism. Even
in the automatic mode our system obtains speedups at least as good and sometimes better than
other approaches.
We define the speedup (%) achieved by our environment as the ratio:

executed useful sequential operations

Speedup = ( — 1) % 100.

executed parallel instructions

Useful operations are defined as all arithmetic, logical, flow-of-control, and indexed load/store
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program | description unwinding | speedup %
dotprod | inner product 1 100
dotprod | inner product 2 200
dotprod | inner product 4 398
fft fast fourier transform 1 204
fft fast fourier transform 2 258
1124 vector minimum 1 60
1124 vector minimum 3 292
In natural log 1 98
In natural log 4 208
matmul | matrix multiply 3 268
matmul | quantized matrix multiply 3x3 1004
prime prime sieve 1 62
prime prime sieve 2 137
sort insertion sort 2 170
sqrt square root 1 86
sqrt square root 2 86
trel transitive closure 1 92
trcl transitive closure 3 423

Table 1: Some results.
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operations. They do not include register-to-register moves and direct loads and stores. This
is very generous to the sequential version of the code and is essentially equivalent to assuming
ideal global register allocation and perfect pipelining of moves and direct stores/loads. In the
parallel version all executed microinstructions are counted. Thus a load/store or move will be
done “for free” only if it is actually overlapped with some other useful operation in the compacted
code. The numbers in Table 1 reflect this conservative model. If register-to-register moves and
direct loads/stores are counted as executed operations in the sequential model, the speedups
obtained by our system are two to four times larger on average than those presented in the table.

We believe that the dynamic measurement of speedup described above is more objective
than the traditional static measure which compares the size of the original and compacted code.
Typically, whenever the code contains any conditional-jumps other than the exit-tests for loops
a static measure yields better speedups (by as much as a factor of two) than we report here.

The small size of the code, combined with the above constraints, make the results in Table 1
an empirical lower-bound on the performance we can expect from our environment. In this light
we consider these results to be extremely encouraging. Indeed, even for apparently sequential
code the increase in speed can be quite dramatic. For example, trel’s original (already good)
speedup of 92% more than quadrupled with a small unwinding of the innermost loop. On average
we achieved 450% speedup for the largest unwindings with completely automatic compaction.
Further interactive compaction can improve the automatic results.

The experiments we discuss here were primarily designed to test the effectiveness of our trans-
formations and their range of applicability. As such we did not place restrictions on the number
of resources used in any horizontal instruction. Nevertheless, we are encouraged by the relatively
uniform use of resources in most of the compacted programs. Occasionally large numbers of
operations per instruction are generated at the beginning of the compacted code, but these can
usually be spread out in later instructions either automatically or under user guidance. Such
changes do not seem to affect the compaction and speedups significantly. The whole process
of resource management—either automatic or user controlled through transformations described
previously—may actually increase the speedups reported here by allowing further overlap of stages
of operations from different instructions. Further experimentation is necessary before any con-
clusions can be reached on the positive or negative impact of such transformations on speedups.

Inspection of the code reveals that further speedups will be possible in almost every program
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Figure 11: Sample original program.

as soon as the conversion to Common Lisp is complete and we can take advantage of the larger
space and speed available to perform larger unwindings, coupled with the loop-quantization and
cycle-breaking techniques described previously. While these techniques are implemented in our
system, the limitations of our current configuration do not allow us to significantly exploit their

potential.

8 Sample Use of the Environment

This section illustrates the transformations achievable in our environment. The transformations
involved are relatively basic; their application under user control serves to illustrate a possible
mode of interaction with the environment and roughly corresponds to its capabilities to date. A
detailed description of the process would require a more thorough discussion of the techniques
than is possible in the context of this paper. For simplicity, we assume unit time execution for
all operations and no resource conflicts.

Consider the sample program in Figure 11 (Livermore Loop 24). Figure 12 shows the result of
unwinding the loop three times. Several standard optimizations (e.g., renaming of index variables,
constant-folding) have also been performed by the system.

At this point, the user may specify where the loop is to be broken (cycle-breaking transfor-
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Figure 12: Intermediate code.
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Figure 13: Final transformed code.

mation). In this example, the user elects to leave the loop body as it is. After one application
of compact-path most of the compaction has been performed. The path selected consists of all
true branches in the loop body. Figure 13 shows the result after dead-code removal and a few
invocations of migrate to bunch conditional-jumps together.

We have omitted many details in this example. For example, migrate uses several simple
algebraic enabling transformations; in operation 10, R7; was substituted for Ry as a result of op-
eration 10 moving above operation 6. Similarly, flow-analysis and peephole optimizations remove
redundant memory fetches, while dead-code removal eliminates redundant assignments to m.
Automatic disambiguation of indirect references is successful in removing spurious dependencies
in this example; otherwise, some of the motions involving indirect references would appear illegal
to the system.

While the transformations were controlled at a relatively low level, the user did not deal
with actual hardware. The code in Figure 13 is an “abstract parallel]” schedule. The actual

mapping to hardware is done by the system. The user’s choice of transformations can be aided
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by the system’s ability to take machine restrictions into account (e.g., instruction times, resource
availability). Thus the schedule obtained could map well onto the hardware without the user
being intimately familiar with the architecture. As our work progresses, we will integrate higher
level transformations into the system. For example, the user will be able to specify code motions
in terms of the high-level language statements and constructs.

The speedup for this example is 300% assuming the hardware supports a multiway jump
mechanism, or 130% otherwise. If hardware restrictions permitted, this could be further increased

by additional unwinding and compaction.
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