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odeAlexander Aiken� Alexandru Ni
olauyDepartment of Computer S
ien
eCornell UniversityItha
a, NY 14853Abstra
tThis paper des
ribes a development environment for horizontal mi
ro
ode. The environ-ment uses Per
olation S
heduling{a transformational system for parallelism extra
tion{and anintera
tive pro�ling system that gives the user 
ontrol over the mi
ro
ode 
ompa
tion pro
esswhile redu
ing the burdensome details of ar
hite
ture, 
orre
tness-preservation, and syn
hro-nization. Through a graphi
al interfa
e the user suggests what 
an be exe
uted in parallel,while the system performs the a
tual 
hanges using semanti
s-preserving transformations. Ifa request 
annot be satis�ed, the system reports the problem 
ausing the failure. The usermay then help eliminate the problem by supplying guidan
e or information not expli
it in the
ode.Index Terms{mi
ro
ode, 
ompa
tion, Per
olation S
heduling, environment, transforma-tion, parallelization, 
ompiler1 Introdu
tionWe des
ribe an environment for intera
tive mi
roprogram development. The environment 
on-sists of a hierar
hy of parallelizing transformations, an intera
tive pro�ler, and a graphi
al userinterfa
e. Our ultimate goal is to automati
ally generate better horizontal mi
ro
ode than 
anbe produ
ed by human experts. However, due to the 
omplexity of 
ode-generation problems, a�Supported in part by the Cornell NSF Super
omputing Center and an IBM fellowship.ySupported in part by NSF grant DCR-8502884 and the Cornell NSF Super
omputing Center.1




ompiler must rely on heuristi
s whi
h sometimes fail to produ
e optimal or nearly optimal 
ode.Furthermore, the 
ompiler's analysis of a program usually 
annot 
apture the user's knowledge ofthe general problem|the user may be able to make de
isions based on information not availableto the 
ompiler. The support environment we are building allows the user to 
ontrol 
ompa
tionand provides an integrated interfa
e through whi
h additional information 
an be supplied thatmay assist in the optimization pro
ess.In our system, the role of the 
ompiler is to exploit the easily extra
table parallelism. Whilethis may suÆ
e, the user 
an \�ne-tune" the 
ode for better performan
e. The other 
omponentsof our system, the pro�ler and graphi
al interfa
e, are being designed to support this a
tivity.The need for su
h intera
tive 
ompilation has been widely re
ognized. An in-depth dis
ussion ofthe desirability of su
h a system and its potential advantages is found in [Veg86℄.The 
urrent trend toward larger and more 
omplex mi
roprograms and the development ofte
hniques su
h as dynami
 mi
ro
oding [WC86℄ in
reases the need for mi
ro
ode developmenttools [DS78℄. RISC ma
hines, array pro
essors, and VLIW ma
hines are programmed dire
tlyin mi
ro
ode, and CISC ma
hines have large mi
ro
ode programs that interpret higher-levelma
hine instru
tions.Our environment maps programs written in a high-level language onto horizontal mi
ro-engines. A �rst version of the environment will generate 
ode for the 
urrent IBM/FPS-264Produ
tion Super
omputer (part of the NSF Super
omputing Center at Cornell) as well as more
onventional mi
roengines.Existing high-level language 
ompilers for parallel ma
hines do not provide the needed supportfor exploiting parallelism in mi
ro
ode. Important advan
es in parallelizing ordinary 
ode havebeen a
hieved [AK82, Fis81, KKP+81℄. Interesting work has also been done in the developmentof environments for supporting parallel 
omputation [HK84, Sny83℄. However, this work has dealtwith 
oarse-grained parallelism and has provided support in 
on�guring pre-optimized modulesinto 
oherent 
on
urrent systems. Be
ause the parallelism-extra
tion of 
urrent 
ompilers istoo 
oarse, humans are generally mu
h better at mi
ro
ode 
ompa
tion than available systems.Thus, in pra
ti
e, mi
ro
ode is still 
ompa
ted by hand when speed is 
riti
al. We have designeda system that supports semi-automati
 extra
tion of �ne- and 
oarse-grained parallelism in auniform environment. The mundane aspe
ts of parallelization (i.e., ensuring the preservation ofsemanti
s) are fully automated. The system will eventually in
orporate knowledge of the spe
i�
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parallel ma
hine for whi
h 
ode is generated, freeing the user of the need to be intimately familiarwith low-level details. Using this environment we hope to a
hieve 
ode quality 
omparable oreven superior to that a
hieved by expert hand-
oding in mu
h less time.A typi
al intera
tive session pro
eeds as follows. The user �rst requests some aggregate(global) transformation of the 
ode. Then, with the help of pro�ler information, the user re�nesthe 
ode by requesting spe
i�
 transformations. When su
h a request is made, the system tries toinstantiate it by a series of semanti
s-preserving transformations. If the instantiation su

eeds,the 
ode is 
hanged a

ordingly. Otherwise, the system reports the 
ause of the failure (e.g.,a dependen
y would be violated). The environment's diagnosis is usually a

urate. Sometimes,however, the system may not be able to a
hieve the desired results, parti
ularly when the heuristi
appli
ation of several transformations is involved. In su
h 
ases the user may guide the systemthrough a sequen
e of lower-level transformations that 
ould a
hieve the desired result while stillguaranteeing 
orre
tness. For example, transformations sometimes fail due to the inability ofthe system to eliminate spurious dependen
ies. Two indire
t referen
es 
ould appear to refer tothe same memory lo
ation{thus 
ausing a dependen
y{when in fa
t the referen
es are distin
t.The user may realize this based on information available from the problem domain but notexpli
it in the 
ode; the user may 
hoose to ignore the 
on
i
t and dire
t the system to performthe transformation. When dependen
ies are transient (i.e., two indire
t referen
es 
on
i
t foronly some of their possible indexes) or if the user is not 
ertain that the 
on
i
t dete
ted bythe system is spurious, he may request that the system pro
eed with the transformation andprovide a safe runtime es
ape route. Finally, the user may 
hange the 
ode arbitrarily, outsidethe transformations provided by the system. In this 
ase, the environment 
annot guarantee the
orre
tness of the transformation. In this 
ontext, our work 
an be seen as 
omplementing thatof formal veri�
ation of mi
ro
ode [MD86℄.At the heart of our environment is Per
olation S
heduling (PS), whi
h developed out of ourexperien
e with Tra
e S
heduling in the ELI proje
t at Yale [FERN84℄. PS is a hierar
hy ofsemanti
s-preserving transformations that 
onvert an original program graph (
ontrol-
ow graph)into one with more parallelism. PS globally rearranges 
ode in an attempt to exploit parallelism.Its 
ore 
onsists of a small set of primitive program transformations; the transformations areatomi
 and 
an therefore be 
ombined with a variety of guidan
e rules to dire
t the optimiza-tion pro
ess. Above this 
ore level are guidan
e rules and transformations whi
h extend the3



appli
ability of the 
ore transformations to exploit 
oarser parallelism.Aided by the higher levels of the hierar
hy, the 
ore transformations operate uniformly on aprogram graph. The transformations 
an be applied to partially 
ompa
ted programs, allowingmodi�
ation of 
ode produ
ed by other 
ompilers. In addition, the transformations are themselveshighly parallel and 
an be run on a parallel ma
hine, signi�
antly redu
ing 
ompilation time.The remainder of the paper is stru
tured as follows. Se
tion 2 dis
usses the use of the environ-ment for parti
ular ma
hine ar
hite
tures. Se
tion 3 des
ribes the primitive transformations of theenvironment. Se
tion 4 develops higher-level transformations and outlines the other 
omponentsof the system. Se
tion 5 des
ribes extensions 
urrently being implemented; se
tion 6 des
ribesthe implementation of the existing system. Se
tion 7 
ontains early experimental results. Se
tion8 provides a detailed example of program parallelization using the environment.2 Ar
hite
turesSeveral existing ar
hite
tures 
an bene�t from our environment. Horizontal mi
roengines andstati
ally s
eduled multipro
essors (i.e., the FPS-264, FPS-164, Mars 432, and the ELI-512)are the obvious 
andidates. Verti
al lookahead (pipelined) engines 
ould use the large numbersof sequential operations 
lustered together by per
olation s
heduling to eÆ
iently �ll pipelines.Hardware to handle multiple 
onditional-jumps 
an also be e�e
tively utilized in our environment.The design of su
h a hardware me
hanism and its advantages are des
ribed in [KN85℄.Data-
ow mi
roengines are also suited to take advantage of our system [PHS85℄. Traditionally,it has been 
laimed that data-
ow ar
hite
tures require very little 
ompile-time analysis. From apragmati
 point of view, however, this la
k of 
ompile-time e�ort imposes a very heavy burden interms of 
ommuni
ation and runtime syn
hronization 
osts and leads to extremely ineÆ
ient useof memory and resour
es [GPKK82℄. Through PS transformations a 
orre
t partial order for theissuing of operations 
an be obtained at 
ompile time and a reasonable partition of the programand data between the various fun
tional units 
an be a
hieved. This 
ould signi�
antly redu
eruntime 
ommuni
ation and syn
hronization needs as well as the lengths of queues of waitingoperations. The atomi
 nature of the 
ore transformations and their independen
e makes PSattra
tive for data-
ow 
ompilers and for exe
ution on data-
ow ma
hines.
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3 The Core of Per
olation S
hedulingThe 
ore transformations are easy to understand and implement and are independent of anyheuristi
s. They are the lowest layer in the hierar
hy of transformations and guidan
e rules.Higher levels of this hierar
hy dire
t the 
ore transformations and rearrange the program graphto allow more 
ode motion by the 
ore transformations.In the following se
tions we present an overview of the Per
olation S
heduling hierar
hy andthe work we have 
ompleted. In these se
tions, the term node (in a program graph) refers to ami
roinstru
tion. An operation is a 
omponent of some mi
roinstru
tion. In the examples, lower
ase letters denote operations and 
apital letters denote nodes. To simplify illustrations, nodesatta
hed to edges entering or exiting the subgraph of interest are not shown. These nodes aredenoted by \Ij" (for in
oming edges) or \Ek" (for exiting edges).Four primitive transformations de�ned in terms of adja
ent nodes in a program graph formthe 
ore of PS. Repeatedly applying the transformations allows operations to \per
olate" towardsthe top of the program graph from the various parts of the 
ode{hen
e the name Per
olationS
heduling. Operations are pa
ked together in nodes as PS is applied to a program graph,yielding more eÆ
ient mi
ro
ode.The details of the transformations deal with maintaining the integrity of all a�e
ted paths.A brief des
ription of ea
h transformation is given below. A formal des
ription of the model of
omputation as well as rigorous de�nitions of the 
ore transformations and proofs of 
orre
tness
an be found in [Ni
84b℄.3.1 Delete TransformationA node in the program graph 
an be removed by the delete transformation when the node 
ontainsno operations or when it be
omes unrea
hable. Nodes without any operations may o

ur as aresult of other transformations or as part of the original program graph. An empty node doesnot a�e
t the exe
ution semanti
s of the program in any way and may be deleted, provided theoutgoing edges of its prede
essors are reset to point to the deleted node's su

essor. This willpreserve the semanti
s of the original program. An unrea
hable node is a node other than thestart node whi
h has no prede
essors. Su
h a node is 
learly unne
essary and may be deletedfrom the graph. An illustration is given in Figure 1.5



Figure 1: The delete transformation.

Figure 2: The move-op transformation.3.2 Move-op TransformationThe move-op transformation moves an operation that does not a�e
t the 
ow of 
ontrol froma node N to a node M through the edge (M;N) provided no data-dependen
y exists betweenoperations inM and the operation being moved. Care must be taken not to a�e
t the 
omputationof paths passing only through N but not through M . To ensure this, the paths are split andprovided with a 
opy of the original N . An illustration is given in Figure 2.3.3 Move-
j TransformationThe move-
j transformation moves a 
onditional-jump x from node N to node M through anedge (M;N) provided that no dependen
y exists between M and the 
omponent being moved.Paths passing only through N but not throughM must not be a�e
ted. To ensure this, the paths6



Figure 3: The move-
j transformation.are split and N is 
opied. Be
ause we allow an arbitrary rooted DAG of 
onditional-jumps ina node and the 
onditional-jump being moved may 
ome from an arbitrary point in that DAG,N will be split into Nt and Nf , where Nt and Nf 
orrespond to the true and false bran
hesof the moving 
onditional. An illustration of the transformation is given in Figure 3. In theillustration, a represents the DAG of 
onditionals (in N) not rea
hed by x, b represents the DAGof 
onditionals rea
hed on x's true bran
h, and 
 the DAG of 
onditionals rea
hed on x's falsebran
h. N 0 is the 
opy of N .A detailed des
ription of a hardware me
hanism that eÆ
iently implements general 
onditional-jump DAGs is found in [KN85℄. While a multiway jump me
hanism will take full advantage ofthe power of PS, it is not required for the use of our system. The environment 
an be used togenerate good 
ode for any horizontal ar
hite
ture.
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Figure 4: The uni�
ation transformation.3.4 Uni�
ation TransformationThe uni�
ation transformation moves a unique 
opy of identi
al operations from a set of nodesfN0; N1; N2; : : :g to a prede
essor node M . This is done only when no dependen
y exists betweenM and the 
omponent being moved and when the edges (M;Ni) exist for all nodes in the set.Paths passing through Ni but not through M must not be a�e
ted|as usual, splitting and
opying is used. An illustration is given in Figure 4.3.5 Inverse TransformationsInverses of the 
ore transformations 
an be de�ned. The formulation is straightforward for thedelete, move-op, and uni�
ation transformations. The 
onditions under whi
h a 
onditional 
anbe moved from a nodeN to a su

essor nodeM are somewhat more 
omplex and are not presentedin this paper.The inverse transformations are used to undo previous transformations. This is sometimesdesirable be
ause an operation i 
an \per
olate" to a node where it prevents another operationj from moving. If it would be more advantageous to move j rather than i, then i must be movedby a sequen
e of inverse transformations to a point where it no longer blo
ks j.4 Beyond the Core TransformationsThe 
ore transformations are very low-level. Even for small examples the number of transforma-tions required to 
ompa
t the graph of a mi
roprogram is 
onsiderable; it is simply too tedious for8



a user to issue them one at a time. What is required, therefore, is a set of higher-level transforma-tions. These transformations are partitioned into two levels: s
heduling transformations built onthe 
ore transformations that a
tually 
ompa
t the program graph and enabling transformationswhi
h rearrange the program graph to expose parallelism.4.1 S
heduling TransformationsA simple transformation that we have implemented in the environment, 
alled move-path, takesas its arguments a sour
e node A, an operation i, and a destination node B. Move-path thengenerates a sequen
e of 
ore transformations that will move operation i from A to B if semanti

orre
tness is not violated. If a potential data dependen
y violation is dis
overed, the operationis moved as far as possible and the 
on
i
t is reported to the user.A more powerful transformation is migrate. Migrate moves an operation as far \up" in thegraph as dependen
ies allow. This in
ludes moving any 
opies of the operation that are 
reatedin the pro
ess. Uni�
ations are performed whenever possible. Opportunities for uni�
ation arisewhen an operation is 
opied on di�erent paths{perhaps several times{and then at least some of the
opies 
an be moved to the point where the paths rejoin. For example, assume that statementsi and j in Figure 5 
an move on all paths above node A. It would be unfortunate to miss auni�
ation here. In the 
ase of statement i, unne
essary 
opies of the operation would be left inthe program, wasting spa
e and 
onsuming resour
es in the �nal 
ode. Operation j 
annot moveinto nodes A and C unless uni�
ations are performed be
ause of data dependen
y 
on
i
ts withother 
opies of j.As an example we develop the migrate transformation in detail. Let i denote the operationwe wish to move and let C(i,t) denote the set of all 
opies of i in the program graph at time t.We de�ne the fun
tion node(j) to be the node 
ontaining operation j. Finally, we assume for themoment that the program graph is a
y
li
.It is easy to show that any algorithm whi
h satis�es the following two 
onditions will performall possible uni�
ations:1. Let t be the time at whi
h the algorithm terminates. Then there is no j in C(i,t) su
h thatj 
an be moved from node(j) to any prede
essor of node(j).2. Let rea
h(Y ) denote the graph of all nodes rea
hable from a node Y . If j is moved from9



Figure 5: A uni�
ation example.
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Figure 6: An algorithm for migrate.node(j) to some prede
essor X of node(j) at time t and X has multiple su

essors, thenthe operation is a uni�
ation and there is no k in C(i,t) su
h that node(k) is in rea
h(X)and k 
an move to some prede
essor of node(k) in rea
h(X).The restri
tion of migrate to a
y
li
 graphs is not a

eptable. Fortunately, there is a simpleextension for redu
ible graphs. Loops pose a problem be
ause operations inside a loop body
annot be removed from the loop by the 
ore transformations alone; whenever an operation ismoved outside of the loop the node will be 
opied on the ba
k edge. To over
ome this, we 
ombinemigrate with standard te
hniques to remove loop invariant 
ode. The modi�
ations to migrateare (with some spe
ial 
ases omitted for 
larity):1. An operation whi
h is initially in a loop L 
annot move past the entry node of L.2. Let i be an operation whi
h is initially outside of a loop L and during the 
ourse of thealgorithm moves to a node X from whi
h it 
an enter L. If i is loop invariant with respe
tto L it is removed from X (splitting and 
opying X if ne
essary to preserve other paths)and inserted immediately before the entry point to L. If i is not loop invariant, then it isnot permitted to move into L.The �rst 
ondition prevents operations in a loop body from being moved inde�nitely aroundthe ba
k edge of the loop. We assume, without loss of generality, that all su
h operations 
annot be11



moved outside of the innermost loop 
ontaining them. (In our system, loop invariant 
ode removalis used as a pre-pro
essing step.) Condition two prevents operations from moving into loops fromwhi
h they 
annot subsequently be removed. This avoids lengthening loop bodies unne
essarily.Figure 6 gives a high-level des
ription of migrate for a
y
li
 graphs. Be
ause 
onditionals arenever uni�ed, a mu
h simpli�ed version of migrate 
an be written for 
onditional jumps.We have also developed transformations that 
ompa
t the 
omplete program graph. The needfor su
h transformations is 
lear; it is unlikely that a user will wish or even need to manuallyapply individual transformations to the entire program. Instead, 
riti
al se
tions of 
ode 
an beoptimized or transformed to expose parallelism, after whi
h global heuristi
s 
an be applied toobtain a good s
hedule.4.1.1 Compa
t-blo
ksCompa
t-blo
ks is a global heuristi
 whi
h performs as mu
h 
ompa
tion as possible within ea
hsingle-entry single-exit blo
k of 
ode. No uni�
ations are performed and no instru
tions are
opied. The speedup a
hievable by exploiting parallelism within basi
 blo
ks is small [NF84℄.Compa
t-blo
ks is intended for use primarily as a �rst step in the 
ompa
tion pro
ess; its appli-
ation 
onsiderably redu
es the number of nodes in the graph without moving any operation toa point where it blo
ks{due to a data dependen
y{an operation that 
ould otherwise move.4.1.2 Compa
t-pathCompa
t-path is a global heuristi
 whi
h moves operations on the \most-important" path ina program graph. We assume that for ea
h 
onditional j we have two real numbers true(j)and false(j) representing the probabilities that the true and false bran
hes of j will be followedrespe
tively. In many 
ases su
h analysis 
an be performed automati
ally with good results[NF84℄. We 
an extend this idea to a DAG of 
onditionals, where the probability that a 
ertainpath will be sele
ted through the DAG is the produ
t of the probabilities of the edges on the path.In the algorithm for 
ompa
t-path (see Figure 7) p(X,Y ) denotes the probability that programexe
ution 
ontinues with node Y after the exe
ution of node X.The user has the option of sele
ting the path for 
ompa
t-path. For a typi
al program, theuser �rst expli
itly sele
ts the 
riti
al paths through the 
ode for optimization. The system thensele
ts and 
ompa
ts less important paths automati
ally.12



Figure 7: An algorithm for 
ompa
t-path.

Figure 8: The operation 
annot move unless a uni�
ation is performed.Compa
t-path 
an be viewed as a generalization of the te
hnique of tra
e-s
heduling developedin the ELI proje
t at Yale [Fis81℄. Tra
e-s
heduling also sele
ts the \important" path (or \tra
e")through the program and 
ompa
ts it. However, tra
e-s
heduling does not perform uni�
ationsand does not allow tra
es to be merged or altered in any way after 
ompa
tion. Figure 8 providesan example for whi
h 
ompa
ting a single tra
e without uni�
ation results in no improvement.A further advantage of 
ompa
t-path is the tenden
y of uni�
ations to minimize 
ode explosion.Tra
e-s
heduling introdu
es 
ode at the entry and exit points of the tra
e to preserve semanti
s.When subsequent tra
es are sele
ted for 
ompa
tion, this �x-up 
ode 
annot move ba
k onto theoriginal tra
e. With 
ompa
t-path there is some 
han
e that 
opied instru
tions 
an subsequentlybe uni�ed, thus limiting the size of the �nal 
ode. This is a major advantage in mi
ro
ode
ompa
tion when the size of the available mi
rostore is small.13



4.2 Enabling TransformationsThe Enabling level provides transformations of the program graph that rely on global informationand therefore 
annot be a

omplished by the 
ore transformations. The purpose of these trans-formations is to expose parallelism for exploitation by the 
ore transformations. A well-knownexample of an enabling transformation is variable renaming|the judi
ious 
hoi
e of new variablenames 
an often remove dependen
ies between statements.The 
y
le-breaking transformation guides the appli
ation of the 
ore transformations to loops.Intuitively, 
y
le-breaking \breaks" a loop by pi
king an edge e a
ross whi
h no operation maymove. The loop is shifted to make e the ba
k edge. This requires introdu
ing �x-up 
odeimmediately before the loop. The point where a 
y
le is broken is 
hosen to minimize the lengthsof dependen
y 
hains in the resulting loop. The loop body 
an then be 
ompa
ted as a straight-line pie
e of 
ode by the 
ore transformations.The primary loop optimization tool used in the environment is loop quantization, a te
hniquefor unrolling nested loops to expose parallelism a
ross iterations [Ni
85, AN87℄. This aids 
om-pa
tion be
ause the parallelism may not be found in the innermost loop. The te
hniques of theprevious se
tion 
an then be used to 
ompa
t the resulting loop. Tree height redu
tion te
hniques[Ku
76℄ are very useful in 
onjun
tion with quantization. Quantization applies to non-linear aswell as linear re
urren
es; in fa
t, quantization is limited only by the degree to whi
h indire
treferen
es 
an be disambiguated.The idea of loop quantization is to unwind a few iterations of all nested loops; the unwindings
hosen should minimize the lengths of dependen
y 
hains. However, the order of data-dependentstatements must not be altered. To quantize n nested loops with loop indi
es I1; I2; : : : ; In, loop iis unwound ki times by dupli
ating the loop body ki times. In the �rst dupli
ation of the originalbody the index Ii is un
hanged; in the se
ond ea
h o

urren
e of Ii is repla
ed with Ii + 1, andso on, up to Ii � ki � 1. This pro
edure is repeated for ea
h nested loop pro
eeding from theinnermost loop to the outermost loop. This is equivalent to unwinding all the nested loops fullywhen the upper bounds are k1; : : : ; kn.When multiple loops are unwound, an iteration of the loop exe
utes an n�dimensional box Bof size k1�k2� : : :�kn. All statements in B are exe
uted before the box is shifted by a \quantumjump" along any of the dimensions. The movement along the n dimensions, while quantized, is14



in normal loop order. The 
onditions under whi
h a quantization preserves 
orre
tness 
an befound in [Ni
85℄.4.3 General SupportThe General Support level �nds and re
ords data dependen
ies. Memory disambiguation andenhan
ed 
ow analysis methods in
rease the a

ura
y of data dependen
ies and permit more
ode motions [Ni
84a, Har77℄. Traditional optimizations, su
h as dead 
ode removal, are alsoused at this level.A good example of a general support transformation is dead path elimination. Moving a
onditional-jump 
an produ
e a program graph with some paths that 
an never be taken. InFigure 9, moving 
onditional i from B to A results in the 
opy of i in A dominating the 
opies ofi in Bt and Bf . Be
ause the truth value of i's boolean 
ondition 
annot 
hange between A andB, the 
opies of i in Bt and Bf are redundant and 
an be deleted from these nodes. Not all 
aseswhere dead paths are 
reated 
an be viewed so lo
ally; it is easy to 
onstru
t examples in whi
hthe movement of a 
onditional makes another 
onditional in a distant node redundant.The te
hnique we use for dete
ting redundant 
onditionals is essentially an appli
ation ofrange analysis [Har77℄, a type of data-
ow analysis. A set FC-REACHING is asso
iated with ea
hnode (FC stands for 
ow-of-
ontrol). Using standard data-
ow terminology, FC-REACHING(X)
ontains pairs (i,T) and (j,F), where (i,T) (resp. (j,F)) rea
hes node X if ea
h path to Xevaluates a 
onditional i (j), the result is true (false), and no subsequent node on the path beforeX de�nes any variable read by i (j). The data-
ow equations for FC-REACHING are similar tothe standard equations for 
opy propagation.The dete
tion and elimination of dead paths is done as follows. Assume a 
onditional i ismoved from node N to node M . If (i,T) or (i,F) rea
hes M , then i is deleted from M and theappropriate edge dis
arded. Otherwise, if there is any node X rea
hable fromM su
h that i is anoperation in X and (i,T) or (i,F) rea
hes X, then i may be deleted from X. The same pro
edureis also applied to the 
opy of N (if there is one). Note that eliminating an edge may leave a nodein the graph (other than the start node) with no prede
essors. This node, and possibly some ofits su

essors, is unrea
hable and may be deleted.
15



Figure 9: Removing a redundant test.

16



4.4 The Pro�lerThe system in
ludes a pro�ler to provide assistan
e in the optimization pro
ess. The pro�lerserves several purposes. The �rst is to estimate the exe
ution time of the program, as well asthe exe
ution time and exe
ution frequen
y of the separate parts of the program. The se
ondfun
tion of the pro�ler is to summarize dependen
y information in 
riti
al regions of the 
ode.Eventually, the pro�ler will provide a similar analysis of the program's resour
e utilization.The pro�ler 
an be used in two modes. In the �rst mode, the program is run on \typi
al"data; statisti
s su
h as the frequen
y of exe
ution of blo
ks of 
ode, bran
hing probabilities of
onditional jumps, and frequen
y of data dependen
ies between indire
t memory referen
es aregathered automati
ally. This information is available to the user as attributes of the nodes ofthe program graph. The pro�ler 
an summarize the statisti
s in various ways, su
h as identi-fying 
riti
al dependen
ies and nodes of the graph that are most frequently exe
uted. Globaltransformations (su
h as 
ompa
t-path) make use of the pro�ler information to guide 
ompa
tion.If exploratory runs are unrepresentative or too expensive to perform without parallelization,then an intera
tive mode 
an be used. In this mode, the system uses mi
ro-analysis [Coh82℄to estimate the time 
omplexity of the program and to identify \hot-spots." The pro�ler alsouses the disambiguation me
hanism of the General Support layer to identify 
riti
al dependen
y
hains. As the user or automati
 transformations improve the 
ode the pro�ler must dynami
allyupdate its estimates. This is a non-trivial problem: a

urate estimates require knowledge of thetarget ma
hine and its in
uen
e on the running time of the 
ompa
ted 
ode. A simple version ofthe pro�ler is 
urrently operational in our system.5 Current WorkThe transformations des
ribed above expose parallelism and provide a partial order on the issueof operations. The transformed graph 
an be viewed as the 
ode for an idealized ma
hine inwhi
h no resour
e 
on
i
ts ever o

ur. Obviously this ideal is unrealizable and 
an only serveas a bound on the e�e
tiveness of the transformations. Exe
uting the resulting 
ode on realisti
ar
hite
tures requires 
onversion of the ideal s
hedule to a s
hedule that re
ognizes resour
elimitations. Unfortunately, even for simple ar
hite
tural models 
omputing an optimal s
heduleis NP-hard. 17



We are 
urrently implementing the Mapping Layer to 
ope with this problem. At the heartof this level is a simpli�ed tabular des
ription of the target ma
hine. It 
an be easily modi�ed bythe user to mat
h a parti
ular mi
roengine ar
hite
ture. In the next stage of our work we plan touse more a

urate ma
hine des
riptions, drawing on the work of [DWH86, Dam85℄. We will alsoimprove the retargetability of the environment and extend the environment's ability to integrateand exploit realisti
 ma
hine 
hara
teristi
s.Two major extensions of the environment are 
urrently being in
luded in the Mapping Layer:the addition of resour
e 
onstraints and the elimination of the assumption that all operationsrequire one 
y
le to exe
ute. The term resour
es in
ludes everything that is required to exe
utean operation: bus lines, registers, fun
tional units, et
. An operation is not allowed to move intoa node if the node would then require more resour
es than the ma
hine has available.Dealing with variable length operations requires 
hanges in the de�nitions of the 
ore trans-formations. Besides the 
onstraints already stated, now an operation may move only when thereare no 
on
i
ts with operations it overlaps in time.Representing variable length (pipelined) operations poses a number of design problems. Ifea
h node in the graph represents one 
lo
k 
y
le and the stages of the instru
tions are storedexpli
itly in the graph, then the size of the graph in
reases substantially. This is espe
iallytrue before 
ompa
tion, when the sequential 
ode must be padded with many empty nodes toensure that operations do not overlap. Furthermore, if at some point an operation extends past a
onditional-jump the stages of the operation must be dupli
ated on both of the 
onditional's exitpaths. Similarly, moving an operation above a 
onditional requires dupli
ating the stages on bothpaths. We 
hoose to store operations in the graph as before and only expand operations into stageswhen it is ne
essary to 
he
k the 
orre
tness of a transformation. The only other modi�
ation isthat edges are assigned lengths to represent the number of 
y
les between instru
tions.An an example of a move-op of a multi{
y
le operation is given in Figure 10. For simpli
ity,all nodes in the �gure represent a single 
y
le of exe
ution, although the program graph is notstored in this way.The following is an algorithm to 
he
k the 
orre
tness of moving an operation i into a nodeM when operations are pipelined. To simplify the presentation, we assume that all edge lengthsare one; an extension of the algorithm works for the 
ase where edge lengths are arbitrary. De�nethe distan
e of a path between two nodes to be the sum of the edge lengths on the path. Let18



Figure 10: A pipelining example.length(i) denote the time (in 
y
les) required to exe
ute operation i. Let max be the length ofthe longest possible instru
tion. A stage of operation i is said to be a
tive on an edge (P; P 0) ifthe stage is exe
uted as part of the transition from node P to node P 0.Consider operation i in Figure 10. To ensure that the transformation is legal it is suÆ
ientto ensure that no dependen
y is violated for any operation j that potentially overlaps i duringexe
ution. Beginning at node M , follow all paths from M to a distan
e of length(i). Along ea
hedge on ea
h path, the a
tive stages of ea
h operation j exe
uting at that point must be 
he
kedagainst the a
tive stage of i. If a 
on
i
t is dete
ted the transformation fails. The same pro
eduremust the be repeated on all paths leading to M beginning at a distan
e of max before M .The Mapping Layer will be transparent; the user will still deal with the high-level represen-19



tation of the program and may rely on the system's heuristi
s (e.g., list s
heduling [Fis81℄) toperform the mapping of the program to hardware. However, the user may wish to 
ontrol re-sour
e allo
ation and operation pipelining dire
tly. To allow for this operations 
an be expandedto display operation stages in the program graph.In
luding resour
e 
onstraints and variable length operations greatly 
ompli
ates the 
ondi-tions under whi
h a transformation is 
orre
t. Fortunately, these 
he
ks 
an be done automati
allyand eÆ
iently. Without su
h automati
 support, 
ompa
tion is at best a tedious and error-pronepro
ess. The use of an environment to assist in the parallelization pro
ess will greatly redu
e thetime and e�ort required to optimize a program and lead to better 
ode.6 ImplementationThe primary 
onsideration in implementing the system was that the user's view should be ashigh-level and abstra
t as possible. In intera
ting with the system the user deals only with anabstra
t model of 
omputation [Ni
84b℄ that provides a

ess to �ne-grained parallelism withoutthe burden of ar
hite
tural, semanti
s-preservation, and syn
hronization details.The environment a
tually resides on two ma
hines, a Vax 11/780 and a Xerox Dandelionworkstation. The 
ode is written in Franz Lisp (on the Vax) and Interlisp (on the Dandelion).Lisp was sele
ted for its robust environment of system fun
tions and debugging tools. All trans-formations are exe
uted on the Vax. The workstation serves to display the program graph andpro�ler information and to a

ept user input.The system was pla
ed on two ma
hines to take advantage of the graphi
s 
apabilities ofthe Dandelion. Nearly all user 
ommands are issued with the Dandelion's mouse. A typi
alsequen
e is to 
li
k on an operation, sele
t \Move" from a menu of options, and then 
li
k ona destination node. The environment then tries to move the operation to the destination nodeusing the move-path transformation.The high-level sour
e language 
urrently used by the environment is Tinylisp, a Fortran-likelanguage with lisp syntax. The ma
hine-level language is 
alled naddr [FERN84℄. Naddr 
an beeasily extended to support typi
al mi
ro
ode operations. The 
hoi
e of language is of no 
on
ernto the environment proper; the environment is only 
on
erned with dependen
ies and 
ow of
ontrol. The model of 
omputation [Ni
84b℄ is ri
h enough to allow typi
al mi
ro
ode 
onstru
ts20



(i.e., arbitrary multi-way jumps, any number of write/read variables in an instru
tion, et
.).Tinylisp and naddr were 
hosen to ease implementation and be
ause of our previous experien
ewith them. This has allowed us to 
on
entrate on the problems of interest|the environmentissues and transformations. As our work progresses we plan to 
onvert to other languages bettersuited for mi
ro
ode programming [DS78℄.We are 
urrently porting the system to Common Lisp on a Symboli
s lisp ma
hine. CommonLisp was 
hosen to make the new system as easily portable as possible. We believe the environmentand Per
olation S
heduling should serve both as a mi
ro
ode development tool and as a resear
hvehi
le for investigating new automati
 
ode transformations. Therefore, experimentation withthe system beyond the designers' group is desirable and portability for wide distribution is a main
on
ern.7 Early Experimental ResultsOur environment is operational and has been used to generate 
ode for several test programs.Some of the results are presented in Table 1. The �gures in the table were obtained with 
om-pletely automati
 
ompa
tion. The programs in our test suite were 
hosen for several reasons.While small, they perform important fun
tions that are likely 
andidates for mi
ro
oding, at leastfor ma
hines geared towards numeri
al programming. Of 
ourse, due to their importan
e mu
he�ort has been expended on developing good algorithms and hand-
oding the resulting mi
ro-programs for eÆ
ient exe
ution. The results are not meant to impress by absolute performan
e,parti
ularly sin
e we intentionally 
hose to use as a starting point standard algorithms, whi
h donot yield mu
h parallelism. The examples presented here are meant to demonstrate the viabilityof our approa
h under su
h adverse 
onditions as low inherent parallelism (ln, sqrt, prime, �t)and unpredi
table 
ow of 
ontrol (tr
l, sort, ll24). Results for matmul have been in
luded toshow what 
an be a
hieved when the 
ode has a large amount of exploitable parallelism. Evenin the automati
 mode our system obtains speedups at least as good and sometimes better thanother approa
hes.We de�ne the speedup (%) a
hieved by our environment as the ratio:Speedup = (exe
uted useful sequential operationsexe
uted parallel instru
tions � 1) � 100:Useful operations are de�ned as all arithmeti
, logi
al, 
ow-of-
ontrol, and indexed load/store21



program des
ription unwinding speedup %dotprod inner produ
t 1 100dotprod inner produ
t 2 200dotprod inner produ
t 4 398�t fast fourier transform 1 204�t fast fourier transform 2 258ll24 ve
tor minimum 1 60ll24 ve
tor minimum 3 292ln natural log 1 98ln natural log 4 208matmul matrix multiply 3 268matmul quantized matrix multiply 3 x 3 1004prime prime sieve 1 62prime prime sieve 2 137sort insertion sort 2 170sqrt square root 1 86sqrt square root 2 86tr
l transitive 
losure 1 92tr
l transitive 
losure 3 423Table 1: Some results.
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operations. They do not in
lude register-to-register moves and dire
t loads and stores. Thisis very generous to the sequential version of the 
ode and is essentially equivalent to assumingideal global register allo
ation and perfe
t pipelining of moves and dire
t stores/loads. In theparallel version all exe
uted mi
roinstru
tions are 
ounted. Thus a load/store or move will bedone \for free" only if it is a
tually overlapped with some other useful operation in the 
ompa
ted
ode. The numbers in Table 1 re
e
t this 
onservative model. If register-to-register moves anddire
t loads/stores are 
ounted as exe
uted operations in the sequential model, the speedupsobtained by our system are two to four times larger on average than those presented in the table.We believe that the dynami
 measurement of speedup des
ribed above is more obje
tivethan the traditional stati
 measure whi
h 
ompares the size of the original and 
ompa
ted 
ode.Typi
ally, whenever the 
ode 
ontains any 
onditional-jumps other than the exit-tests for loopsa stati
 measure yields better speedups (by as mu
h as a fa
tor of two) than we report here.The small size of the 
ode, 
ombined with the above 
onstraints, make the results in Table 1an empiri
al lower-bound on the performan
e we 
an expe
t from our environment. In this lightwe 
onsider these results to be extremely en
ouraging. Indeed, even for apparently sequential
ode the in
rease in speed 
an be quite dramati
. For example, tr
l's original (already good)speedup of 92% more than quadrupled with a small unwinding of the innermost loop. On averagewe a
hieved 450% speedup for the largest unwindings with 
ompletely automati
 
ompa
tion.Further intera
tive 
ompa
tion 
an improve the automati
 results.The experiments we dis
uss here were primarily designed to test the e�e
tiveness of our trans-formations and their range of appli
ability. As su
h we did not pla
e restri
tions on the numberof resour
es used in any horizontal instru
tion. Nevertheless, we are en
ouraged by the relativelyuniform use of resour
es in most of the 
ompa
ted programs. O

asionally large numbers ofoperations per instru
tion are generated at the beginning of the 
ompa
ted 
ode, but these 
anusually be spread out in later instru
tions either automati
ally or under user guidan
e. Su
h
hanges do not seem to a�e
t the 
ompa
tion and speedups signi�
antly. The whole pro
essof resour
e management{either automati
 or user 
ontrolled through transformations des
ribedpreviously{may a
tually in
rease the speedups reported here by allowing further overlap of stagesof operations from di�erent instru
tions. Further experimentation is ne
essary before any 
on-
lusions 
an be rea
hed on the positive or negative impa
t of su
h transformations on speedups.Inspe
tion of the 
ode reveals that further speedups will be possible in almost every program23



Figure 11: Sample original program.as soon as the 
onversion to Common Lisp is 
omplete and we 
an take advantage of the largerspa
e and speed available to perform larger unwindings, 
oupled with the loop-quantization and
y
le-breaking te
hniques des
ribed previously. While these te
hniques are implemented in oursystem, the limitations of our 
urrent 
on�guration do not allow us to signi�
antly exploit theirpotential.8 Sample Use of the EnvironmentThis se
tion illustrates the transformations a
hievable in our environment. The transformationsinvolved are relatively basi
; their appli
ation under user 
ontrol serves to illustrate a possiblemode of intera
tion with the environment and roughly 
orresponds to its 
apabilities to date. Adetailed des
ription of the pro
ess would require a more thorough dis
ussion of the te
hniquesthan is possible in the 
ontext of this paper. For simpli
ity, we assume unit time exe
ution forall operations and no resour
e 
on
i
ts.Consider the sample program in Figure 11 (Livermore Loop 24). Figure 12 shows the result ofunwinding the loop three times. Several standard optimizations (e.g., renaming of index variables,
onstant-folding) have also been performed by the system.At this point, the user may spe
ify where the loop is to be broken (
y
le-breaking transfor-24



Figure 12: Intermediate 
ode.
25



.

Figure 13: Final transformed 
ode.mation). In this example, the user ele
ts to leave the loop body as it is. After one appli
ationof 
ompa
t-path most of the 
ompa
tion has been performed. The path sele
ted 
onsists of alltrue bran
hes in the loop body. Figure 13 shows the result after dead-
ode removal and a fewinvo
ations of migrate to bun
h 
onditional-jumps together.We have omitted many details in this example. For example, migrate uses several simplealgebrai
 enabling transformations; in operation 10, R7 was substituted for R9 as a result of op-eration 10 moving above operation 6. Similarly, 
ow-analysis and peephole optimizations removeredundant memory fet
hes, while dead-
ode removal eliminates redundant assignments to m.Automati
 disambiguation of indire
t referen
es is su

essful in removing spurious dependen
iesin this example; otherwise, some of the motions involving indire
t referen
es would appear illegalto the system.While the transformations were 
ontrolled at a relatively low level, the user did not dealwith a
tual hardware. The 
ode in Figure 13 is an \abstra
t parallel" s
hedule. The a
tualmapping to hardware is done by the system. The user's 
hoi
e of transformations 
an be aided26



by the system's ability to take ma
hine restri
tions into a

ount (e.g., instru
tion times, resour
eavailability). Thus the s
hedule obtained 
ould map well onto the hardware without the userbeing intimately familiar with the ar
hite
ture. As our work progresses, we will integrate higherlevel transformations into the system. For example, the user will be able to spe
ify 
ode motionsin terms of the high-level language statements and 
onstru
ts.The speedup for this example is 300% assuming the hardware supports a multiway jumpme
hanism, or 130% otherwise. If hardware restri
tions permitted, this 
ould be further in
reasedby additional unwinding and 
ompa
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