1-48 ()
1)
© Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Optimal Representations of Polymorphic Types
with Subtyping”

ALEXANDER AIKEN aiken@cs.berkeley.edu
EECS Department, University of California, Berkeley, Berkeley, CA 94720-1776

ED WIMMERS wimmers@almaden.ibm.com
IBM Almaden Research Center, 650 Harry Rd., San Jose, CA 95120-6099

JENS PALSBERG palsberg@cs.purdue.edu
Department of Computer Science, Purdue University, West lafayette, IN 47907

Editor: Carolyn Talcott

Abstract. Many type inference and program analysis systems include notions of subtyping and
parametric polymorphism. When used together, these two features induce equivalences that allow
types to be simplified by eliminating quantified variables. Eliminating variables both improves the
readability of types and the performance of algorithms whose complexity depends on the number
of type variables. We present an algorithm for simplifying quantified types in the presence of
subtyping and prove it is sound and complete for non-recursive and recursive types. We also show
that an extension of the algorithm is sound but not complete for a type language with intersection
and union types, as well as for a language of constrained types.

Keywords: types, polymorphism, subtyping

1. Introduction

Contemporary type systems include a wide array of features, of which two of the
most important are subtyping and parametric polymorphism. These two features are
independently useful. Subtyping expresses relationships between types of the form
“type 71 is less than type 72”. Such relationships are useful, for example, in object-
oriented type systems and in program analysis algorithms where a greatest (or
least) element is required. Parametric polymorphism allows a parameterized type
inferred for a program fragment to take on a different instance in every context
where it is used. This feature has the advantage that the same program can be
used at many different types.

A number of type systems have been proposed that combine subtyping and poly-
morphism, among other features. The intended purposes of these systems varies.
A few examples are: studies of type systems themselves [5, 7, 2], proposals for type
systems for object-oriented languages [8], and program analysis systems used in
program optimization [3, 10]. In short, the combination of subtyping and polymor-
phism is useful, with a wide range of applications.

When taken together, subtyping and polymorphism induce equivalences on types
that can be exploited to simplify the representation of types. Our main technical

* This work was supported by an NSF NYI award, CCR-9457812

result is that, in a simple type language with a least type L and greatest type
T, for any type o there is another type o' that is equivalent to o and ¢’ has the
minimum number of quantified type variables. Thus, type simplification eliminates
quantified variables wherever possible. Eliminating variables is desirable for three
reasons. First, many type inference algorithms have computational complexity that
is sensitive (both theoretically and practically) to the number of type variables.
Second, eliminating variables makes types more readable. Third, simplification
makes properties of types manifest that are otherwise implicit; in at least one case
that we know of, these “hidden” properties are exactly the information needed to
justify compiler optimizations based on type information [3].

The basic idea behind variable elimination is best illustrated with an example.
A few definitions are needed first. Consider a simple type language defined by the
following grammar:

Tu=a|T| L | =

In this grammar, « is a type variable. Following standard practice, we use «, 3, . ..
for type variables and 7,7, 71,72, ... for types. The subtyping relation is a partial
order < on types, which is the least relation satisfying

T

T

T

NTMATR=STy & T 2T 3T — T

N
IA TA TA

Quantified types are given by the grammar:
ou=1|Ya.o

For the moment, we rely on the reader’s intuition about the meaning of quantified
types. A formal semantics of quantified types is presented in Section 2.

Consider the type Va.V8.a — 8. Any function with this type takes an input of
an arbitrary type a and produces an output of any (possibly distinct) arbitrary
type B. What functions have this type? The output S must be included in all
possible types; there is only one such type L. The input «, however, must include
all possible types; there is only one such type T. Thus, one might suspect that
this type is equivalent to T —_L. The only function with this type is the one that
diverges for all possible inputs.

It turns out that, in fact, Va.VB.a — 8 = T — L in the standard ideal model
of types [13]. As argued above, the type with fewer variables is better for human
readability, the speed of type inference, and for the automatic exploitation of type
information by a compiler. We briefly illustrate these three claims.

The reasoning required to discover that Va.V3.cc — B represents an everywhere-
divergent function is non-trivial. There is a published account illustrating how
types inferred from ML programs (which have polymorphism but no subtyping)
can be used to detect non-terminating functions exactly as above [12]. The previ-
ous example is the simplest one possible; the problem of understanding types only

ay > ag 2 a1 X a5 — Qg
aq j Qg — O3
ap R ay X oas > og
1 < a3 X T
Vaj....Vag.ag / az X 2 a5 Qg
ag X a5 Xy
1L 2 as 2 a3
ag v a5 X ar 2o
L a3 2 ag X T

Figure 1. A quantified type of eight variables qualified by constraints.

increases with the size of the type and expressiveness of the type language. The
following example is taken from the system of [2], a subtype inference system with
polymorphism. In typing a term, the inference algorithm in this system generates
a system of subtyping constraints that must be satisfied. The solution of the con-
straints gives the desired type. Constraints are generated as follows: If f has type
a — f and z has type 7, then for an application fz to be well-typed it must be
the case that v < a. Figure 1 shows the type generated for the divergent lambda
term (Az.z x)(Az.xx). The type has the form

Val,...,ag.(aG/S)

Informally, the meaning of this type is ag for any assignment to the variables
ag,...,ag that simultaneously satisfies all the constraints in S.

This type is equal to L, a fact proven by our algorithm extended to handle con-
straints. The type L is sound, since the term is divergent. This example illustrates
both improved readability and the possibility of more efficient inference. To use
the polymorphic type Vay,...,a,.(7/S), the variables must be instantiated and
the constraints duplicated for each usage context. Eliminating variables simplifies
the representation, making this very expensive aspect of type inference less costly.

Finally, simplifying types can improve not only the speed but the quality of
program analyses. For example, the soft typing system of [3] reduces the problem
of identifying where runtime type checks are unneeded in a program to testing
whether certain type variables can be replaced by L in a quantified type. This is
exactly the task performed by elimination of variables in quantified types.

Our main contribution is a variable elimination algorithm that is sound and com-
plete (i.e., eliminates as many variables as possible) for the simple type language
defined above, as well as for a type language with recursive types. We extend the
algorithm to type languages with intersection and union types and to type lan-
guages with subsidiary constraints. For these latter two cases, the techniques we
present are sound but not complete. Combining the completeness results for the
simpler languages with examples illustrating the incompleteness of the algorithm in
the more expressive settings, we shed some light on the sources of incompleteness.

The various algorithms are simple and efficient. Let n be the print size of the type
and m be the number of variables. Then the time complexity is O(mn) for the cases
of simple and recursive types and O(m?n) for the cases of systems with intersection,
union, or constrained types. The algorithm for simplifying quantified types with
subsidiary constraints has been in use since 1993, but with the exception of code
documentation little has been written previously on the subject. The algorithm
has been implemented and used in Illyrial, the systems reported in [2], a large
scale program analysis system for the functional language FL [3], and a general-
purpose constraint-based program analysis system [9]. These last two applications
are by far the largest and best engineered. The quality of these systems depends
on eliminating variables wherever possible.

Other recent systems based on constrained types have also pointed out the im-
portance of variable elimination. In [8], Eifrig, Smith, and Trifonov describe a
variable elimination method similar to, but not identical to, the one in Section 7.
Pottier gives a method that can eliminate redundant variables from constraint sets
[16]. Both of these methods are heuristic; i.e., they are sound but not complete.
Constraint simplification is also a component of the systems described in [11, 17].
It is not claimed that either system performs complete constraint simplification.

Our focus in this paper is quite different. The question of variable elimination
arises in any type system with polymorphism and subtyping, not just in systems
with constrained types. Our purpose is to explore the basic structure of this problem
in the simplest settings and to understand what makes the problem harder in the
case of constrained types. To the best of our knowledge, we present the first sound
and complete algorithms for variable elimination in any type system.

Rather than work in a specific semantic domain, we state axioms that a semantic
domain must satisfy for our techniques to apply (Section 2). Section 3 gives the
syntax for type expressions as well as their interpretation in the semantic domain.

Section 4 proves the results for the case of simple type expressions, which are
non-recursive types. For quantified simple types, variable elimination produces
an equivalent type with the minimum number of quantified variables. Further-
more, all equivalent types with the minimum number of quantified variables are
a-equivalent—they are identical up to the names and order of quantified variables.

The intuition behind the variable elimination procedure is easy to convey. Type
variables may be classed as monotonic (positive) or anti-monotonic (negative) based
on their syntactic position in a type. Intuitively, the main lemma shows that
quantified variables that are solely monotonic can be eliminated in favor of L;
quantified variables that are solely anti-monotonic can be eliminated in favor of
T. Section 4.2 proves that the strategy of eliminating either monotonic or anti-
monotonic variables is complete for the simple type language. Variables that are
both monotonic and anti-monotonic cannot be eliminated.

Section 5 extends the basic variable elimination algorithm to a type language
with recursive types. The extended algorithm is again both sound and complete,
but it is no longer the case that all equivalent types with the minimum number of
quantified variables are a-equivalent.

Section 6 extends the algorithm to intersection and union types. This language is
the first extension for which the techniques are sound but not complete. Examples
are given showing sources of incompleteness. Finally, Section 7 extends the algo-
rithm to a type language with subsidiary constraints, as in Figure 1. This is the
most general type language we consider. Section 8 concludes with a few remarks
on related work.

2. Semantic Domains

Rather than work with a particular semantic domain, we axiomatize the properties
needed to prove the corresponding theorems about eliminating quantified variables.

Definition 1. A semantic domain D = (Dy, Dy, <X, M) satisfies the following proper-
ties:

1. Dy C D or, more generally, there is monomorphism from Dy to D;.
a partial order on D; denoted by <.
a minimal element | € Dy such that 1 < x for all z € D;.

a maximal element T € Dy such that x < T for all z € D;.

R B B

a binary operation — on Dy such that if y; < z; and z2 <y, then ©; — 2 <
Y1 — Y2.
Furthermore, L — T # T and T — L # L.

6. a greatest lower bound operation M on D; such that if D C Dy, then MD is the
greatest lower bound (or glb) of D.

In addition, the semantic domain D may satisfy some (or all) of the following
properties:

standard function types
If 1 = 2 < y1 — yo2, then y1 < 7 and x5 < yo.

standard glb types
If So € Dy and z1 € Dy, then MSy <X xy iff dxg € Sy s.t. g < x1.

Building the domain from two sets, as in Definition 1, permits more generality
and is an example of a “predicative domain” ([14]). This structure parallels the
two distinct operations provided in the type language: function space t; — t» and
universal quantification V... (see Section 3). These operations impose different re-
quirements on the semantic domain. In particular, since the V quantifier introduces
a glb operation (and hence produces a value in D;) and the — operation can be
performed only on elements of Dy, the V quantifier cannot appear inside of a — op-
eration. If the semantic domain has the property that Dy = D;, then it supports V
quantifiers inside of the — operation. It is worth noting that separating Dy and D,

not only generalizes but also simplifies some of our results. Note that condition 5
requires that the functions be lifted. This assumption is frequently invalid (e.g., in
the standard ideal model of [13]). Our conjecture is that minor technical variations
such as not lifting the function spaces would require some minor variations in the
proofs and algorithms but that completeness would still hold.

The following two examples illustrate the most important features of semantic
domains and are used throughout the paper.

EXAMPLE: [Minimal Semantic Model] Let Dy = D; be the three element set
{L, T — T,T} and let < be the partial order L < T — T < T. In this domain,
all function types are the same and this type domain does little more than detect
that something is a function. For all z,y € D, x -y =T — T. It is easy to check
that D satisfies all properties required of a semantic domain as well as standard
glb types. The only property missing is standard function types (e.g., because
151 =<T—=>T,but TAL). [l

ExAMPLE: [Standard Model] Let Dy be the set consisting of L and T and closed
under the pairing operation (denoted using the — symbol). An obvious partial
order is induced on Dy. This partial order is constructed in such a way so as to
ensure that the domain has standard function types. Let D; consist of all the
non-empty, upward-closed subsets of Dy. Intuitively, each element of D; represents
the glb of its members. Define dy < d; iff dy O d;. Note that there is an obvious
inclusion mapping from Dy to D; by mapping each element of Dy to the upward-
closure of the singleton set consisting of that element. It is easy to see that D; has
standard glb types. O

The construction of D; from Dy used in Example 1 is a general procedure for
building a D;. Given a domain Dy, the domain D; can be defined to be the non-

empty, upward-closed subsets of Dy. Each element of D; represents the glb of its
members.

3. Syntax

The first type language we consider has only type variables and function types.
In this language, as in all extensions we consider, quantification is shallow (occurs
only at the outermost level).

Definition 2. Unquantified simple type expressions are generated by the grammar:
Tu=a|T|L|n =7

where « ranges over a family of type variables.
A quantified simple type expression has the form

Vai ... Va,.T

where «; is a type variable for ¢ = 1,...,n and 7 is an unquantified simple type
expression. The type 7 is called the body of the type.

Since n = 0 is a possibility in Definition 2, every unquantified simple type ex-
pression is also a quantified simple type expression. In the sequel, we use ¢ for a
quantified type expression (perhaps with no quantifiers), and 7 for a type expression
without quantifiers.

A type variable is free in a quantified type expression if it appears in the body
but not in the list of quantified variables. To give meaning to a quantified type, it is
necessary to specify the meaning of its free variables. An assignment 6 : Vars — Dy
is a map from variables to the semantic domain. The assignment f[a < 7] is the
assignment 6 modified at point « to return 7.

An assignment is extended from variables to (quantified) simple type expressions
as follows:

Definition 3.
1. T)=T
2. (L)=1
3. 0(r = 1) =0(m1) = 0(12)
4. (Va.T) = M{bla « z|(1)|z € Do}
Note that unquantified simple type expressions are assigned meanings in Dy

whereas quantified simple type expressions typically have meanings in D; but not
in Do.

PROPOSITION 1 8(Vay ... Va,.7) = M{0lar « x1...an < xp)(T) | 21,...,2n €
Do}
Proof: Follows immediately from Definition 3. []

Our results for eliminating variables in quantified types hinge on knowledge about
when two type expressions have the same meaning in the semantic domain. How-
ever, because type expressions may have free variables, the notion of equality must
also take into account possible assignments to those free variables. We say that
two quantified type expressions oy and o are equivalent, written o; = o, if for all
assignments 6, we have 8(o1) = 6(02).

4. Simple Type Expressions

This section presents an algorithm for eliminating quantified type variables in sim-
ple type expressions and proves that the algorithm is sound and complete. The
following definition formalizes what it means to correctly eliminate as many vari-
ables from a type as possible:

Definition 4. A type expression o is irredundant if for all ¢’ such that ¢’ = o, it is
the case that o has no more quantified variables than o’.

In general, irredundant types are not unique. It is easy to show that renaming
quantified variables does not change the meaning of a type, provided we observe
the usual rules of capture. Thus, Va.o = Vf.0[a « f] provided that 8 does not
occur in o. It is also true that types distinguished only by the order of quantified
variables are equivalent. That is, Va.Vf.0 = VB.Va.o. Our main result is that for
every type there is a unique (up to renaming and reordering of bound variables)
irredundant type that is equivalent.

Since equivalence (=) is a semantic notion, irredundancy is also semantic in nature
and cannot be determined by a trivial examination of syntax. The key question
is: Under what circumstances can a type Ya.7 be replaced by some type T[a < 7]
(for some type expression 7' not containing «)? In one direction we have

O(Va.r) X 0la + 7')(1) = 0(t[a + 7))
Then, using Definition 3, it follows that
Va.r = 7la « 7]
if and only if for all assignments 6
Vd € Dy. O(7]a + 7']) < ba + d](7)

In other words, a type o = Va.7 is equivalent to 7[a < 7'] whenever for all assign-
ments 0, we have 0(7[a « 7']) is the minimal element of the set {f[a «+ z](7)|z €
Do} to which the glb operation is applied in computing ¢’s meaning under 6.

The difficulty in computing irredundant types is that the function-space con-
structor — is anti-monotonic in its first position. That is, ; < 7o implies that
71 = 7 = 7 — 7. Thus, determining the minimal element of a greatest lower
bound computation may require maximizing or minimizing a variable, depending
on whether the type is monotonic or anti-monotonic in that variable. Intuitively,
to eliminate as many variables as possible, variables in anti-monotonic positions
should be set to T, while others in monotonic positions should be set to L. We
define functions Pos and Neg that compute a type’s set of monotonic and anti-
monotonic variables, respectively.

Definition 5. Pos and Neg are defined as follows:

Pos(a) = {a}

Pos(ty = 12) = Neg(m1) U Pos(72)
Pos(T) = 0
Pos(L) = 0

Neg(a) = 0

Neg(ty — 172) = Pos(t1) U Neg(2)
Neg(T) = 0
Neg(l) = 0

As an example, for the type o — 0 we have

Pos(a — #) = {6}
Negla — 8) = {a}

The following lemma shows that Pos and Neg correctly characterize variables in
monotonic and anti-monotonic positions respectively.

LeMMA 1 Let d1,d> € Dy where d; < d». Let 6 be any assignment.
1. If a & Pos(7), then f[a + da](7) <X 0la + di](7).

2. If a & Neg(r), then Ola < di](1) < Ola + da](7).

Proof: This proof is an easy induction on the structure of 7.

o If7=1or7=T,then fla + di|(1) = 0(1) = Ola < d:2](7), so both (1) and
(2) hold.

e If 7 =, then a € Pos(a), so (1) holds vacuously. For (2), we have

0[0[«— dl](a) = d1 j d2 = 9[0& — d2](0[)

e Let 7 =7 — 7. We prove only (1), as the proof for (2) is symmetric. So
assume that « € Pos(7). By the definition of Pos, we know

a & Neg(1) U Pos(12)
Applying the lemma inductively to 7, and 72, we have

9[0(— dl](Tl)
9[0(< dz](Tz)

0[& «— dg](Tl)

=
j 0[& < dl](Tg)

Combining these two lines using axiom 5 of a semantic domain (Definition 1)
it follows that

0[0[< d2](T1 — T2) j 0[0[< dl](Tl — T2)

which proves the result.

10

COROLLARY 1

1. If a & Pos(r), then 8(r[a < T]) = 8(7) < 8(7[a <—L]) holds for all assignments
6.

2. If a & Neg(7), then O(7[a —L]) 2 0(7) = 8(7[a < T]) holds for all assignments
6.

4.1. Variable Elimination

Our algorithm for eliminating variables from quantified types is based on the com-
putation of Pos and Neg. Before presenting the variable elimination procedure, we
extend Pos and Neg to quantified types:

Pos(Na.o) = Pos(o) — {a}
Ney(Va.o) = Neg(o) — {a}

The following lemma gives sufficient conditions for a variable to be eliminated.

LEMMA 2 If o is a quantified simple type expression, then

a & Neg(o) = VYa.o =ofa + 1]
a ¢ Pos(o) = Ya.o =ofa + T]

Proof: Assume first that Ya.c = Va.7 where 7 is an unquantified simple type
expression and that o ¢ Neg(7). Note that

O(Va.T)
M{f[a + z](7)|z € Do}
Ol + L](T

(
)
O(rla L))
(
(r

since L is a possible choice for x

PNl

M{fa < z](7]a « L])|z € Do} since a does not occur in 7{a + L]
M{fla « z](7)|z € Dy} by part 2 of Corollary 1
O(Va.1)

PNl

Therefore, 8(Va.7) = 6(r[a < L]) for all assignments 6. For the general (quantified)
case Yaq, ..., ay.T, observe that any variable ; for 1 <4 < n can be moved to the
innermost position of the type by a sequence of bound variable interchanges and
renamings, at which point the reasoning for the base case above can be applied.
The proof for the second statement (o & Pos(o)) is symmetric. [|

We are interested in quantified types for which as many variables have been
eliminated using the conditions of Lemma 2 as possible. Returning to our canonical
example,

11

YaVp.a = 3
= VAT = p since a € Pos(VB.a —)
=T -1 since a ¢ Neg(T —)

Definition 6. A quantified simple type expression o is reduced if
e o is unquantified; or

e o0 =Va.o' and furthermore o € Pos(c’) A a € Neg(o') and o' is reduced.

Note that the property of being reduced is distinct from the property of being
irredundant. “Reduced” is a syntactic notion and does not depend on the semantic
domain. Irredundancy is a semantic notion, because it involves testing the expres-
sion’s meaning against the meaning of other type expressions.

Procedure 1 (Variable Elimination Procedure (VEP)) Given a quantified
type expression

Yag ...VYay,.T, compute the sets Pos(t) and Neg(7). Let VEP(Va; ... Vay,.T) be
the type obtained by:

1. dropping any quantified variable not used in 7,
2. setting any quantified variable a where a ¢ Pos(Va; ...Va,,.7) to L,
3. setting any quantified variable « where a ¢ Neg(Va; ... Vay,.7) to T,

4. and retaining any other quantified variable.

THEOREM 2 Let o be any quantified simple type expression. Then o = VEP(o)
and VEP(o) is reduced.

Proof: Equivalence follows easily from Lemma 2. To see that V EP(o0) is reduced,

observe that any quantified variable not satisfying conditions (1)—(3) of the Variable

Elimination Procedure must occur both positively and negatively in the body of o.
|

A few remarks on the Variable Elimination Procedure are in order. The algo-
rithm can be implemented very efficiently. Two passes over the structure of the
type are needed: one to compute the Pos and Neg sets (which can be done using
a using a hash-table or bit-vector implementation of sets) and another to per-
form any substitutions. In addition, the algorithm need only be applied once, as
VEP(VEP(0)) = VEP(o).

THEOREM 3 Every irredundant simple type expression is reduced.

Proof: Let ¢ be an irredundant simple type expression. Since ¢ is irredundant,
VEP(o) has at least as many quantified variables as 0. Therefore VEP(o) = o;
i.e., the Variable Elimination Procedure does not remove any variables from o.
Since VEP(o) is reduced, o is a reduced simple type expression. [|

12

4.2. Completeness

If o is a quantified simple type expression, then VEP(o) is an equivalent reduced
simple type expression, possibly with fewer quantified variables. In this section, we
address whether additional quantified variables can be eliminated from a reduced
type. In other words, is a reduced simple type expression irredundant? We show
that if the semantic domain D has standard function types (Definition 1) then every
reduced simple type expression is irredundant (Theorem 5).

For semantic domains with standard function types, the Variable Elimination
Procedure is complete in the sense that no other algorithm can eliminate more
quantified variables and preserve equivalence. The completeness proof shows that
whenever two reduced types are equivalent, then they are syntactically identical,
up to renamings and reorderings of quantified variables.

To simplify the presentation that follows, we introduce some new notation and
terminology. By analogy with the a-reduction of the lambda calculus, two quan-
tified simple type expressions are a-equivalent iff either can be obtained from the
other by a series of reorderings or capture-avoiding renamings of quantified vari-
ables. We sometimes use the notation V{aj,...,a,}.7 to denote Va; ...Vay,.T.
Using a set instead of an ordered list involves no loss of generality since duplicates
never occur in reduced expressions and variable order can be permuted freely. We
generally use the letters s and t to range over type expressions.

4.2.1. Constraint Systems Proving completeness requires a detailed comparison
of the syntactic structure of equivalent reduced types. This comparison is more
intricate than might be expected; in addition, in the sequel we perform a similar
analysis to prove that variable elimination is complete for recursive types. This
section develops the technical machinery at the heart of both completeness proofs.

Definition 7. A system of constraints is a set of inclusion relations between un-
quantified simple type expressions {...s < t...}. A solution of the constraints is
any assignment 6 such that 6(s) < 6(t) holds for all constraints s < ¢ in the set.

Definition 8 gives an algorithm B that compares two unquantified simple type
expressions t; and t». The comparison is expressed in terms of constraints; the
function B transforms a constraint t; < ¢y into a system of constraints such that
at least one side of each inequality in the system of constraints is a variable of ¢;
or ty. Intuitively, B({t; < t2}) summarizes what must be true about the variables
of the two types whenever the relationship ¢; < ¢2 holds.

Definition 8. Let S be a set of constraints. B(S) is a set of constraints defined by
the following rules. These clauses are to be applied in order with the earliest one
that applies taking precedence.

1. B(0) =0
2. B({t <t}US) = B(S).

13

3. B({Sl — S9 j t1 — tz}US) = B({tl j S1,82 j tQ}US).

4. Otherwise, B({s <t} US) ={s <t} UB(S).

LEMMA 3 Let S be a system of constraints. If D is a semantic domain with stan-
dard function types, then every solution of S is a solution of B(S).

Proof: Let the complexity of S be the pair (number of — symbols in S, number
of constraints in S). Complexity is ordered lexicographically, so (i,7) < (i, ') if
i <i' ori=1 and j < j'. The result is proven by induction on the complexity of
S, with one case for each clause in the definition of B:

1. B(0) = 0. The result clearly holds.

2. Since any assignment is a solution of ¢ < ¢, any solution 6 of {t < ¢} U S is also
a solution of S. By induction, ¢ is a solution of B(S).

3. Let 6 be a solution of {s; — s2 < t; = t2}US. Since the domain has standard
function types, it follows that 6 is also a solution of {t; < s1,$2 < t2} U S. By
induction, 6 is a solution of B({t; < s1,s2 < t2} US).

4. In the final case, by induction every solution of S is a solution of B(.S). Therefore
all solutions of {s < ¢} U S are solutions of {s <t} U B(S).

The completeness proof uses an analysis of the constraints B({t; < t2}) where
t; and ty are the bodies of reduced equivalent types. Observe that if ¢; and to
differ only in the names of variables, then B({t; < t2}) is a system of constraints
between variables. Furthermore, it turns out that if ¢; and t» are actually renamings
of each other (and if ¢; and ¢, are the bodies of reduced equivalent types) then the
constraints B({t; < t2}) define this renaming in both directions. Proving this claim
is a key step in the proof. This discussion motivates the following definition:

Definition 9. A system S of constraints is (V1, V2)-convertible iff V1, Vs are disjoint
sets of variables and there is a bijection f from V; to V, such that § = {a =<
fla)la e VitU{f(a) 2 ala € Vi}

EXAMPLE: For example, let S be the system of constraints

axy Y73«
B4 6Xp

Let Vi = {a, 8},V2 = {v,d}, and define f : V; — V5 such that f(a) =, f(8) = 0.
It is easy to check that S is (Vi, V2)-convertible. O

14

The idea behind Definition 9 is that if two reduced types VVi.11 and VVs.7m» are
a-convertible, then B({r; < m}) is a (V4, Vz)-convertible system of constraints
(provided V; and V5 are disjoint). It is easiest to prove this fact by first introducing
an alternative characterization of convertible constraint systems, which is given in
the following technical definition and lemma.

Definition 10. A system of constraints {s1 < t1,...,sp = t,} is (Vi, V2)-miniscule
iff the following all hold:

1. V; and V; are disjoint sets of variables.

2. for all i < n, at most one of s; and t; is a — expression.

3. for all i <mn, s; and t; are different expressions.

4. for each v € V) U Vs, there exists i < n such that v € Pos(s;) U Neg(t;)
5. for each v € V; U V4, there exists i < n such that v € Neg(s;) U Pos(t;)

6. for every assignment 6 there is a assignment 6" such that 6(v) = 6'(v) for all
v gV and
0'(s;) <X 6'(t;) holds for all i < n.

7. for every assignment 6 there is a assignment 6" such that 6(v) = 6'(v) for all
v ¢ Vy and
0'(t;) = 0'(s;) holds for all i < n. (Note the reverse order of ¢; and s;.)

LEMMA 4 A system of constraints is (V7, V2)-miniscule iff it is (V3, V2)-convertible.

Proof: It is easy to check that any (Vi,V2)-convertible system of constraints is
(V1, V2)-miniscule.

To prove the converse, let §y be the assignment that assigns L to every variable,
let A; be the assignment that assigns T to every variable, and let S be a (V7,V5)-
miniscule system of constraints. The first step is to show that no — expressions can
occur in S. It is easy to check that if we reverse all inequalities we get a (Va,V7)-
miniscule system of constraints. Thus, by symmetry, to show that — cannot occur
in S it suffices to show that — cannot occur in any upper bound in S.

For the sake of obtaining a contradiction, assume that s; < t; — ¢t/ € S. We
show that each of the four possible forms for s; is impossible.

1. sj = si < t; =t} is ruled out by Property 2 of Definition 10.

2. L <t} —t! is ruled out by Property 7 of Definition 10, since, by requirement 5
in the definition of domains (Definition 1), no assignment satisfies ¢; — ¢}/ < L.

3. T <t} — t! is ruled out by Property 6 of Definition 10, since, by requirement 5
in the definition of domains (Definition 1), no assignment satisfies T < ¢} — ¢/

15

4. Suppose s; is the variable v.

If v is a variable not in Vi, let § = #;. Then Property 6 of Definition 10 is
violated because for all ' that agree with 6 off of V;, we have 6'(v) = 0(v) =
O1(v) =T L 0'(t; — t).

If v € Vi, let 8 = 6y. Note that v € V5 since V; and V5 are disjoint. Then
Property 7 of Definition 10 is violated because for all #’ that agree with 6 off of
Vs, we have 6'(t; — t]') 2 L =6p(v) = 0(v) =0'(v).

This completes the proof that — cannot occur in S.

The next step is to show that L cannot occur in S. By symmetry it suffices
to show that L cannot occur as an upper bound in S. There are three cases to
consider.

1. L < 1 is ruled out by Property 3 in Definition 10.

2. T = 1 is ruled out by Property 6 in Definition 10 since no assignment satisfies
T<1.

3. Consider v < | where v is a variable. If v € Vi, let § = 6;. Then Property 6
in Definition 10 is violated since for all " that agree with 6 off of V;, we have
that 8'(v) =0(v) =6,(v) =T A L =6'(L).

If v € V1, a complex case argument is needed because Property 6 is not directly
violated. By Property 5 of Definition 10, there is a constraint s’ < v in S.
There are four possible cases for s':

(A) s’ = L. In this case, L <v < L is in S and hence Property 7 is violated
by taking 6 = 6.

(B) s/ = T. In this case, T < v <X L violates Property 6 since it is never
satisfied by any assignment.

(C) s =o' € Vi. In this case, v' = v is ruled out by Property 3. So we
may assume that v’ and v are different variables. Property 7 is violated by
taking 6 = 6p[v < T] since if " agrees with € off of V5 the constraint v < v’
is violated since 8'(v) = 8(v) =T A L =0(v") =0'(v').

(D) s' =0 ¢ Vi. In this case, v' < v < L violates Property 6 by taking 6 = 6,
since 8(v') = T.

This proves that L cannot occur as an upper bound in S. By symmetry, L cannot
occur as a lower bound in S, and hence L cannot occur anywhere in S. An analogous
argument shows that T can not occur anywhere in S either.

Thus, every element of S is of the form v' < v" for variables v’,v"”. We now show
that v',v" € V3 U V,. Suppose that v € Vi UV, If v € Vi, then Property 7 is
violated by taking 8 = y[v" < T] since for all §' that agree with 8 off of V5, we
have that 6'(v'") = 0(v") =T A L =0(0") = 6'(v'). If v'" ¢ Vi, then Property 6
is violated by taking 6 = fp[v’ < T] since for all 6" that agree with 6 off of V;, we
have that 6'(v') = 0(v') = T £ L = 0(v") = 6'(v"). Therefore, the supposition

16

that v' € V4 UV, is false and it follows that v’ € V3 UV,. A similar argument shows
that v" € V3 U V4.

If both v' and v" are in V;, then Property 7 is violated by taking 6 = y[v" < T]
since for all 6" that agree with 6 off of V5, we have that 6'(v") = 0(v") = T £
1 =0(v') = 0'(v'). This shows that not both v' and v" are in V;. A symmetric
argument shows that not both v and v" are in V5. Thus, it follows that for every
constraint s; <X t; in S, either s; € V] and t; € V5 or s; € Vo and t; € V.

Next we show that if vg < v1 < va, then vy = vs. First assume that v; € V. If vy
and vy are different variables, then Property 6 is violated by taking 6 = €y[vg < T]|
since for all 8 that agree with 8 off of V1, we have that 6'(vg) =0(vg) =T A L =
O(va) = 6'(v2). Hence, in the case that vy € Vi, it follows that vo = vs. A similar
argument shows that if v; € V5, then vy = vs.

The next goal is to show that for every vy € Vi, there exists a unique v € V5
such that v; < vy is in S. By Property 4, there is at least one such vy. Let v}
be any variable such that v; < v} is in S. By Property 5, there is a vy such that
vp S 1 is in S. It follows that vo = vy = v} which proves that vy is unique.

Define a function f mapping V; to V2 so that vy < f(v1) is in S. By Property 5,
for any v; € Vi, there is a vg such that vg < vy is in S. It follows that vo = f(vy).
This proves that S C {a < f(a)la € Vi} U {f(a) <X ala € Vi}. Since every
constraint in S has the form v’ < v"” where either v’ or v is in V; and since
the upper and lower bounds are unique (because vo < v; <X v € S implies that
vo = v2), it follows that there are no extra elements of S. Therefore, S = {a <
fla)la € Vit U {f(a) < ala € Vi}. Thus S is (Vi,Vz2)-convertible as desired.

|

4.2.2. From Constraints to Completeness The definitions and lemmas of Sec-
tion 4.2.1 are the building blocks of the completeness proof. Before finally present-
ing the proof, we need one last definition:

Definition 11. Two simple type expressions VVi.m; and VV,.1o are compatible iff
VVi.1p and VV5.7» are equivalent reduced simple type expressions such that V7 and
V5 are disjoint and no variable in V; occurs in 75 and no variable in V5 occurs in 7.

The important part of the definition of compatibility is that the type expressions
are reduced and equivalent. The conditions regarding quantified variables are there
merely to simplify proofs. There is no loss of generality because a-conversion can
be applied to convert any two equivalent reduced type expressions into compatible
expressions.

LEMMA 5 Let VVi.1p and VV5;.15 be compatible type expressions. If the semantic
domain has standard function types and standard glb types, then B({r; < 72}) is
a (V1, Va)-miniscule system of constraints.

Proof: Let B({m X m2}) = {s1 < t1,...,8n X tp}. We prove that the conditions
in Definition 10 all hold:

Ll

17

By compatibility V3 and V> are disjoint sets of variables.
By Part 3 of Definition 8 at most one of s; and ¢; is a — expression.
For all i < n, s; and t; are different expressions by Part 2 of Definition 8.

After a number of applications of B, the intermediate result for the calculation
of B({m1 X 7»}) is of the form:

{s1 =ty 5, S IUB{spqy S thggs--or s St} -

It is sufficient to show that

(A) for all v € V1 UV, there is an @ < m such that v € Pos(s}) U Neg(t}), and

(B) if, for some ¢ < m, we have s; =t}, then s}, ¢} contain no variables.

We proceed by induction on the number of steps needed to compute B({r =<
72}). In the base case, consider B({r1 < 72}). The result follows from the ob-
servations that 7, 7> are reduced, and that Vi, V> are disjoint. In the induction
step, each of the four cases from the definition of B follow immediately from
the induction hypothesis.

Proof similar to the previous step.

Let 6 be any assignment. We must show that there is an assignment 6’ such
that 6(v) = 6'(v) for all v € V7 and 6'(s;) < 6'(t;) holds for all ¢ < n. Since
O(VVi.11) =R 0(VVa.12), it follows that #(VVi.11) < (m2). Since the semantic
domain has standard glb types, it follows that 6'(71) < €(72) holds for some
0" that agrees with 6 except possibly on V;. Since no variable in V; occurs in
T2, we know 0'(71) < 0'(m2). By Lemma 3, it follows that 6" is a solution to
B({m X m}).

To show that for every assignment 6 there is an assignment 6’ such that 8(v) =
0'(v) for all v € V2 and €'(t;) < €'(s;) holds for all i < n, reverse the roles of
71 and 7. This argument, which is a variation of the previous case, relies on
the fact that B({72 < 71}) can be obtained from B({r; < 72}) by reversing the
direction of the < symbol.

One final technical lemma is required before we can show that the variable elimi-

nation procedure is complete. The intuition behind Lemma 6 is that if B({r1 < 72})
is a (V4, Va)-convertible system of constraints with bijection f (recall Definition 9),
then B({m =< f(m2)}) = 0. This intuition is not quite correct, because there may
be variables in 71 or 7» that are not in Vi U V5. In the following lemma, vars(t) is
the set of variables appearing in t.

LEMMA 6 Assume that

18

. B(S) is a subset of a (V7, V2)-convertible system of constraints with bijection f

from V] to V5.

For each constraint s < t € S, we have wvars(s) Nwvars(t) N (V1 UV2) = 0. In
other words, any variables common to s and ¢ are not in V3 U V5.

Define

o otherwise

Flz) = { flx) fxeWn

We extend F' from variables to terms in the usual way. Define

S' = {F(t) < F(t')|t < ' € S}

The claim is that B(S") = 0.

Proof: The proof is by induction on the complexity of S, as defined in the proof
of Lemma, 3.

S =0. Then S' = () and B(0) = 0.

S = {t <t} US:. By assumption (2), vars(t) N (V1 UVs) = (). By the definition
of F it follows that F(t) = ¢t. Using the definition of B, it is easy to see that
because S satisfies assumptions (1) and (2) with bijection f that S; also satisfies
assumptions (1) and (2) with the same bijection f. Now we have

0
= B(S]) by induction
= B{t2t}US]) definition of B
= B{F(t) 2 F(t)}US5)) Ft) =t
= B(S")

SZ{tl — 12 X 51 —>82}U51. LetT:{sl <t1,t2 jSQ}USl.

Using the definition of B, it is easy to check that T satisfies conditions (1) and
(2) using the bijection f. By induction B(T") = . Then

0
= B{F(s1) 2 F(t1), F(t2) < F(s2)} US]) by induction
= B{F(t1) = F(t2) X F(s1) = F(s2)} U S]) definition of B
= B({F(t1 = t2) R F(s1 = s2)} US]) definition of F
= B(9)

S = {s 2t} US; and no previous case applies. Then B(S) = {s <t} U B(S1).
Since B(S) is a subset of a (V1, Va)-convertible system of constraints, it follows
that s = a and ¢t = [for some distinct variables @ and and that either
F(a) =0 and F(B) = B or F(a) = a and F(8) = «. The rest is similar to the
case for t <t above.

19

We are now ready to state and prove the first of the major theorems concerning
completeness.

THEOREM 4 If the semantic domain has standard function types and standard glb
types, then any two reduced quantified simple type expressions are equivalent iff
they are a-equivalent.

Proof: The if-direction is clear and does not even require that the semantic
domain have standard function types. To prove the only-if direction, let ¢’ and ¢
be two reduced quantified simple type expressions. If necessary, a-convert o' to
o1 = VV1.11 and a-convert o' to o = VV5.73 so that o1 and oy are compatible. It
suffices to show that o, and o, are a-equivalent.

By Lemma 5, B({r1 < m}) is a (Vi, Va)-miniscule system of constraints. By
Lemma 4, B({m1 <X m}) is a (Vi,V2)-convertible system of constraints; let f be
corresponding bijection mapping variables in V; to V. Define

flz) fzeV;
z otherwise

F(z) = {

Because o1 and o2 are compatible, vars(t1) N vars(m2) N (V3 U V) = (. Then, by
Lemma 6, we have

B({F(r) X F(r2)}) =0
Since F' is the identity on 74 it follows that
B({F(r) 2m}) =10
from which it follows by the definition of B that 75 = F(71). This shows that oy
and oy are a-equivalent as desired.
|
COROLLARY 2 If the semantic domain has standard function types, then no two

different unquantified simple type expressions are equivalent.

Proof: Given a semantic domain D construct another semantic domain D’ such
that Dy = Dy, and D’ has standard glb types using the construction in Example 1.
Using the semantic domain D’ suffices because the meaning of an unquantified type
expression is always an element of Dy and D = Dy. If 7 and 7' are equivalent,
unquantified simple type expressions, then they are reduced and hence a-equivalent
by Theorem 4. But since they have no quantifiers, a-equivalence implies that 7 = 7.

|

Finally, the following theorem states our main result.

20

THEOREM 5 If the semantic domain has standard function types and standard glb
types, then a simple type expression is reduced iff it is irredundant.

Proof: The if direction follows from Theorem 3. To prove the only-if direction, let
o be a reduced simple type expression with the goal of proving that o is irredundant.
Let o' be an irredundant type that is equivalent to o. (Such a ¢’ can always be
found by picking it to be a type expression equivalent to o with the smallest possible
number of quantified variables.) By Theorem 3, ¢’ is reduced. By Theorem 4, o
is a-equivalent to o'. Therefore, it follows that ¢ and ¢’ have the same number of
quantified variables. Hence, o is irredundant as desired. [|

Theorem 5 shows that a syntactic test (reduced) is equivalent to a semantic test
(irredundant). Theorem 5 requires that the semantic domain has standard function
types. The following examples show that this assumption is necessary.

ExampLE: Consider the minimal semantic domain (Example 1). It is clear that
Va.(aw - @) = (T — T) in the minimal semantic domain. Therefore, Ya.(aw — «)
is reduced but not irredundant. O

ExaMPLE: In the semantic domain used in [2], # = T = y — T regardless of
the values of x and y, because if the answer can be anything (i.e., T), it does
not matter what the domain is. In this case, Va.((a = «) - T) = T — T.
Thus, Va.((a« — a) — T) is not irredundant even though it is reduced.

O

Theorem 6 shows that the Variable Elimination Procedure (Procedure 1) is com-
plete provided that the semantic domain has standard function types.

THEOREM 6 Let o be a quantified simple type expression. If the semantic domain
has standard function types and standard glb types, then VEP(0) is an irredundant
simple type expression equivalent to o.

Proof: Follows easily from Theorem 2 and Theorem 5. []

To summarize, for simple type expressions the Variable Elimination Procedure
that removes quantified variables occurring positively or negatively in a type pro-
duces an equivalent type with the minimum number of quantified variables. Fur-
thermore, this type is unique up to the renaming and order of quantified variables.

A good feature of Theorem 6 is that the irredundant type expression produced
by the Variable Elimination Procedure has no more arrows than the original type
expression. This need not be the case if the semantic domain does not have standard
function types.

ExamMPLE: Let Dy =D; ={L, T - L,z,L - L, T = T,L = T,T} where z is
a function type, T — L is less than =, and x is less than the other three function
types.

Let the set of type expressions be T and L closed under —. For this domain,
we define the — operator as follows. The four possibilities for combining T and L

21

using — map to the corresponding elements of Dy. For all other types yo — w1,
either y; or y» (or both) is a function type. If either yo or y; is a function type,
define yg — y1 = .

In this domain #(Va.(a — «)) = z for all assignments 6. This follows because
x<XT—=Tand z <L — L and for any other y — y, we have 6(y — y) = = (e.g.,
(L - 1) - (L — 1)) = z). Now we have that Va.(a« - o) = (L - L) - L
and, in fact, the quantified type is equivalent to exactly those unquantified types
with a function type in one or both of the domain or range. Even though Va.(a —
«) has only one arrow, every irredundant type expression equivalent to Va.(a — «)
has at least two arrows. O

5. Recursive Type Expressions

This section extends the basic variable elimination algorithm to a type language
with recursive types. The proofs of soundness and completeness parallel the struc-
ture of the corresponding proofs for the non-recursive case.

New issues arise in two areas. First, there is new syntax for recursive type equa-
tions, which requires corresponding extensions to the syntax-based algorithms (Pos,
Neg, and B). Second, two new conditions on the semantic domain are needed.
Roughly speaking, the two conditions are (a) that recursive equations have solu-
tions in the semantic domain (which is needed to give meaning to recursive type
expressions) and (b) that the ordering < satisfies a continuity property (which is
required to guarantee correctness of the Pos and Neg computations). It is surprising
that condition (b) is needed not just for completeness, but even for soundness. For-
tunately, standard models of recursive types (including the ideal model and regular
trees) satisfy both conditions.

5.1. Preliminaries

We begin by defining a type language with recursive types. We first require the
technical notion of a contractive equation.

Definition 12. Let 4y, ..., 4§, be distinct type variables and let 71, ..., 7, be unquan-
tified simple type expressions. A variable « is contractive in an equation 6; = 71
if every occurrence of « in 71 is inside a constructor (such as —). A system of
equations

(51 :Tl/\---/\(sn:Tn
is contractive iff each d; is contractive in every equation of the system.

Contractiveness is a standard technical condition in systems with recursive types
[13]. Contractiveness is necessary for equations to have unique solutions (e.g., an
equation such as 6 = § may have many solutions). The results of this section only
apply to systems of contractive equations.

22

Definition 13. An (unquantified) recursive type expression is of the form: 7/FE
where E is a set of contractive equations and 7 is an unquantified simple type
expression.

Throughout this section, we use d, 01,9, ... for the defined variables that are given
definitions in the set of equations E, and we use a, o', a1, ... to indicate the regular
variables, i.e., those that are not given definitions. To give meaning to recursive type
expressions, the equations in a recursive type must have solutions in the semantic
domain. The following definition formalizes this requirement.

Definition 14. A semantic domain has contractive solutions iff for every contractive
system E of equations

Oh=T1AN...Nbp, =Tn,
and for every assignment #, there exists a unique assignment 6% such that:
1. 6F(a) =0(a) for all « & {61,...,6,}
2. 0E(6;) =608(ry) foralli=1,...,n.

Note that Definition 14 is well formed because assignments are applied only to
unquantified simple type expressions, an operation that already has meaning (see
Definition 3).

LEMMA 7 Let E and E' be contractive systems of equations and assume the se-
mantic domain has contractive solutions.

1. Let 6 be an assignment. If E' C E, then (€)F" = 9%,

2. If E does not mention variables ay, . .., a,, then (Blay < di,...,a, + d,))F =
HE[OQ «— dl,...,am «— dm]
Proof:

1. Immediate from the uniqueness of §%.

2. By repeated applications, it suffices to consider the case m = 1. If g3 is not
defined by E, it is easy to see that 0% [a; < d;1](8) = O[as < di](B). If 6 = 7 is
a definition in E, then 6%[ay < d1](6) = 0¥ (0) = 0¥(7) = 0F[a + d1](7). By
uniqueness of (f[a; + dy])¥, it follows that (f[ay <+ d1])¥ = 6F[ay < di].

|
An assignment is extended to (quantified) recursive type expressions as follows:

Definition 15.

23

1. 6(r/E) = 6%(r) for any unquantified simple type expression 7.
2. (Va.T/E) ={0la < z](T/E)|x € Do}

Just as for simple type expressions, every unquantified simple type expression
is assigned a meaning in Dy whereas quantified simple type expressions typically
have meanings that are in D; but not in Dy. Lemma 8 shows that if a domain has
contractive solutions, then definitions of “unused” variables can be dropped.

LEMMA 8 Assume the domain has contractive solutions. Let E by a set of equa-
tions and let E' C E. Assume that whenever a defined variable 6 of E occurs in
70/ E', then ¢ is a defined variable of E’. Then 70/E = 19/ E'.

Proof: Let dy,...,0,, be the variables defined by E but not E’. Then we have:

0(0/ E)
= 0%()
(0F)E (10) by part 1 of Lemma 7, since E' C E
0161 « 07 (51),- .., 0m 07 (6,)]F (70)
07 [6, < 0F(61),...,0m < 0F(0,,)](70) by part 2 of Lemma 7
97" (7o) since 41, ..., 0, do not appear in 7
= 0(r0/E")

Surprisingly, even though contractive solutions guarantee that equations have
unique solutions, this is not sufficient for soundness of the Variable Elimination
Procedure. The crux of the problem is found in the reasoning that justifies using
Pos and Neg (see Definition 18) as the basis for replacing variables by T or L
(Lemma 1). The Pos and Neg algorithms traverse a type expression to compute
the set of positive and negative variables of the expression. In the case of recur-
sive types, Pos and Neg can be regarded as using finite unfoldings of the recursive
equations. We must ensure that these finite approximations correctly character-
ize the limit, which is the “infinite” unfolding of the equations. Readers familiar
with denotational semantics will recognize this requirement as a kind of continuity
property. Definition 17 defines type continuity, which formalizes the appropriate
condition. Later in this section we give an example showing that type continuity is
in fact necessary.

Definition 16. A definable operator is a function F': Dy — Dy such that there is a
recursive type expression 79/ A~ d; = 7;, an assignment 6, and a (regular) variable
a such that 79 # «a, « is contractive in all equations, and

F(d) = 0la < d|(ro/ \ 6 =)

i=1

24

holds for all d € Dy.

Definition 17. A semantic domain D has type-continuity iff for every monotonic,
definable operator F' and every d',d" € Dy,

(F(d")=d" A F(d)<d) = d'<d

The minimal semantic model (Example 1) has contractive solutions, type conti-
nuity, and standard glb types, but it lacks standard function types. The standard
semantic model (Example 1) has standard glb types and standard function types
but lacks contractive solutions (e.g., because the equation § = § — § has no so-
lution). The standard model does have type continuity, but without contractive
solutions type continuity is not very interesting; for the standard model, the only
monotonic definable operators with a fixed point are constant functions. The stan-
dard semantic model can be extended to the usual regular tree model to provide
contractive solutions without sacrificing the other properties.

LeMMA 9 The usual semantic domain of regular trees has contractive solutions,
standard glb types, standard function types, and type continuity.

Proof: We briefly sketch the usual semantic domain Dy of regular trees. This
discussion is not intended to give a detailed construction of the domain, but rather
to highlight the important features. As usual, D; consists of the non-empty upward
closed subsets of Dy. Therefore, the semantic domain has standard glb types.

A finite or infinite tree is regular if it has only a finite number of subtrees. The set
Dy consists of the regular trees built from T and L using the — operator. Thus, T
and L are elements of Dy and every other element x of Dy is equal to =’ — z' for
some x',z" € Dy. Furthermore, z' and z" are unique. It is well-known that such a
domain has contractive solutions [6].

Let <o y hold for all z,y € Dy. Let z <;41 y holdiff z = L ory = T or
r=a =" andy =y — y" and " <; vy’ and y' <; «’'. Notice that <;11C=;.
Then z < y holds iff © <; y holds for all i > 0 [4].

First we check that < has standard function types.

II _) III j yl _) yll

Vi(z' = 2" i1y = y")
Vi(z" <; y'" and y' <; z')
Vi(z" <; y") and Vi(y' <; z')
II/ j yll and yl j xl

teo 0

Thus < has standard function types.
Next we check that Dy has type continuity. Let x =; y stand for = <; y and
y <; x. Let F be a definable monotonic operator. For any z,y € Dy,

Fi(z) =; F'(y)

25

This fact follows by induction on i, using the fact that F' is definable by a system
of equations contractive in F’s argument. To see this, note that in the base case
FY(z) =¢ F°(y), since every value is =y to every other value. Recall that =;
means equal to depth i (where depth is the number of nested constructors) and
that F(z) is equivalent to a system of equations with occurrences of z embedded
inside at least one constructor (contractiveness). Therefore, for the inductive step,
it suffices to note that if Fé(x) =; Fi(y) (i.e., equal to a depth of i constructors)
then F(Fi(z)) =41 F(F(y)) (i.e., equal to a depth of i + 1 constructors).

Let d" and d" be elements of Dy such that F(d") = d" and F(d') < d'. It is easy to
see by induction that F*(d") = d" and, using monotonicity of F, that Fi(d') < d'.
Therefore, we have

dll — Fi(d/l) = Fz(dl) j dl
for all i. Hence, d" <; d’ holds for all i. By definition of =<, it follows that d” < d’

and we conclude that the domain has type continuity.]

5.2. Soundness

In this section, we extend variable elimination to recursive types. The first step is
to extend the functions Pos and Neg to include type expressions that have defined
variables (recall variables defined in E are denoted by §):

Definition 18. Pos' and Neg are the smallest sets of variables such that

1. If a is not defined in E, then Pos'(a/E) = {a} and Neg (a/E) = .

2. If § =7isin E, then Pos'(§/E) = Pos'(r/E)U{6} and Neg (§/E) = Neg (7/E).
Pos'(L/E) = Neg' (L/E) =)

Pos'(T/E) = Neg (T/E) =0

orok W

Pos'(r1 = 12/ E) = Pos'(12/E) U Neg' (11 / E)
and Neg' (rp — 72 /E) = Neg (72/E) U Pos' (1, /E)

Let D be the set of E’s defined variables.
Then define Pos(r/E) = Pos'(t/E) — D and Neg(t/E) = Neg (1/E) — D.

Note that Pos and Neg exclude defined variables while Pos' and Neg include
defined variables. Many functions satisfy these equations (so picking the smallest
such sets is necessary to make Pos’ and Neg' well-defined). For example, choosing

Pos(0/0 =6 — 0) = Neg(d/0 =6 — 0) = {as, a9}
satisfies the equations, but the least solution is

Pos(6/6 =6 — 0) = Neg(6/6 =6 —) =0

26

Our results apply to the least solutions of the equations. It is easy to construct
the least sets for Pos and Neg by adding variables only as necessary to satisfy the
clauses of Definition 18.

At this point we digress to discuss the complexity of computing Pos and Neg sets
for recursive types. Let the print representation of a system of type equations have
size n and let the system have m type variables. Observe that the problem can be
factored into m independent subproblems, one for each type variable. Focusing on
a single variable «, the problem is to compute two bits for each subexpression E:
whether a € Pos'(E) and whether o € Neg'(E). This subproblem can be solved in
time linear in n, so to solve all m subproblems is O(mn).

We now explain how to decide o € Pos'(E) and a € Neg (E) for every subexpres-
sion E in linear time. Define a graph with one node for each subexpression of the
type and the associated system of equations. The graph has the following directed
edges:

e There is an edge from each node for X — Y to the node for X. These edges
are called crossing edges.

e There is an edge from each node for X — Y to the node for Y.

e For each node for § there is an edge to the node for 7 where § = 7 is an equation
of the system.

This graph has O(n) nodes and O(n) edges.

Let a be the node for variable o and let b be the node for some expression B.
Assume there is a path from b to a in the graph. A path with an even number of
crossings is positive; a path with an odd number of crossings is negative. It is easy
to show a € Pos'(B) if there is a positive path from b to a and o € Neg (B) if there
is a negative path from b to a.

To compute the property for every subexpression efficiently, we reverse all the
edges in the graph and perform a modified depth-first search from a, marking each
node along the way as either positive or negative or both according to the marks of
its predecessor and whether the edge being traversed is a crossing. Each edge may
be visited at most twice (once for a positive path and once for a negative path) so
the overall complexity is linear. This concludes the discussion of the complexity of
computing Pos and Neg sets.

The following relationship between defined and regular variables is easy to show
using Definition 18. The intuition is that if « is positive (resp. negative) in the
definition of 4, then « is positive (resp. negative) in any position where ¢ appears
positively, and negative (resp. positive) in any position where § appears negatively.
Note that since « is not a defined variable (and hence in Pos iff it is in Pos’ and in
Neg iff it is in Neg'), we could replace Pos' by Pos and Neg by Neg in the following
lemma. This remark does not apply to d as defined variables are never in Pos and
Neg.

LEMMA 10 If a € Pos'(§/E) then
d € Neg (1/E) = « € Neg (1/E)
§ € Pos'(tr/E) = «a € Pos'(1/E)

27

If a € Neg'(6/E) then

8 € Neg (1/E) = « € Pos'(T/E)
§ € Pos'(T/E) = « € Neg (T/E)

LeMMA 11 Let 7 be a recursive type expression and let di,d> € Dy where d; < ds.
Let 6 be any assignment. If the semantic domain has contractive solutions and type
continuity, then

1. if @ & Pos(7), then O[a < da](1) <X 8[a < d1](7).
2. if a & Neg(7), then 0la + di](7) X Ola + d2](7).

Proof: Let 7 = 79/E. The result is proven by induction on the number of
equations in E with a sub-induction on the structure of 79. The sub-induction on
To’s structure proceeds as in Lemma 1. The interesting case is the new base case
where 19 is a defined variable §; with 0; = in E.

Assume 7 = 0, /E where 6; = 7y is an equation in E. If a € Pos(d;/E) and « €
Neg(d1/E), then the result is vacuously true. If a ¢ Pos(61/E) and a ¢ Neg(d,/E),
then let E' be those equations in E that do not contain o and do not (recursively)
refer to a defined variable that contains « in its definition. Using Lemma 8, it can
be shown that 0, /E' = §,/E, so it suffices to prove the result for d;/E’. Notice
that a does not occur in 1 /E'. It is easy to check that 0[a < d](61/E') = 6(6,/E")
holds for all d € Dy and the result follows.

Assume « & Pos(01/E) and a € Neg(d1/E). We claim §; € Neg (11/E). To see
this, note that

81 € Neg (r1/E) A a € Neg (6,/E)

= «a € Pos'(n1/E) by Lemma 10
= «a € Pos'(61/E) by Definition 18
= a € Pos(6,/E) by Definition 18

which violates the assumption a & Pos(d,/E). Therefore §; ¢ Neg (11 /E). Let E'
be E with the equation ; = 71 deleted. Now

81 € Neg (11 /E)
= 61 € Neg (11 /E'") see below
= 61 € Neg(r1/E') since Neg(r1/E') C Neg (11/E")

The second line follows because deleting equations from E can only decrease the
least solutions of the equations for Pos’ and Neg'.

Fix an assignment 6. For each dy € Dy, define Fy,(d) = 0] < dp][01 d|(11/E").
It is clear that Fy, is a definable operator. By the induction hypothesis, Fy, is a
monotonic operator. It is easy to see that a ¢ Pos(r1/E'), so it also follows from
the induction hypothesis that F' is anti-monotonic in its subscript. More formally,
if di < da, then Fy,(d) < Fy, (d) holds for every d € Dy.

Define a function h on Dy by

28

h(do) = 9[0& — do](51/E)

Now we have

Fy, (h(do))

0[0[«— do][61 — h(do)](Tl/El)

(Ola + do][61 h(do)])¥ (1)

(8] + do])®) ' (1) see below

(Bla < do))E (1) by part 1 of Lemma 7, since E' C E
= (Ola o))" (51)
= 0[& «— do]((sl/E)
= h(do)

To check that the fourth line follows, we would like to check that

!

(Bl = do][61 + h(do)])*" = ((6]a 4 do]*)*
It suffices to check that

B[« do][61 < h(do)](v) = (B[+ do])F (v)
for all v not given definitions in E'. If v is not given a definition by E, then

Bla < do][61 < h(dp)](v) = Bla < do](v) = (B[< do])E (v)
If v is given a definition by E (but not by E’), then v = §;; in this case,

Ola < dp][01 + h(dp)](v)
9[a — do][61 — h(do)]((sl)
h(do)

9[0& «— do]((Sl/E)

(B]a « do))F (1)

(Bfex ¢ do]) " (v)

Hence, the fourth line follows.

Thus, Fy,(h(dp)) = h(dp) holds for every dy € Dy. Let di <X d2. Fy,(h(d2)) =
h(d2). Fy,(h(d1)) 2 Fg,(h(d1)) = h(dy). By type continuity, h(d2) < h(d;) which
is the desired result.

If « € Pos(61/E) and o € Neg(d1/E), then the proof is omitted since it is similar
to the case where o € Pos(61/E) and o € Neg(6;1/E). Like the previous case,
F' is monotonic in its argument; unlike the previous case, F' is monotonic in its
subscript. [|

COROLLARY 3 Assume the semantic domain has type continuity and contractive
solutions.

1. If a & Pos(t/E), then 8((1/E)[a < T]) 2 0(r/E) <X 6((1/E)[a +]) holds for
all assignments 6.

2. If o € Neg(r/E), then §((17/E)|o « L]) < 8(r/E) 2 ((7/E)[a + T]) holds
for all assignments 6.

29

The rest of the soundness results proceed as before. In particular, the Variable
Elimination Procedure remains unaffected, except that it uses the new definitions
of Pos and Neg. Just as in Section 4, we extend Pos and Neg:

Pos(Na.o) = Pos(o) — {a}

Neg(Va.o) = Neg(o) — {a}
LEMMA 12 If o is a quantified recursive type expression and the semantic domain
has type continuity and contractive solutions, then

a € Neg(o) = Va.o =ofa + L]

a & Pos(o) = Va.o =ofa + T]

Proof: Same as the proof for Lemma 2. [|

EXAMPLE: Leto = ((53 e (53) e ((52 — (51)/(51 =] — (51 A (52 = Qg — (52 /\(53 = Q3 — (53.
Note that Pos(o) = {a2,a3} and Neg(o) = {a1,a3}. Assuming that the seman-

tic domain has contractive solutions and type continuity, Lemma 12 allows us to
conclude that

Va1Va2‘v’a3.((53 — (53) e ((52 e (51)/ (51 =] — (51 A (52 = Qg — (52 /\(53 = Q3 — (53)
= Vag.((63—)63)—)(52—)51)/61:T—)51/\52:J_—)52/\53:a3—>53)

O

The next example shows that the assumption of type continuity is needed in the
proof of Lemma 12.

ExampLE: Consider the type expression Va.(d/d = a — §). If Lemma 12 holds,
then we have

6/6=T =96
Va.(§/6 = a — §) by Lemma 12
(0/60=1L—90) since L is an instance of «

IA

Let §o = T — 09 and §; = L — 9, be elements of the semantic domain. Any
semantic domain in which it is not the case that dg < &; serves as a counterexample
to the conclusion of Lemma 12.

Take the semantic domain to be the set of regular trees and define x <, y to hold
iffx=y. Letx X}, yholdiff v =1,y =T, or Iz, z2,y1,2(r =21 > 22 Ay =
y1 = Y2 Ay1 25z Axg < y2). Let ¢ <"y hold iff « <} y for some . Next, notice
that dp =i, 61 iff T = do Xjy; L — 61 iff L X T Ado =} d1. It is easy to see by
induction that dy 2} d; is true for all <. Hence, dy A’ d1. Thus, the conclusion of
Lemma 12 does not hold for this semantic domain.

This semantic domain has contractive solutions, standard function types, and
standard glb types. What it lacks is type continuity, and it is instructive to see
why. Consider the two definable operators:

Fi (d) = [a+d(L— a)
Fr(d) = [a«d|(T = a)

30

Let T — T — ... be the infinite regular tree where T appears in the domain of
every “—”. Observe that

Fr(To>T—=..0=T—=>T=...
Note that for all d we have F+(d) <’ F'| (d). In particular,
Frlo1—>.)< F(LlsL—o..)=L—>1—...
If the domain had type continuity, it would follow that
ToT—o... X L—>1—...

As shown above, this relation does not hold, so therefore the domain does not have
type continuity.
|

As discussed at the beginning of this section, type continuity is needed to guar-
antee that the finite computation performed by Pos and Neg is consistent with
the orderings on all finite and infinite trees. Example 18 shows how the problem
arises when = A' y, but x <; y for all i (where =<; is the relation used in Lemma 9
to define the usual ordering on regular trees). Thus, in contrast to the case of
simple expressions where no additional assumptions on the semantic domain are
needed for soundness, type continuity is needed to prove soundness for recursive
type expressions.

We remark that the definition of a reduced quantified recursive type expression
is the same as a reduced quantified simple type expression (Definition 6).

THEOREM 7 Let o be any quantified recursive type expression. If the semantic do-
main has type continuity and contractive solutions, then 0 = VEP(o) and VEP(o)
is a reduced recursive type expression.

Proof: Follows easily from Lemma 12. [|

As with simple type expressions, an irredundant quantified type expression is one
such that all equivalent quantified type expressions have at least as many quantified
variables. Note that this definition does not say anything about the number of
defined variables. It is conceivable (although we will see that this is not the case
under our usual assumptions) that an irredundant type might require many more
defined variables.

THEOREM 8 If the semantic domain has type continuity and contractive solutions,
then every irredundant recursive type expression is reduced.

Proof: Same as the proof of Theorem 3. |

31

5.3. Completeness
In this section, we face concerns similar to those found in Section 4.2.1.

Definition 19. Let S be a set of constraints over unquantified recursive type ex-
pressions. Define B to be a function on sets of constraints such that B(S) is the
smallest set of constraints where the following all hold. These clauses are to be ap-
plied in order, with the earliest one that applies taking precedence. The variables
s and t refer to unquantified simple type expressions.

1. B0)=190

2. Iftis T, 1, or a regular variable, then B({t/E <t/E'}US) = B(S).

3. B({s1 = s2/E<t1 = t2/E'}US)=B({t1/E' < s1/E,s2/E <t2/E'} US).
4. If 0 =7isin E, then B({0/E <t}US) =B{7r/E 2t}US).

5. If =7isin E', then B({s Xd/E'}US)=B({s < 7/E'}US).

6. Otherwise, B({s/E < t/E'} US) = {s <t} UB(S).

LEMMA 13 Assume that D is a semantic domain with contractive solutions, stan-
dard function types, and standard glb types. If € is a solution of {t;/E < t2/E'},
then it is a solution of B({t1/E < t3/E'}).

Proof: The proof is very similar to the proof of Lemma 3 and so is omitted. The
most important new case is Part 6 of Definition 19. In this clause, note that s and
t must be regular variables of E and E’ respectively. Thus B(S) does not mention
any defined variables. This observation is needed to show that if 6F (1) < 07 (t5)
then 6 is a solution of B({t1/E <X t2/E'}). [|

LEmMMA 14 Let VVi.11/E; and YV,.15/ E5 be compatible recursive type expressions.
If the semantic domain has contractive solutions, standard function types, and
standard glb types, then B({ri/E1 =X 72/E»}) is a (V1,V3)-miniscule system of
constraints.

Proof: Let B({n/E1 <X m/Ex}) = {s1 =X t1,...,8n =X tp}. We show that
B({m1/E1 <X 12/ E,}) satisfies the conditions of Definition 10.

1. By compatibility V; and V5 are disjoint sets of variables.
2. By Part 3 of Definition 19 at most one of s; and ¢; is a — expression.

3. Consider a constraint ¢ < ¢t. Constraints of the form L < 1, T < T, and
a = « are eliminated by Part 2 of Definition 19, constraints t — t' <t — t’ are
eliminated by Part 3, and constraints § < § are eliminated by Parts 4 and 5.
Therefore, for all ¢, we have t <t is not in B({m1/E1 = 72/ E2}).

4. Same as Part 4 of the proof of Lemma 5 (but using Definition 19).

32

5. Proof similar to the previous step.

6. Let 6 be any assignment. We must show that there is an assignment 6’ such
that 8(v) = 6'(v) for all v ¢ V; and 0'(s;) < 0'(¢;) holds for all i < n. Since

0(VV1.T1/E1) j G(V%Tz/Ez),
it follows that
0(VV1.T1/E1) j 0(T2/E2).

Since the semantic domain has standard glb types, it follows that ¢'(r/E;) <
6(m2/E>) holds for some 6’ that agrees with 6 except possibly on V;. Since no
variable in V; occurs in 75/ Es, we know 0'(11 /Ey) < §'(12/E3). By Lemma 13,
it follows that 8’ is a solution to B(ri/E; X 12/ E>).

7. Similar to the previous step with the roles of 7, and 7 reversed.

THEOREM 9 If the semantic domain has contractive solutions, standard glb types,
and standard function types, then any two equivalent reduced recursive type ex-
pressions have the same number of quantified variables.

Proof: Let ¢’ and ¢" be two equivalent reduced recursive type expressions. If
necessary, a-convert o' to o3 = VV;.11/E and a-convert ¢’ to oy = VVa.13/E' in
such a way that o1 and o2 are (V1, V2) compatible. By Lemma 14, B(r1 /E < 75 /E")
is a (V1,V2)-miniscule system of constraints. By Lemma 4, B(n/E <X n/E')
is a (V1, Va)-convertible system of constraints, which implies that |Vi| = |V5|.
|

Unlike the case of simple expressions, two equivalent reduced types need not
be a-equivalent. For example, consider a semantic domain that has contractive
solutions. Let dg = dp — dp and 6; = (01 — 01) — (01 — 01). These two types
exist since the domain has contractive solutions. By substituting (6g — do) in for
do, we obtain dy = (09 — dp) — (do — o). Since the domain has contractive
solutions, it follows that dy = d;. Clearly, the type expressions dy/do = do — do
and 41 /01 = (61 — 61) — (01 — 01) are not a-equivalent.

THEOREM 10 If the semantic domain has contractive solutions, type continuity,
standard function types, and standard glb types, then a recursive type expression
is reduced iff it is irredundant.

Proof: The if-direction follows from Theorem 8. To prove the only-if direction,
let o be a reduced recursive type expression with the goal of proving that o is
irredundant. Let ¢’ be an irredundant recursive type expression that is equivalent
to 0. (Such a ¢’ can always be found by picking it to be a type expression equivalent

33

to o with the smallest possible number of quantified variables.) By Theorem 8, ¢’
is reduced. By Theorem 9, o and ¢’ have the same number of quantified variables.
Hence, o is irredundant as desired. [|

THEOREM 11 Let o be quantified recursive type expression. If the semantic do-
main has contractive solutions, type continuity, standard glb types, and standard
function types, then VEP(0) is an irredundant recursive type expression equivalent
to o.

Proof: Follows easily from Theorem 7 and Theorem 10. []

6. Intersection and Union Types

In this section we extend our results to type languages with union and intersection
types. This is the first point at which the technique of eliminating variables that
appear solely in monotonic or anti-monotonic positions is sound but not complete.

6.1. Preliminaries
As a first step union and intersection types are added to simple type expressions.

Definition 20. Eztended type expressions are generated by the grammar

Tu=a|T|L|n+n|n n|n =

Extended quantified types are adapted in the obvious way to use extended type
expressions instead of simple type expressions. The operations + and - are in-
terpreted as least-upper bound and greatest-lower bound, respectively. To give
meaning to extended type expressions an assumption is needed about the upper
and lower bounds that exist in the domain.

Definition 21. A semantic domain D = (Dy, D1, X,M) has standard upper and lower
bounds if every pair of elements 71,7 € Dy have a least upper bound 7 U1, and a
greatest lower bound 71 M7 in Dy.

Note that requiring 7 M 7» exist is different from having standard glb types, as
standard glb types are glb’s of (potentially) infinite sets in D .

PRrROPOSITION 2 The Standard Model (Example 1) and Regular Tree Model (Lemma 9)
both have standard upper and lower bounds. Furthermore, in both these models,
Ty =y Uae > ys =1 MNay > y1 Uy and o1 = y1 MNas = yo = 1 Uxs — y1 Mys.

Proof: First note that for every x € Dy it is the case that x = T, x = L, or
x = x; — o for some z; and xz. Also note that both models have standard
function types.

34

We must show that Uy and « My exist for all ¢,y € Dy. It is easy to check that
the following equations cover all possibilities:

TUx = T cUT =T
lUx = x rUl =z
1lnNax = L Ml = L
TN = x cMNT =

Ty = y1Udxes 2y = w1 MMx2 = y1 Uys Ty = y1MNeas =y = 1 Uz = y1MNy2

The eight equations on the first four lines are easy to verify. To justify the equation
1 >y Uze = y2 = 21 Ny — y1 Uys, note that

z1MNxe X 23
1Mz X Ty
y1 =Xy lye
y2 =X y1Uye

from which it follows that x; Mxs — y1 Uy- is an upper bound of both z; — y; and
Ty — y2. Let a — b be any other upper bound of z; — y; and x5 — y2. Since the
domain has standard function types, we have a < z; and a < 2, so a < z; M x,.
Similarly y; Ul yo = b. Therefore, 1 Mxy — y; Uy, is the least upper bound. The
justification of the last equation is symmetric.

Finally, we need to show that the above argument is sufficient. In the case of
the Standard Model, the above is sufficient to push the lower and upper bounds to
the leaves where they can be eliminated. In the Regular Tree Model, when taking
bounds for a and o' with associated definitions £ and E’ respectively, create a
new variable for each bound of a defined variable from FE and a defined variable
from E'. For each such newly created variable, form its definition by taking the
bound of the right hand sides and moving the bound inside according to the above
procedure. This forms a new set of equations. The details of this construction are
left to the reader. []

Given an assignment 6, the meanings of the new type operations are:

9(7’1 -|—T2) = 0(T1)|_|9(T2)
9(7’1 '7'2) = 0(7’1)“9(7’2)

6.2. Soundness for Non-Recursive Types

We first extend Pos and Neg to include the new operations.

Pos(ty + 1) = Pos(m1) U Pos(ma
Pos(1y - 12) (11)

Neg(my + 1) = Neg(m1) U Neg
Neg(m1 - 72) Neg(m)

35

We can now restate the basic lemma needed to prove soundness for the non-
recursive case.

LEMMA 15 Let 7 be any extended simple type expression. Let di,ds € Dy
where d; < dy. If the domain has standard upper and lower bounds, then

1. If a & Pos(7), then 8(7[a < dz2]) < 8(7[a < dy]) holds for all assignments 6.
2. If a & Neg(7), then 8(7[a < d1]) < 0(7[a < d3]) holds for all assignments 6.
Proof: This proof is by induction on the structure of 7 and is an easy extension of

the proof of Lemma 1. Let dy,dy € Dy where d; < dy, and let 8 be any assignment.
There are two new cases:

e Let 7 =1 +7». Assume « & Pos(7). By the definition of Pos, we know
a & Pos(11) U Pos(12)

and therefore
0[0[(—d2](7’1) < 9[()[(—(11](7'1)
0[0[— d2](7’2) < 9[0& — dl](Tg)

follow by induction. The relationships still hold if the right-hand sides are made
larger, so
0[0[«— d2] (Tl)
0[0[— d2](7’2)

< 0[()[(—d1](T1)|.|0[0[(—d1](T2)
j 0[()[(—d1](T1)|.|0[0[(—d1](T2)
Combining these two inequalities we get

O[c do](m1) U b[a da](m2) = Olo < di](m1) U b < di](72)

The proof for the subcase a € Neg(r) is similar.

e Let 7 =7 - 7. This case is very similar to the previous one, with M substituted
for LI

An inspection of the results from Section 4.1 shows that the proofs of Lemma 2
and Theorem 2 depend only on Lemma 1 and not on a particular language of type
expressions. Therefore, by Lemma 15, it is immediate that Procedure 1 is a sound
variable elimination procedure for extended simple types in domains with standard
upper and lower bounds.

While variable elimination is sound for extended simple type expressions, it is not
complete.

36

ExaMpLE: In either the Standard Model or Regular Tree Model we have
Va.la = a)+ T=T
Clearly, the first type is reduced and not irredundant. O

Similarly, Va.(aw = «)- L= L. In general, the Pos and Neg computations over-
estimate the set of positive and negative variables for expressions 71 + 7 where
0(11) < 6(72) for all 8 (and similarly for -).

A subtler source of incompleteness arises from interaction between universal quan-
tification and unions and intersections.

EXAMPLE:

Ya,B.a-8 = «a-f

= M{Ola + z1,0 + z2](a- B — a- f)|z1,22 € Do}
by Proposition 1

= |_|{.Z'1 Maxe — 21 11 I2)|I1,I2 S Do}

= M{& — |x € Dy}
since {z1 Naa|z1,22 € Do} =Dy

= Va.a = «
O

Note that there is no explicit relationship between a and (8 in the type. The
relationship follows from the fact that the variables are always used together and
the universal quantification.

6.3. Improvements

We do not know a complete version of the Variable Elimination Procedure in the
presence of union and intersection types. In this section we briefly illustrate some
heuristic improvements that have been useful in practice [1, 9]. As illustrated in
Section 6.2, redundant intersections and unions are a significant source of incom-
pleteness. This suggests the following procedure:

Procedure 12 (Extended Variable Elimination Procedure (EVEP)) Leto
be an extended quantified type.

1. Let o1 be the result of replacing any subexpression 71 + 72 in o by 7o if
6(11) = 6(72) for all assignments 6.

2. Let o2 be the result of replacing any subexpression 71 - 75 in ¢’ by 7w if
6(12) = () for all assignments 6.

3. Let o5 = VEP(03).

37

4. Halt if no variables are eliminated in (3); the result is o3. Repeat (1)-(3) on
o3 otherwise.

Note that deciding whether a type is equivalent to T or L in all assignments is
not necessarily easy, depending on the expressiveness of the type language under
consideration.

The interesting aspect of Procedure 12 is that iterating the elimination of inter-
sections, unions, and variables is necessary, as the following example shows:

Va;ﬂ'ﬂ - (CM ! /6)
= Vp.8— (L-0) since « is not negative
= V3.8 —>L since L -7 =1
=T -1 since (3 is not positive

Since each iteration but the last of the Extended Variable Elimination Procedure
eliminates at least one variable, the complexity is at worst the product of the
number of quantified variables O(m) and the cost of recomputing the Pos and Neg
sets O(mn), for a total cost of O(m?n).

6.4. Soundness and Incompleteness for Recursive Types
In this section we consider extended recursive types.

Definition 22. An extended recursive type has the form

T/ /\ 6@':7-1'

1<i<n

where the equations are contractive and 7,7, ..., 7, are extended type expressions
(i.e., with unions and intersections; see Definition 20).

It will come as no surprise that, in addition to standard upper and lower bounds,
the domain must have contractive solutions and type continuity for variable elim-
ination to be sound for extended recursive types. An inspection of the statement
and proof of Lemma 11 shows that it does not depend on a particular definition of
type, but only on type continuity and soundness of the non-recursive case. Thus,
adding the hypothesis that the domain has standard upper and lower bounds to
Lemma 11, and substituting Lemma 15 for Lemma 1 in the proof of the lemma,
gives a proof of soundness for variable elimination on extended recursive types.

Because extended simple types are a subset of the extended recursive types and
the VEP is incomplete for extended simple types, it follows that variable elimination
is incomplete for extended recursive types.

38

7. Constrained Type Expressions

This section presents results for types with polymorphism and subtyping con-
straints, which is also called bounded polymorphism or constrained types. This
language is the most general that we consider.

7.1. Preliminaries

We begin by defining a type language with subsidiary subtyping constraints. We
present the definitions and proofs as though “—” were the only constructor but the
results apply more generally and we leave it to the reader to fill in the details for
other constructors.

Definition 23. An (unquantified) constrained type expression has the form 7o/C
where C' is a finite set of constraints of the form

n <7

™ X T,

where 7; and 7} are unquantified simple type expressions for all 1 <4 <n.

Unlike the case of recursive types, note that Definition 23 makes no distinction
between “regular” and “defined” variables—all variables are regular.

Definition 24. Let 6 be any assignment. Then
1. 0(r/C) = 6(r) provided that € is a solution of C.

2. O(¥oy1,...,0,.7/C) =
{001 < z1,...,0n < x,](7/C)|z1,...,2, € Dy and

0[01 < z1,...,0, <] is a solution of C'}

(1)

The meaning of an unquantified constrained type 7/C under assignment 6 is un-
defined unless € is a solution of C. Furthermore, the M operation in the meaning
of a quantified constrained type under assignment @ is restricted to those modifica-
tions of 6 that satisfy the constraints. It is easy to see that constrained types are
a generalization of recursive types, because any recursive type

Vag,...,am. 7/ 0 =71 =T Ao . Ay =Ty = T,

can be written as a constrained type

39

Vag,...,am 7/ 0 X1 9T A =71 2 TLA ... Ay 2Ty > T NGy =Ty = 7}

It is also worth noting that it is well-defined for a quantified constrained type to
have an inconsistent system of constraints. For example, if C =T <4 < L, then

6(Vo.1/C)
M{0[0 + z](7/C)|x € Dy and 0] < x] is a solution of C'}
QG

An important feature of constrained types is that the constraints may have mul-
tiple lower (or upper) bounds for a single variable, such as

m—oamn3aAT3o>u3aNBI7yANLBIT—>Ts

In any solution of these constraints, & must be an upper bound of ; — 7 and
T3 — T4, and @ must be a lower bound of v and 75 — 74.

To give algorithms for eliminating quantified variables from constrained types, it
is necessary to characterize the solutions of constraints. To minimize the number of
new concepts needed to explain the algorithms in the case of constrained types, we
build on the results of Section 5 by characterizing solutions of constraints in terms
of equations.

Definition 25. A system C of constraints is fully closed iff

mXmmeECAInelC == nnel
mon3Inonel = neCAn<nneC

o3 lLleC => T<1Le(C

T —>melC => TLel

A system is closed iff it can be obtained from a fully closed system by the deletion
of some subset of the trivial constraints 7 < 7. A closed system C' is consistent iff
T<1l¢cC.

For example, the system {51 — 0o < (53,53 < 01 — 52,(51 — 02 = 0 — 52,51 =
01,02 =X 02,03 < 03} is fully closed (and hence closed) whereas the system {6; —
02 = 83,03 < J; — d2} is closed but not fully closed.

Definition 25 is taken from [8]. Intuitively, closing a system of constraints C is
equivalent to solving C, and if the closed system has no inconsistent constraints,
then it has solutions. Instead of asserting that closed consistent systems have
solutions directly, we characterize those solutions in terms of equations. In this
section, we do not assume the existence of standard function types. However, if a
system is not closed, standard function types are generally required for the closure
to be equivalent.

40

Definition 26. We use ¥ and II to abbreviate multiple type unions and intersections,
respectively. Let C' be a closed consistent system of constraints. Let the variables
of C be d1,...,d,. For each variable §; appearing in C', define

Lg_ L +3{r|r <6; € C and if 7 is a variable §;, then j < i}
Ug = T -I{r|r = 6; € C and if 7 is a variable ¢;, then j < i}

Let ay,...,a, be fresh variables. Define a system of equations E¢ for C:

(Si :Lg’:+(a@U§f)
1<i<n

The intuition behind Definition 26 is that any solution for the equation for §;
ranges between L§ (when o; = L) and Uy (when o; = T). For example, consider
the system C' of constraints

51j62 A T—)J_jél A 61jJ_—>T
Closing this system gives

T o l<6G AT L1l<13TAL<T

which is consistent. The equations E¢ are

0 = (T—=o>L+(ag-(L—=T))
0y = ((T—)J_)+51)+(a2'T)

This example shows that the equations Ec are not necessarily contractive, since
01 appears outside of a constructor in the equation for d;. However, E¢ is always
equivalent to a contractive system of equations.

LEMMA 16 Let Ec be a system of equations for a closed consistent system of
constraints C'. Then there is a system of constraints Ef, that is contractive such
that Ec and Ef, have the same solutions.

Proof: Examination of Ls; and Us; in Definition 26 shows that if ; occurs outside
of a — expression in the equation for d¢;, then j < i. We show by induction
on i how to construct a contractive equation for §;. The equation for §; has no
variable d; outside of a — expression, so the equation for §; is already contractive.
Assume that d1,...,0;—1 have contractive equations. Any variable J; outside of a
— expression in the equation for d; can be eliminated by substituting the right-
hand side of an equation for J;. Because j < ¢, we can choose a contractive
equation for d;, in which case the resulting equation for §; is also contractive.
|

41

Applying Lemma 16 to the example system of equations above, the contractive
system is

51 = (T—)J_)+(O[1'(J_—)T))
b = (T=oL)+(T->L)+(@-(L=>T))+(az-T)

To prove that a consistent closed system has a solution, it is helpful to define
two additional notions. A wvisible expression in a system of constraints is one of the
top-level “—” arms of either an upper or lower bound. A system of constraints is
flat iff every visible expressions is T, L, or a variable. Thus, for example, in the
constraint system {0y — d1 < (02 — 03) — d4,05 <X 06 — T}, there are six visible
expressions: dg, 01, o — 03, d4, dg, and T; this system is not flat.

LEMMA 17 Assume the domain has standard upper and lower bounds. Let C be
a flat, closed, consistent system of constraints. If § is a solution of E¢, then € is a
solution of C.

Proof: Let the variables that occur in C be d1,...,d,. In this proof, we use ¢
to denote T, L, or a variable; 7 is used to denote an arbitrary expression. Note
that if 7 is a term in L§ , then (7) < 6(L§) < 0(L§ + o - US) = 0(d;); hence,
0(7) < 6(d;). Thus, to show that 8(r) < 6(d;) it suffices to show that 7 is a term
in L§ . To show that 6(6;) < d for some d in the semantic domain, it suffices to
show that 0(L60i) =< d (for which it suffices to show that 6(7) < d for every term 7
in Lg’:_) and Ug = d (for which it suffices to show that 7 is a factor in Ug for some
7 such that 8(r) = d). Without loss of generality, we can assume that C is fully
closed since we can add all constraints of the form ¢; < #; and t; — t2 <t; — &9
(where t; and to are either L, T, or a variable ¢; for some ¢ < n) which makes C
fully closed but leaves it finite, flat, and consistent. Notice that adding these trivial
constraints does not change L(;Oi or U g in any way nor does it affect whether € is a
solution of the constraints. There are four cases to consider since each upper and
lower bound must either be of the form ¢ or t; — ts.

1. If tl j t2 S C, then 0(t1) j e(tz)

There are three subcases since ¢, can be L, T, or a variable §;.

(A) If L <ty € C, then 8(L) < 0(t2).
This holds since L is the least element in the semantic domain.
(B) If T <ty € C, then 6(T) < 6(t2).
Since C' is consistent, either t2 = T (in which case 8(T) =< 6(t2) holds
trivially) or t2 = §; for some ¢ (in which case 6(T) < 6(t2) holds since T is
a term in L(;Oi).
(C) If §; <ty € C, then 9((5@) < 0(t2).
There are three subcases since ¢, can be L, T, or a variable J;.
i. If 0; < L € C, then 0(&) = H(J_)
Note that §(Uy) = L since L is a factor in U§. Also note that §(L§) =
L since every term in L§ is either L or dy for some i’ < i (so the

42

induction hypothesis applies since 6y < L € C and 8(dy) < L follows).
Hence, 0(d;) < L as desired.
ii. If§; X T € C, then 0(6;) 2 6(T).
This result holds since T is the greatest element in the semantic domain.
ili. If §; < 0; € C, then 6(0;) < 6(J;).
This result is proven by induction on . If i < j, then 8(d;) < 6(d;) holds
since J; is a term in LC If ¢ = j, then 6(d;) < 6(d;) holds trivially. So
we may assume that j < 7. Let 71 be a term in LC Hence 1 < 6; € C
and ¢; X d; € C, from which it follows that 7 -< 6 € C. Either 7 is
a term in LO (and so 8(11) = 0(d;)) or 71 = 0y Where Jj <4 <i(and
so () < 9(6) holds by induction). Thus, §(L§') < 6(d;). Since §; is
a factor in U, it follows that (US) < 6(8;). Hence, 8(5;) < 6(5;) a

desired.

2. Ift;y — ts <t3 € C, then 0(t1 — tz) < 0(t3).
Notice that t3 # L since otherwise C' is not consistent.
If t3 = T, the result holds since T is the greatest element in the domain.
If t3 = §;, the result follows since t; — ¢ is a term of L(;Cl_.

3. If t1 >ty t3 =214 € C, then 0(t1 e tz) < 0(t3 — t4).
Since C' is fully closed, t3 <t; € C and t; < t4 € C. It follows from case 1 that
6(t3) < 0(t1) and 0(t2) < 6(t4) hold. By Property 5 of domains (Definition 1),
it follows that 6(t1 — t2) < 0(t3 — t4) as desired.

4. If t1 <ty = t3 € C, then 0(t1) < a(tz — t3).
Notice that t; # T since otherwise C' is not consistent.
If t; = L, the result holds since L is the least element in the domain.
Ift; = 61, the result 6(0;) < 6(t2 — t3) is proven by induction on i.
Let 7 be a term in LO Note that 7 # T or else C' is not consistent. If 7 = L,
then 0(7) <X 6(t2 — t3) holds since L is the least element in the semantic
domain. If 7 = §; for some i’ < 7, then 6(7) < 0(t2 — t3) holds by induction. If
T =t4 — t5, then 6(7) < 0(t2 — t3) holds by case 3. Hence, 8(7) < 0(t2 — t3)
holds for every term 7 in Lg. Thus, 0(L§’:_) < O(ta — t3). Since to — t3 is
a factor in Ug, it follows 0(U§f) < 0(tz — t3). Thus, 0(d;) < 0(t2 — t3) as
desired.

Thus, 6 is a solution to C' as desired. [|

Definition 27. A domain is adequate if

1.
2.

the domain has contractive solutions, and

the domain has standard upper and lower bounds,

By Proposition 2 and Lemma 9, the Regular Tree Model (Lemma 9) is adequate.
Theorem 13 shows the relationship between solutions of C' and solutions of E¢.

43

THEOREM 13 Assume the domain is adequate and let C' be a closed, consistent
system of constraints. Then the following all hold:

1. If 0 is a solution of F¢, then 6 is a solution of C'.
2. If 6 is a solution of C, then 6]...,a; « 6(4;),...] is a solution of E¢.

3. C has a solution

Proof:

1. This result is proven by induction on the complexity of C' where the complexity
of a system is the pair (md, nvt) under the lexicographical ordering where md
represents the maximum nesting depth of “—” in the visible terms and nwvt
represents the number of visible terms with that maximum nesting depth. The
base case consists of the flat systems, i.e. those in which md = 0. The result
for the base case follows from Lemma 17.

We now proceed with the induction. Let 6 be an arbitrary solution of E..
Assume there are n variables d1,...,d, mentioned in the constraints of C. Let
To be any one of the visible expressions with maximum depth. Since the system
is not flat (because we are in the inductive case), 9 = 7§ — 7. Let dpt1
be a fresh variable (distinct from 6y,...,0,,@1,...,q,). Let R be a syntactic
function on expressions that replaces each occurrence of 79 by d,,4+1. Thus, for
example, R((1p = 10) = 1) = (0n41 = dpt1) — 1. Let C' be the system of
constraints defined by C' = {R(11) X R(m2)|r1 X2 € C} U {10 =X dpnt1,0n+1 =X
T}t U{R(m) 2 1|1 210 € C}U {1 = R(m)|ro < 71 € C}. Since any solution
of C' satisfies 0,,+1 = 7o and hence satisfies R(7) = 7 for all expressions 7, it is
clear that any solution of C' is also a solution of C'. It is easy to check that C’ is
a closed, consistent system of constraints. If V' is the set of visible expressions
of C, then {R(7)|T € V}U{7), 7'} is the set of visible expressions of C’; since 1y
was eliminated as a visible expression, it is clear that C’ is less complex than C
and so the induction hypothesis applies to C'. Let Ey (respectively, E) be the
contractive system of constraints equivalent to E¢ (respectively, E¢/) that is
guaranteed to exist by Lemma 16. Since the domain has contractive solutions,
6% solves E; and hence Ec:. By the induction hypothesis, 821 solves C. Since
6% is a solution of C', 0% (6,11) = 0F1(1). Thus, 881 (R(1)) = 0% (7) holds
for all expressions 7. Let 1 < < n. If 7o < 6; € C, then L§ = L; 4+ 79 where
L; is LJC:_ with the 79 term removed and Lg = R(L;) + 7o; hence it follows
that 9% (L(SOZ_’) = 0P (R(L;) + 7o) = 0P (L; + 1) = 621 (LJC) Ifrg X9; ¢ C,
then Lg’: = R(dei) and hence, 61 (Lg) =651 (R(Lg’z_)) =651 (LJO,-)' In either
case, 9E1(LS") = 8 (LS). Similarly, 621 (US") = 681 (US). Thus, 651(5;)
=081 (L + ;- US") = 081 (LS + o - US). Thus, 67 is a solution to E¢ and
hence to Fy. Since the system Ej is contractive, this implies that (§£1)F0 = gF1.

44

s
= (9F1)Eo by the above
= (0[...,0n41 < 0P (6,11)))F° by definition of #F1
= (0[6ns1 < OF(041)]) F0 since §; ... d, are redefined by F
= 0F[6,11 < 0F1(6,41)] by Part 2 of Lemma 7
= O[6ny1 < 051 (5,41)] since € is a solution of Ex (and hence Ey)

Since %1 is a solution of C' and hence of C, it follows that 8[§,,+1 + 0% (6,11)]
is also a solution of C. But 0,41 does not occur in C. Therefore, ¢ is a solution
of C as desired.

2. Let 0 = 9[RN 7 9((51), ..]
0'(d:)

= 0(5)
O(LS) U b(s;) since 0(L60i) < 60(6;)
(LS) U (8(5:) NOUL)) since 8(5;) < B(US)
= 0'(L§)U(0'(es) N0'(US)) since no v occurs in L§ or US

= 0(L§ +a; - UE)

This proves that 6" is a solution of E¢ as desired.

3. By Part 1 of Definition 27, contractive equations always have solutions in an
adequate domain. By Lemma 16, E¢ is equivalent to a contractive system of
equations. Thus, F¢ has a solution. The result follows from Part 1.

COROLLARY 4 Let C be a closed, consistent system of constraints over an adequate
domain. Let Ef, be the corresponding contractive set of equations (see Lemma 16).
Then Véi,...,0,.7/C = Vau,...,an.7/Ef, provided ai,...,a, do not appear in
Vé1,...,0,.7/C.

Proof: Fix an assignment 6.

Let @1, ...,x, be elements of Dy such that 6]...,0; < x;,...] solves C.
By Part 2 of Theorem 13, it follows that [...,d; < z;,...][...,a; < x;,...] solves
Ec.

By Lemma 16, it follows that 8[...,d; < x;,...][...,q; ¢ x;,...] solves Ef..
Since K., is contractive, it follows that (8]...,d; < @i,..][...,a; « z;,...])Fe
:0[,5@(—33“][,01@ <_'Tt:]

OVou,...,an.T/E()

< 0L, . (T EL)

= (0L..,0i < m,..])Ee(7)

= O]..,0 —xi,.. [, < x;,...])Pe(r) since Bl redefines 6. ..,d,
= O[...0 <z][, <z, (1) by the above

= 0[...,0; <z, ...](7) since no «a; appears in 7

= 0...,0 < x..J(7/C) since 0[...,d; < x;,...] solves C

Hence it follows that 6(Va, ..., an.7/Ef) X 0(Vo1,...,0,.7/C) for arbitrary 6.

45

Let x1,...,2, be arbitrary elements of Dy. Let ' = 0[...,a; « z;,...]. Notice
that (8")Fc solves EL, and hence solves E¢; by Lemma 16. By Part 1 of Theorem 13,
it follows that (8")F¢ solves C. Since (8')Fc solves C, it follows from Definition 24
that (8")7¢ (V6y,...,6,.7/C) < (8")Fe(r).

O(Vo1,...,0,.7/C)

= 0'(Vo1,...,0,.7/C) since no a; appears in 7/C

= (0)Fc(V6y,...,0,.7/C) since no ¢; is free in Véy,...,d,.7/C
< (8")Fe(r) by the above

= 0'(r/Eg)

0[o, QG S T,](T/EIO)
Hence it follows that 6(Vo1,...,6,.7/C) X 0(Vai,...,a,.7/Ef,) for arbitrary 6.
The result follows since §(Vd1,...,0,.7/C) = 0(Vau, ..., a,.7/E() holds for all
assignments 6. [|

A solution procedure for constraints over regular trees is given in [15].

7.2. Soundness

The equivalence between constraints and equations in an adequate domain suggests
that variable elimination can be performed by first translating from constraints
to equations, applying the results of Section 6.4 to eliminate variables, and then
translating back (if desired) to constraints. We can improve on this procedure with
a modified Extended Variable Elimination Procedure that takes advantage of the
structure of constraint systems.

Procedure 14 Let 0 =V0,...,d,.7/C be a quantified constrained type. Let
O'I = VOél,. . ,an.T/EC
be the corresponding extended quantified type. Perform the following steps on o':

1. Let o be the result of replacing any subexpression 71 + 72 in o’ by 75 if 8(11) <
6(12) for all assignments #. In particular, if any equation of E¢ has the form

5 =L§ +T-Ug
then replace the equation by
6; = Us

since O(L§) < 6(Ug) for any solution 6 of the constraints.

2. Let o2 be the result of replacing any subexpression 71 - 72 in ¢’ by 72 if (1) <
6(m1) for all assignments #. In particular, if any equation of E¢ has the form

6 =L§ +L-Uy

46

then replace the equation by

6 =L§

3. Let 05 = VEP(03).

4. Halt if no variables are eliminated in (3); the result is o3. Repeat (1)-(3) on o3
otherwise.

We remark that the “in particular” parts of steps 1 and 2 will only become
relevant if some «; is set to either L or T by the elimination of that variable «;
during step 3.

ExampLE: Consider the type
V01,02 01 — 02/ 01 <X Ja
The extended quantified type is
Vag,as.01 = 02/E where Eis (01 = L+a;:-02 A do=L+ay-T).

Now Pos(6; — d2/E) = {a2} and Neg(d1 — 62/F) = {a1,a2}. Thus a; can be set
to T; performing this substitution and simplifying gives:

Va2.51 — (52/ (51 = (52 N (52 = Qg
Substituting s for the other variables gives:

Vas.an = ao

Soundness is easy to prove for the procedure given above.

LEmMMA 18 Let 0 = Vdy,...,0,.7/C and assume that C is closed and consistent.
If the domain is adequate and has type continuity, then Procedure 14 is sound for
.

Proof: Follows from Corollary 4 and Lemma 11. []

We note that it is easy to give an algorithm that implements the effect of Pro-
cedure 14 on the constraints directly, without requiring translations to and from
equations. We have chosen to present the constrained types in terms of equations
to build on the previous sections.

47

8. Conclusions

Polymorphic types with subtyping have rich structure. In this paper, we have
shown that for simple non-recursive types and recursive types, it is possible to
compute an optimal representation of a polymorphic type in the sense that no other
equivalent type has fewer quantified variables. Thus, the optimal representation can
be interpreted as having the minimum polymorphism needed to express the type.

In more complex type languages, in particular in languages with union and in-
tersection types, the same methods are sound but incomplete. The completeness
results for the simpler type languages show that the source of incompleteness is
in fact union and intersection types in these languages. The problem of whether
there is a sound and complete variable elimination procedure for languages with
intersection and union types remains open.

We have also given a sound variable elimination procedure for polymorphic con-
strained types. Variable elimination is critically important in implementations of
type systems using constrained types [9], and in fact the desire to better under-
stand variable elimination in this setting was the original motivation for this work.
However, the problem of whether there is a sound and complete procedure for
eliminating variables in polymorphic constrained types also remains open.

Notes

1. The source code for the Illyria system and an interactive demo are available at URL
http://www.cs.berkeley.edu/ aiken/Illyria-demo.html.

References

1. A. Aiken and B. Murphy. Implementing regular tree expressions. In Proceedings of the
1991 Conference on Functional Programming Languages and Computer Architecture, pages
427-447, August 1991.

2. A. Aiken and E. Wimmers. Type inclusion constraints and type inference. In Proceedings
of the 1993 Conference on Functional Programming Languages and Computer Architecture,
pages 31-41, Copenhagen, Denmark, June 1993.

3. A. Aiken, E. Wimmers, and T'.K. Lakshman. Soft typing with conditional types. In Twenty-
First Annual ACM Symposium on Principles of Programming Languages, pages 163-173,
Portland, Oregon, January 1994.

4. Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM Transactions on
Programming Languages and Systems, 15(4):575-631, 1993. Also in Proc. POPL’91.

5. L. Cardelli and P. Wegner. On understanding types, data abstraction and polymorphism.
Computing Surverys, 17(4):471-522, December 1985.

6. Bruno Courcelle. Infinite trees in normal form and recursive equations having a unique
solution. Mathematical Systems Theory, 13:131-180, 1979.

7. Pavel Curtis. Constrained quantification in polymorphic type analysis. Technical Report
CSL-90-1, Xerox Parc, February 1990.

8. J. Eifrig, S. Smith, and V. Trifonov. Sound polymorphic type inference for objects. In
OOPSLA 96, 1995.

9. M. Fahndrich and A. Aiken. Making set-constraint program analyses scale. In CP96 Work-
shop on Set Constraints, August 1996.

48

10.

11.

12.

13.

14.

15.

16.

17.

Fritz Henglein and Christian Mossin. Polymorphic binding-time analysis. In Donald Sannella,
editor, Proceedings of European Symposium on Programming, volume 788 of Lecture Notes
in Computer Science, pages 287-301. Springer-Verlag, April 1994.

Stefan Kaes. Type inference in the presence of overloading, subtyping and recursive types.
In 1992 ACM Conference on Lisp and Functional Programming. San Francisco, California.
LISP Pointers V, 1, pages 193-204, June 1992.

A. Koenig. An anecdote about ML type inference. In Proceedings of the USENIX 199/
Symposium on Very High Level Languages, October 1994.

D. MacQueen, G. Plotkin, and R. Sethi. An ideal model for recursive polymophic types. In
Eleventh Annual ACM Symposium on Principles of Programming Languages, pages 165-174,
January 1984.

J. C. Mitchell and R. Harper. The essence of ML. In Fifteenth Annual ACM Symposium on
Principles of Programming Languages, pages 28—46, January 1988.

J. Palsberg and P. O’Keefe. A type system equivalent to flow analysis. ACM Transactions
on Programming Languages and Systems, 17(4):576-599, July 1995. Preliminary version in
Proc. POPL’95, 22nd Annual SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 367-378, San Francisco, California, January 1995.

F. Pottier. Simplifying subtyping constraints. In Proceedings of the 1996 ACM SIGPLAN
International Conference on Functional Programming, pages 122-133, May 1996.

Geoffrey S. Smith. Principal type schemes for functional programs with overloading and
subtyping. Science of Computer Programming, 23:197-226, 1994.

