
, , 1{48 ()c
 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.
Optimal Representations of Polymorphic Typeswith Subtyping*ALEXANDER AIKEN aiken@cs.berkeley.eduEECS Department, University of California, Berkeley, Berkeley, CA 94720-1776ED WIMMERS wimmers@almaden.ibm.comIBM Almaden Research Center, 650 Harry Rd., San Jose, CA 95120-6099JENS PALSBERG palsberg@cs.purdue.eduDepartment of Computer Science, Purdue University, West lafayette, IN 47907Editor: Carolyn TalcottAbstract. Many type inference and program analysis systems include notions of subtyping andparametric polymorphism. When used together, these two features induce equivalences that allowtypes to be simpli�ed by eliminating quanti�ed variables. Eliminating variables both improves thereadability of types and the performance of algorithms whose complexity depends on the numberof type variables. We present an algorithm for simplifying quanti�ed types in the presence ofsubtyping and prove it is sound and complete for non-recursive and recursive types. We also showthat an extension of the algorithm is sound but not complete for a type language with intersectionand union types, as well as for a language of constrained types.Keywords: types, polymorphism, subtyping1. IntroductionContemporary type systems include a wide array of features, of which two of themost important are subtyping and parametric polymorphism. These two features areindependently useful. Subtyping expresses relationships between types of the form\type �1 is less than type �2". Such relationships are useful, for example, in object-oriented type systems and in program analysis algorithms where a greatest (orleast) element is required. Parametric polymorphism allows a parameterized typeinferred for a program fragment to take on a di�erent instance in every contextwhere it is used. This feature has the advantage that the same program can beused at many di�erent types.A number of type systems have been proposed that combine subtyping and poly-morphism, among other features. The intended purposes of these systems varies.A few examples are: studies of type systems themselves [5, 7, 2], proposals for typesystems for object-oriented languages [8], and program analysis systems used inprogram optimization [3, 10]. In short, the combination of subtyping and polymor-phism is useful, with a wide range of applications.When taken together, subtyping and polymorphism induce equivalences on typesthat can be exploited to simplify the representation of types. Our main technical* This work was supported by an NSF NYI award, CCR-9457812

2result is that, in a simple type language with a least type ? and greatest type>, for any type � there is another type �0 that is equivalent to � and �0 has theminimum number of quanti�ed type variables. Thus, type simpli�cation eliminatesquanti�ed variables wherever possible. Eliminating variables is desirable for threereasons. First, many type inference algorithms have computational complexity thatis sensitive (both theoretically and practically) to the number of type variables.Second, eliminating variables makes types more readable. Third, simpli�cationmakes properties of types manifest that are otherwise implicit; in at least one casethat we know of, these \hidden" properties are exactly the information needed tojustify compiler optimizations based on type information [3].The basic idea behind variable elimination is best illustrated with an example.A few de�nitions are needed �rst. Consider a simple type language de�ned by thefollowing grammar:� ::= � j > j ? j �1 ! �2In this grammar, � is a type variable. Following standard practice, we use �; �; : : :for type variables and �; � 0; �1; �2; : : : for types. The subtyping relation is a partialorder � on types, which is the least relation satisfying� � �? � �� � >�1 � � 01 ^ �2 � � 02 , � 01 ! �2 � �1 ! � 02Quanti�ed types are given by the grammar:� ::= � j 8�:�For the moment, we rely on the reader's intuition about the meaning of quanti�edtypes. A formal semantics of quanti�ed types is presented in Section 2.Consider the type 8�:8�:� ! �. Any function with this type takes an input ofan arbitrary type � and produces an output of any (possibly distinct) arbitrarytype �. What functions have this type? The output � must be included in allpossible types; there is only one such type ?. The input �, however, must includeall possible types; there is only one such type >. Thus, one might suspect thatthis type is equivalent to > !?. The only function with this type is the one thatdiverges for all possible inputs.It turns out that, in fact, 8�:8�:� ! � � > ! ? in the standard ideal modelof types [13]. As argued above, the type with fewer variables is better for humanreadability, the speed of type inference, and for the automatic exploitation of typeinformation by a compiler. We brie
y illustrate these three claims.The reasoning required to discover that 8�:8�:� ! � represents an everywhere-divergent function is non-trivial. There is a published account illustrating howtypes inferred from ML programs (which have polymorphism but no subtyping)can be used to detect non-terminating functions exactly as above [12]. The previ-ous example is the simplest one possible; the problem of understanding types only

3
8�1: : : :8�8: �6 =8>>>>>>>>>>>><>>>>>>>>>>>>:

�4 ! �6 � �1 � �5 ! �6�1 � �2 ! �3�1 � �2 � �5 ! �6? � �3 � >�2 � �4 � �5 ! �6�4 � �5 � �4? � �6 � �3�4 ! �6 � �7 � �1�3 � �8 � >Figure 1. A quanti�ed type of eight variables quali�ed by constraints.increases with the size of the type and expressiveness of the type language. Thefollowing example is taken from the system of [2], a subtype inference system withpolymorphism. In typing a term, the inference algorithm in this system generatesa system of subtyping constraints that must be satis�ed. The solution of the con-straints gives the desired type. Constraints are generated as follows: If f has type� ! � and x has type
, then for an application f x to be well-typed it must bethe case that
 � �. Figure 1 shows the type generated for the divergent lambdaterm (�x:x x)(�x:x x). The type has the form8�1; : : : ; �8:(�6=S)Informally, the meaning of this type is �6 for any assignment to the variables�1; : : : ; �8 that simultaneously satis�es all the constraints in S.This type is equal to ?, a fact proven by our algorithm extended to handle con-straints. The type ? is sound, since the term is divergent. This example illustratesboth improved readability and the possibility of more e�cient inference. To usethe polymorphic type 8�1; : : : ; �n:(�=S), the variables must be instantiated andthe constraints duplicated for each usage context. Eliminating variables simpli�esthe representation, making this very expensive aspect of type inference less costly.Finally, simplifying types can improve not only the speed but the quality ofprogram analyses. For example, the soft typing system of [3] reduces the problemof identifying where runtime type checks are unneeded in a program to testingwhether certain type variables can be replaced by ? in a quanti�ed type. This isexactly the task performed by elimination of variables in quanti�ed types.Our main contribution is a variable elimination algorithm that is sound and com-plete (i.e., eliminates as many variables as possible) for the simple type languagede�ned above, as well as for a type language with recursive types. We extend thealgorithm to type languages with intersection and union types and to type lan-guages with subsidiary constraints. For these latter two cases, the techniques wepresent are sound but not complete. Combining the completeness results for thesimpler languages with examples illustrating the incompleteness of the algorithm inthe more expressive settings, we shed some light on the sources of incompleteness.

4 The various algorithms are simple and e�cient. Let n be the print size of the typeandm be the number of variables. Then the time complexity is O(mn) for the casesof simple and recursive types and O(m2n) for the cases of systems with intersection,union, or constrained types. The algorithm for simplifying quanti�ed types withsubsidiary constraints has been in use since 1993, but with the exception of codedocumentation little has been written previously on the subject. The algorithmhas been implemented and used in Illyria1, the systems reported in [2], a largescale program analysis system for the functional language FL [3], and a general-purpose constraint-based program analysis system [9]. These last two applicationsare by far the largest and best engineered. The quality of these systems dependson eliminating variables wherever possible.Other recent systems based on constrained types have also pointed out the im-portance of variable elimination. In [8], Eifrig, Smith, and Trifonov describe avariable elimination method similar to, but not identical to, the one in Section 7.Pottier gives a method that can eliminate redundant variables from constraint sets[16]. Both of these methods are heuristic; i.e., they are sound but not complete.Constraint simpli�cation is also a component of the systems described in [11, 17].It is not claimed that either system performs complete constraint simpli�cation.Our focus in this paper is quite di�erent. The question of variable eliminationarises in any type system with polymorphism and subtyping, not just in systemswith constrained types. Our purpose is to explore the basic structure of this problemin the simplest settings and to understand what makes the problem harder in thecase of constrained types. To the best of our knowledge, we present the �rst soundand complete algorithms for variable elimination in any type system.Rather than work in a speci�c semantic domain, we state axioms that a semanticdomain must satisfy for our techniques to apply (Section 2). Section 3 gives thesyntax for type expressions as well as their interpretation in the semantic domain.Section 4 proves the results for the case of simple type expressions, which arenon-recursive types. For quanti�ed simple types, variable elimination producesan equivalent type with the minimum number of quanti�ed variables. Further-more, all equivalent types with the minimum number of quanti�ed variables are�-equivalent|they are identical up to the names and order of quanti�ed variables.The intuition behind the variable elimination procedure is easy to convey. Typevariables may be classed as monotonic (positive) or anti-monotonic (negative) basedon their syntactic position in a type. Intuitively, the main lemma shows thatquanti�ed variables that are solely monotonic can be eliminated in favor of ?;quanti�ed variables that are solely anti-monotonic can be eliminated in favor of>. Section 4.2 proves that the strategy of eliminating either monotonic or anti-monotonic variables is complete for the simple type language. Variables that areboth monotonic and anti-monotonic cannot be eliminated.Section 5 extends the basic variable elimination algorithm to a type languagewith recursive types. The extended algorithm is again both sound and complete,but it is no longer the case that all equivalent types with the minimum number ofquanti�ed variables are �-equivalent.

5Section 6 extends the algorithm to intersection and union types. This language isthe �rst extension for which the techniques are sound but not complete. Examplesare given showing sources of incompleteness. Finally, Section 7 extends the algo-rithm to a type language with subsidiary constraints, as in Figure 1. This is themost general type language we consider. Section 8 concludes with a few remarkson related work.2. Semantic DomainsRather than work with a particular semantic domain, we axiomatize the propertiesneeded to prove the corresponding theorems about eliminating quanti�ed variables.De�nition 1. A semantic domain D = (D0;D1;�;u) satis�es the following proper-ties:1. D0 � D1 or, more generally, there is monomorphism from D0 to D1.2. a partial order on D1 denoted by �.3. a minimal element ? 2 D0 such that ? � x for all x 2 D1.4. a maximal element > 2 D0 such that x � > for all x 2 D1.5. a binary operation ! on D0 such that if y1 � x1 and x2 � y2, then x1 ! x2 �y1 ! y2.Furthermore, ? ! > 6= > and > ! ? 6= ?.6. a greatest lower bound operation u on D1 such that if D � D1, then uD is thegreatest lower bound (or glb) of D.In addition, the semantic domain D may satisfy some (or all) of the followingproperties:standard function typesIf x1 ! x2 � y1 ! y2, then y1 � x1 and x2 � y2.standard glb typesIf S0 � D0 and x1 2 D0, then uS0 � x1 i� 9x0 2 S0 s.t. x0 � x1.Building the domain from two sets, as in De�nition 1, permits more generalityand is an example of a \predicative domain" ([14]). This structure parallels thetwo distinct operations provided in the type language: function space t1 ! t2 anduniversal quanti�cation 8 : : : (see Section 3). These operations impose di�erent re-quirements on the semantic domain. In particular, since the 8 quanti�er introducesa glb operation (and hence produces a value in D1) and the ! operation can beperformed only on elements of D0, the 8 quanti�er cannot appear inside of a! op-eration. If the semantic domain has the property that D0 = D1, then it supports 8quanti�ers inside of the! operation. It is worth noting that separating D0 and D1

6not only generalizes but also simpli�es some of our results. Note that condition 5requires that the functions be lifted. This assumption is frequently invalid (e.g., inthe standard ideal model of [13]). Our conjecture is that minor technical variationssuch as not lifting the function spaces would require some minor variations in theproofs and algorithms but that completeness would still hold.The following two examples illustrate the most important features of semanticdomains and are used throughout the paper.Example: [Minimal Semantic Model] Let D0 = D1 be the three element setf?;> ! >;>g and let � be the partial order ? � > ! > � >. In this domain,all function types are the same and this type domain does little more than detectthat something is a function. For all x; y 2 D, x! y = >! >. It is easy to checkthat D satis�es all properties required of a semantic domain as well as standardglb types. The only property missing is standard function types (e.g., because? ! ? � > ! >, but > 6� ?).Example: [Standard Model] Let D0 be the set consisting of ? and > and closedunder the pairing operation (denoted using the ! symbol). An obvious partialorder is induced on D0. This partial order is constructed in such a way so as toensure that the domain has standard function types. Let D1 consist of all thenon-empty, upward-closed subsets of D0. Intuitively, each element of D1 representsthe glb of its members. De�ne d0 � d1 i� d0 � d1. Note that there is an obviousinclusion mapping from D0 to D1 by mapping each element of D0 to the upward-closure of the singleton set consisting of that element. It is easy to see that D1 hasstandard glb types.The construction of D1 from D0 used in Example 1 is a general procedure forbuilding a D1. Given a domain D0, the domain D1 can be de�ned to be the non-empty, upward-closed subsets of D0. Each element of D1 represents the glb of itsmembers.3. SyntaxThe �rst type language we consider has only type variables and function types.In this language, as in all extensions we consider, quanti�cation is shallow (occursonly at the outermost level).De�nition 2. Unquanti�ed simple type expressions are generated by the grammar:� ::= � j > j? j �1 ! �2where � ranges over a family of type variables.A quanti�ed simple type expression has the form8�1 : : :8�n:�

7where �i is a type variable for i = 1; : : : ; n and � is an unquanti�ed simple typeexpression. The type � is called the body of the type.Since n = 0 is a possibility in De�nition 2, every unquanti�ed simple type ex-pression is also a quanti�ed simple type expression. In the sequel, we use � for aquanti�ed type expression (perhaps with no quanti�ers), and � for a type expressionwithout quanti�ers.A type variable is free in a quanti�ed type expression if it appears in the bodybut not in the list of quanti�ed variables. To give meaning to a quanti�ed type, it isnecessary to specify the meaning of its free variables. An assignment � : Vars! D0is a map from variables to the semantic domain. The assignment �[� �] is theassignment � modi�ed at point � to return � .An assignment is extended from variables to (quanti�ed) simple type expressionsas follows:De�nition 3.1. �(>) = >2. �(?) = ?3. �(�1 ! �2) = �(�1)! �(�2)4. �(8�:�) = uf�[� x](�)jx 2 D0gNote that unquanti�ed simple type expressions are assigned meanings in D0whereas quanti�ed simple type expressions typically have meanings in D1 but notin D0.Proposition 1 �(8�1 : : :8�n:�) = uf�[�1 x1 : : : �n xn](�) j x1; : : : ; xn 2D0gProof: Follows immediately from De�nition 3.Our results for eliminating variables in quanti�ed types hinge on knowledge aboutwhen two type expressions have the same meaning in the semantic domain. How-ever, because type expressions may have free variables, the notion of equality mustalso take into account possible assignments to those free variables. We say thattwo quanti�ed type expressions �1 and �2 are equivalent, written �1 � �2, if for allassignments �, we have �(�1) = �(�2).4. Simple Type ExpressionsThis section presents an algorithm for eliminating quanti�ed type variables in sim-ple type expressions and proves that the algorithm is sound and complete. Thefollowing de�nition formalizes what it means to correctly eliminate as many vari-ables from a type as possible:

8De�nition 4. A type expression � is irredundant if for all �0 such that �0 � �, it isthe case that � has no more quanti�ed variables than �0.In general, irredundant types are not unique. It is easy to show that renamingquanti�ed variables does not change the meaning of a type, provided we observethe usual rules of capture. Thus, 8�:� � 8�:�[� �] provided that � does notoccur in �. It is also true that types distinguished only by the order of quanti�edvariables are equivalent. That is, 8�:8�:� � 8�:8�:�. Our main result is that forevery type there is a unique (up to renaming and reordering of bound variables)irredundant type that is equivalent.Since equivalence (�) is a semantic notion, irredundancy is also semantic in natureand cannot be determined by a trivial examination of syntax. The key questionis: Under what circumstances can a type 8�:� be replaced by some type � [� � 0](for some type expression � 0 not containing �)? In one direction we have�(8�:�) � �[� � 0](�) = �(� [� � 0])Then, using De�nition 3, it follows that8�:� � � [� � 0]if and only if for all assignments �8d 2 D0: �(� [� � 0]) � �[� d](�)In other words, a type � = 8�:� is equivalent to � [� � 0] whenever for all assign-ments �, we have �(� [� � 0]) is the minimal element of the set f�[� x](�)jx 2D0g to which the glb operation is applied in computing �'s meaning under �.The di�culty in computing irredundant types is that the function-space con-structor ! is anti-monotonic in its �rst position. That is, �1 � �2 implies that�1 ! � � �2 ! � . Thus, determining the minimal element of a greatest lowerbound computation may require maximizing or minimizing a variable, dependingon whether the type is monotonic or anti-monotonic in that variable. Intuitively,to eliminate as many variables as possible, variables in anti-monotonic positionsshould be set to >, while others in monotonic positions should be set to ?. Wede�ne functions Pos and Neg that compute a type's set of monotonic and anti-monotonic variables, respectively.De�nition 5. Pos and Neg are de�ned as follows:Pos(�) = f�gPos(�1 ! �2) = Neg(�1) [Pos(�2)Pos(>) = ;Pos(?) = ;Neg(�) = ;

9Neg(�1 ! �2) = Pos(�1) [Neg(�2)Neg(>) = ;Neg(?) = ;As an example, for the type �! � we havePos(�! �) = f�gNeg(�! �) = f�gThe following lemma shows that Pos and Neg correctly characterize variables inmonotonic and anti-monotonic positions respectively.Lemma 1 Let d1; d2 2 D0 where d1 � d2. Let � be any assignment.1. If � 62 Pos(�), then �[� d2](�) � �[� d1](�).2. If � 62 Neg(�), then �[� d1](�) � �[� d2](�).Proof: This proof is an easy induction on the structure of � .� If � =? or � = >, then �[� d1](�) = �(�) = �[� d2](�), so both (1) and(2) hold.� If � = �, then � 2 Pos(�), so (1) holds vacuously. For (2), we have�[� d1](�) = d1 � d2 = �[� d2](�)� Let � = �1 ! �2. We prove only (1), as the proof for (2) is symmetric. Soassume that � 62 Pos(�). By the de�nition of Pos, we know� 62 Neg(�1) [Pos(�2)Applying the lemma inductively to �1 and �2, we have�[� d1](�1) � �[� d2](�1)�[� d2](�2) � �[� d1](�2)Combining these two lines using axiom 5 of a semantic domain (De�nition 1)it follows that�[� d2](�1 ! �2) � �[� d1](�1 ! �2)which proves the result.

10
Corollary 11. If � 62 Pos(�), then �(� [� >]) � �(�) � �(� [� ?]) holds for all assignments�.2. If � 62 Neg(�), then �(� [� ?]) � �(�) � �(� [� >]) holds for all assignments�.4.1. Variable EliminationOur algorithm for eliminating variables from quanti�ed types is based on the com-putation of Pos and Neg. Before presenting the variable elimination procedure, weextend Pos and Neg to quanti�ed types:Pos(8�:�) = Pos(�)� f�gNeg(8�:�) = Neg(�)� f�gThe following lemma gives su�cient conditions for a variable to be eliminated.Lemma 2 If � is a quanti�ed simple type expression, then� 62 Neg(�)) 8�:� � �[� ?]� 62 Pos(�)) 8�:� � �[� >]Proof: Assume �rst that 8�:� = 8�:� where � is an unquanti�ed simple typeexpression and that � 62 Neg(�). Note that�(8�:�)= uf�[� x](�)jx 2 D0g� �[� ?](�) since ? is a possible choice for x= �(� [� ?])= uf�[� x](� [� ?])jx 2 D0g since � does not occur in � [� ?]� uf�[� x](�)jx 2 D0g by part 2 of Corollary 1= �(8�:�)Therefore, �(8�:�) = �(� [� ?]) for all assignments �. For the general (quanti�ed)case 8�1; : : : ; �n:� , observe that any variable �i for 1 � i � n can be moved to theinnermost position of the type by a sequence of bound variable interchanges andrenamings, at which point the reasoning for the base case above can be applied.The proof for the second statement (� 62 Pos(�)) is symmetric.We are interested in quanti�ed types for which as many variables have beeneliminated using the conditions of Lemma 2 as possible. Returning to our canonicalexample,

118�:8�:�! �� 8�:>! � since � 62 Pos(8�:�! �)� >! ? since � 62 Neg(>! �)De�nition 6. A quanti�ed simple type expression � is reduced if� � is unquanti�ed; or� � = 8�:�0 and furthermore � 2 Pos(�0) ^ � 2 Neg(�0) and �0 is reduced.Note that the property of being reduced is distinct from the property of beingirredundant. \Reduced" is a syntactic notion and does not depend on the semanticdomain. Irredundancy is a semantic notion, because it involves testing the expres-sion's meaning against the meaning of other type expressions.Procedure 1 (Variable Elimination Procedure (VEP)) Given a quanti�edtype expression8�1 : : :8�n:� , compute the sets Pos(�) and Neg(�). Let V EP (8�1 : : :8�n:�) bethe type obtained by:1. dropping any quanti�ed variable not used in � ,2. setting any quanti�ed variable � where � 62 Pos(8�1 : : :8�n:�) to ?,3. setting any quanti�ed variable � where � 62 Neg(8�1 : : :8�n:�) to >,4. and retaining any other quanti�ed variable.Theorem 2 Let � be any quanti�ed simple type expression. Then � � V EP (�)and V EP (�) is reduced.Proof: Equivalence follows easily from Lemma 2. To see that V EP (�) is reduced,observe that any quanti�ed variable not satisfying conditions (1){(3) of the VariableElimination Procedure must occur both positively and negatively in the body of �.A few remarks on the Variable Elimination Procedure are in order. The algo-rithm can be implemented very e�ciently. Two passes over the structure of thetype are needed: one to compute the Pos and Neg sets (which can be done usinga using a hash-table or bit-vector implementation of sets) and another to per-form any substitutions. In addition, the algorithm need only be applied once, asV EP (V EP (�)) = V EP (�).Theorem 3 Every irredundant simple type expression is reduced.Proof: Let � be an irredundant simple type expression. Since � is irredundant,V EP (�) has at least as many quanti�ed variables as �. Therefore V EP (�) = �;i.e., the Variable Elimination Procedure does not remove any variables from �.Since V EP (�) is reduced, � is a reduced simple type expression.

124.2. CompletenessIf � is a quanti�ed simple type expression, then V EP (�) is an equivalent reducedsimple type expression, possibly with fewer quanti�ed variables. In this section, weaddress whether additional quanti�ed variables can be eliminated from a reducedtype. In other words, is a reduced simple type expression irredundant? We showthat if the semantic domain D has standard function types (De�nition 1) then everyreduced simple type expression is irredundant (Theorem 5).For semantic domains with standard function types, the Variable EliminationProcedure is complete in the sense that no other algorithm can eliminate morequanti�ed variables and preserve equivalence. The completeness proof shows thatwhenever two reduced types are equivalent, then they are syntactically identical,up to renamings and reorderings of quanti�ed variables.To simplify the presentation that follows, we introduce some new notation andterminology. By analogy with the �-reduction of the lambda calculus, two quan-ti�ed simple type expressions are �-equivalent i� either can be obtained from theother by a series of reorderings or capture-avoiding renamings of quanti�ed vari-ables. We sometimes use the notation 8f�1; : : : ; �ng:� to denote 8�1 : : :8�n:� .Using a set instead of an ordered list involves no loss of generality since duplicatesnever occur in reduced expressions and variable order can be permuted freely. Wegenerally use the letters s and t to range over type expressions.4.2.1. Constraint Systems Proving completeness requires a detailed comparisonof the syntactic structure of equivalent reduced types. This comparison is moreintricate than might be expected; in addition, in the sequel we perform a similaranalysis to prove that variable elimination is complete for recursive types. Thissection develops the technical machinery at the heart of both completeness proofs.De�nition 7. A system of constraints is a set of inclusion relations between un-quanti�ed simple type expressions f: : : s � t : : :g. A solution of the constraints isany assignment � such that �(s) � �(t) holds for all constraints s � t in the set.De�nition 8 gives an algorithm B that compares two unquanti�ed simple typeexpressions t1 and t2. The comparison is expressed in terms of constraints; thefunction B transforms a constraint t1 � t2 into a system of constraints such thatat least one side of each inequality in the system of constraints is a variable of t1or t2. Intuitively, B(ft1 � t2g) summarizes what must be true about the variablesof the two types whenever the relationship t1 � t2 holds.De�nition 8. Let S be a set of constraints. B(S) is a set of constraints de�ned bythe following rules. These clauses are to be applied in order with the earliest onethat applies taking precedence.1. B(;) = ;2. B(ft � tg [S) = B(S).

133. B(fs1 ! s2 � t1 ! t2g [S) = B(ft1 � s1; s2 � t2g [S).4. Otherwise, B(fs � tg [S) = fs � tg [B(S).Lemma 3 Let S be a system of constraints. If D is a semantic domain with stan-dard function types, then every solution of S is a solution of B(S).Proof: Let the complexity of S be the pair (number of ! symbols in S, numberof constraints in S). Complexity is ordered lexicographically, so (i; j) < (i0; j0) ifi < i0 or i = i0 and j < j0. The result is proven by induction on the complexity ofS, with one case for each clause in the de�nition of B:1. B(;) = ;. The result clearly holds.2. Since any assignment is a solution of t � t, any solution � of ft � tg [S is alsoa solution of S. By induction, � is a solution of B(S).3. Let � be a solution of fs1 ! s2 � t1 ! t2g [S. Since the domain has standardfunction types, it follows that � is also a solution of ft1 � s1; s2 � t2g [S. Byinduction, � is a solution of B(ft1 � s1; s2 � t2g [S).4. In the �nal case, by induction every solution of S is a solution of B(S). Thereforeall solutions of fs � tg [S are solutions of fs � tg [B(S).The completeness proof uses an analysis of the constraints B(ft1 � t2g) wheret1 and t2 are the bodies of reduced equivalent types. Observe that if t1 and t2di�er only in the names of variables, then B(ft1 � t2g) is a system of constraintsbetween variables. Furthermore, it turns out that if t1 and t2 are actually renamingsof each other (and if t1 and t2 are the bodies of reduced equivalent types) then theconstraints B(ft1 � t2g) de�ne this renaming in both directions. Proving this claimis a key step in the proof. This discussion motivates the following de�nition:De�nition 9. A system S of constraints is (V1; V2)-convertible i� V1; V2 are disjointsets of variables and there is a bijection f from V1 to V2 such that S = f� �f(�)j� 2 V1g [ff(�) � �j� 2 V1gExample: For example, let S be the system of constraints� �

 � �� � � � � �Let V1 = f�; �g; V2 = f
; �g, and de�ne f : V1 ! V2 such that f(�) =
; f(�) = �.It is easy to check that S is (V1; V2)-convertible.

14The idea behind De�nition 9 is that if two reduced types 8V1:�1 and 8V2:�2 are�-convertible, then B(f�1 � �2g) is a (V1; V2)-convertible system of constraints(provided V1 and V2 are disjoint). It is easiest to prove this fact by �rst introducingan alternative characterization of convertible constraint systems, which is given inthe following technical de�nition and lemma.De�nition 10. A system of constraints fs1 � t1; : : : ; sn � tng is (V1; V2)-minisculei� the following all hold:1. V1 and V2 are disjoint sets of variables.2. for all i � n, at most one of si and ti is a ! expression.3. for all i � n, si and ti are di�erent expressions.4. for each v 2 V1 [V2, there exists i � n such that v 2 Pos(si) [Neg(ti)5. for each v 2 V1 [V2, there exists i � n such that v 2 Neg(si) [Pos(ti)6. for every assignment � there is a assignment �0 such that �(v) = �0(v) for allv 62 V1 and�0(si) � �0(ti) holds for all i � n.7. for every assignment � there is a assignment �0 such that �(v) = �0(v) for allv 62 V2 and�0(ti) � �0(si) holds for all i � n. (Note the reverse order of ti and si.)Lemma 4 A system of constraints is (V1; V2)-miniscule i� it is (V1; V2)-convertible.Proof: It is easy to check that any (V1; V2)-convertible system of constraints is(V1; V2)-miniscule.To prove the converse, let �0 be the assignment that assigns ? to every variable,let �1 be the assignment that assigns > to every variable, and let S be a (V1; V2)-miniscule system of constraints. The �rst step is to show that no! expressions canoccur in S. It is easy to check that if we reverse all inequalities we get a (V2; V1)-miniscule system of constraints. Thus, by symmetry, to show that ! cannot occurin S it su�ces to show that ! cannot occur in any upper bound in S.For the sake of obtaining a contradiction, assume that si � t0i ! t00i 2 S. Weshow that each of the four possible forms for si is impossible.1. s0i ! s00i � t0i ! t00i is ruled out by Property 2 of De�nition 10.2. ? � t0i ! t00i is ruled out by Property 7 of De�nition 10, since, by requirement 5in the de�nition of domains (De�nition 1), no assignment satis�es t0i ! t00i � ?.3. > � t0i ! t00i is ruled out by Property 6 of De�nition 10, since, by requirement 5in the de�nition of domains (De�nition 1), no assignment satis�es > � t0i ! t00i .

154. Suppose si is the variable v.If v is a variable not in V1, let � = �1. Then Property 6 of De�nition 10 isviolated because for all �0 that agree with � o� of V1, we have �0(v) = �(v) =�1(v) = > 6� �0(t0i ! t00i).If v 2 V1, let � = �0. Note that v 62 V2 since V1 and V2 are disjoint. ThenProperty 7 of De�nition 10 is violated because for all �0 that agree with � o� ofV2, we have �0(t0i ! t00i) 6� ? = �0(v) = �(v) = �0(v).This completes the proof that ! cannot occur in S.The next step is to show that ? cannot occur in S. By symmetry it su�cesto show that ? cannot occur as an upper bound in S. There are three cases toconsider.1. ? � ? is ruled out by Property 3 in De�nition 10.2. > � ? is ruled out by Property 6 in De�nition 10 since no assignment satis�es> � ?.3. Consider v � ? where v is a variable. If v 62 V1, let � = �1. Then Property 6in De�nition 10 is violated since for all �0 that agree with � o� of V1, we havethat �0(v) = �(v) = �1(v) = > 6� ? = �0(?).If v 2 V1, a complex case argument is needed because Property 6 is not directlyviolated. By Property 5 of De�nition 10, there is a constraint s0 � v in S.There are four possible cases for s0:(A) s0 = ?. In this case, ? � v � ? is in S and hence Property 7 is violatedby taking � = �1.(B) s0 = >. In this case, > � v � ? violates Property 6 since it is neversatis�ed by any assignment.(C) s0 = v0 2 V1. In this case, v0 = v is ruled out by Property 3. So wemay assume that v0 and v are di�erent variables. Property 7 is violated bytaking � = �0[v >] since if �0 agrees with � o� of V2 the constraint v � v0is violated since �0(v) = �(v) = > 6� ? = �(v0) = �0(v0).(D) s0 = v0 62 V1. In this case, v0 � v � ? violates Property 6 by taking � = �1since �(v0) = >.This proves that ? cannot occur as an upper bound in S. By symmetry, ? cannotoccur as a lower bound in S, and hence? cannot occur anywhere in S. An analogousargument shows that > can not occur anywhere in S either.Thus, every element of S is of the form v0 � v00 for variables v0; v00. We now showthat v0; v00 2 V1 [V2. Suppose that v0 62 V1 [V2. If v00 2 V1, then Property 7 isviolated by taking � = �0[v00 >] since for all �0 that agree with � o� of V2, wehave that �0(v00) = �(v00) = > 6� ? = �(v0) = �0(v0). If v00 62 V1, then Property 6is violated by taking � = �0[v0 >] since for all �0 that agree with � o� of V1, wehave that �0(v0) = �(v0) = > 6� ? = �(v00) = �0(v00). Therefore, the supposition

16that v0 62 V1 [V2 is false and it follows that v0 2 V1 [V2. A similar argument showsthat v00 2 V1 [V2.If both v0 and v00 are in V1, then Property 7 is violated by taking � = �0[v00 >]since for all �0 that agree with � o� of V2, we have that �0(v00) = �(v00) = > 6�? = �(v0) = �0(v0). This shows that not both v0 and v00 are in V1. A symmetricargument shows that not both v0 and v00 are in V2. Thus, it follows that for everyconstraint si � ti in S, either si 2 V1 and ti 2 V2 or si 2 V2 and ti 2 V1.Next we show that if v0 � v1 � v2, then v0 = v2. First assume that v1 2 V1. If v0and v2 are di�erent variables, then Property 6 is violated by taking � = �0[v0 >]since for all �0 that agree with � o� of V1, we have that �0(v0) = �(v0) = > 6� ? =�(v2) = �0(v2). Hence, in the case that v1 2 V1, it follows that v0 = v2. A similarargument shows that if v1 2 V2, then v0 = v2.The next goal is to show that for every v1 2 V1, there exists a unique v2 2 V2such that v1 � v2 is in S. By Property 4, there is at least one such v2. Let v02be any variable such that v1 � v02 is in S. By Property 5, there is a v0 such thatv0 � v1 is in S. It follows that v2 = v0 = v02 which proves that v2 is unique.De�ne a function f mapping V1 to V2 so that v1 � f(v1) is in S. By Property 5,for any v1 2 V1, there is a v0 such that v0 � v1 is in S. It follows that v0 = f(v1).This proves that S � f� � f(�)j� 2 V1g [ff(�) � �j� 2 V1g. Since everyconstraint in S has the form v0 � v00 where either v0 or v00 is in V1 and sincethe upper and lower bounds are unique (because v0 � v1 � v2 2 S implies thatv0 = v2), it follows that there are no extra elements of S. Therefore, S = f� �f(�)j� 2 V1g [ff(�) � �j� 2 V1g. Thus S is (V1; V2)-convertible as desired.4.2.2. From Constraints to Completeness The de�nitions and lemmas of Sec-tion 4.2.1 are the building blocks of the completeness proof. Before �nally present-ing the proof, we need one last de�nition:De�nition 11. Two simple type expressions 8V1:�1 and 8V2:�2 are compatible i�8V1:�1 and 8V2:�2 are equivalent reduced simple type expressions such that V1 andV2 are disjoint and no variable in V1 occurs in �2 and no variable in V2 occurs in �1.The important part of the de�nition of compatibility is that the type expressionsare reduced and equivalent. The conditions regarding quanti�ed variables are theremerely to simplify proofs. There is no loss of generality because �-conversion canbe applied to convert any two equivalent reduced type expressions into compatibleexpressions.Lemma 5 Let 8V1:�1 and 8V2:�2 be compatible type expressions. If the semanticdomain has standard function types and standard glb types, then B(f�1 � �2g) isa (V1; V2)-miniscule system of constraints.Proof: Let B(f�1 � �2g) = fs1 � t1; : : : ; sn � tng. We prove that the conditionsin De�nition 10 all hold:

171. By compatibility V1 and V2 are disjoint sets of variables.2. By Part 3 of De�nition 8 at most one of si and ti is a ! expression.3. For all i � n, si and ti are di�erent expressions by Part 2 of De�nition 8.4. After a number of applications of B, the intermediate result for the calculationof B(f�1 � �2g) is of the form:fs01 � t01; : : : ; s0k � t0kg [B(fs0k+1 � t0k+1; : : : ; s0m � t0mg) :It is su�cient to show that(A) for all v 2 V1 [V2, there is an i � m such that v 2 Pos(s0i) [Neg(t0i), and(B) if, for some i � m, we have s0i = t0i, then s0i; t0i contain no variables.We proceed by induction on the number of steps needed to compute B(f�1 ��2g). In the base case, consider B(f�1 � �2g). The result follows from the ob-servations that �1; �2 are reduced, and that V1; V2 are disjoint. In the inductionstep, each of the four cases from the de�nition of B follow immediately fromthe induction hypothesis.5. Proof similar to the previous step.6. Let � be any assignment. We must show that there is an assignment �0 suchthat �(v) = �0(v) for all v 62 V1 and �0(si) � �0(ti) holds for all i � n. Since�(8V1:�1) � �(8V2:�2), it follows that �(8V1:�1) � �(�2). Since the semanticdomain has standard glb types, it follows that �0(�1) � �(�2) holds for some�0 that agrees with � except possibly on V1. Since no variable in V1 occurs in�2, we know �0(�1) � �0(�2). By Lemma 3, it follows that �0 is a solution toB(f�1 � �2g).7. To show that for every assignment � there is an assignment �0 such that �(v) =�0(v) for all v 62 V2 and �0(ti) � �0(si) holds for all i � n, reverse the roles of�1 and �2. This argument, which is a variation of the previous case, relies onthe fact that B(f�2 � �1g) can be obtained from B(f�1 � �2g) by reversing thedirection of the � symbol.One �nal technical lemma is required before we can show that the variable elimi-nation procedure is complete. The intuition behind Lemma 6 is that if B(f�1 � �2g)is a (V1; V2)-convertible system of constraints with bijection f (recall De�nition 9),then B(f�1 � f(�2)g) = ;. This intuition is not quite correct, because there maybe variables in �1 or �2 that are not in V1 [V2. In the following lemma, vars(t) isthe set of variables appearing in t.Lemma 6 Assume that

181. B(S) is a subset of a (V1; V2)-convertible system of constraints with bijection ffrom V1 to V2.2. For each constraint s � t 2 S, we have vars(s) \ vars(t) \ (V1 [V2) = ;. Inother words, any variables common to s and t are not in V1 [V2.De�neF (x) = � f(x) if x 2 V1x otherwiseWe extend F from variables to terms in the usual way. De�neS0 = fF (t) � F (t0)jt � t0 2 SgThe claim is that B(S0) = ;.Proof: The proof is by induction on the complexity of S, as de�ned in the proofof Lemma 3.� S = ;: Then S0 = ; and B(;) = ;.� S = ft � tg [S1. By assumption (2), vars(t) \ (V1 [V2) = ;. By the de�nitionof F it follows that F (t) = t. Using the de�nition of B, it is easy to see thatbecause S satis�es assumptions (1) and (2) with bijection f that S1 also satis�esassumptions (1) and (2) with the same bijection f . Now we have;= B(S01) by induction= B(ft � tg [S01) de�nition of B= B(fF (t) � F (t)g [S01) F (t) = t= B(S0)� S = ft1 ! t2 � s1 ! s2g [S1. Let T = fs1 � t1; t2 � s2g [S1.Using the de�nition of B, it is easy to check that T satis�es conditions (1) and(2) using the bijection f . By induction B(T 0) = ;. Then;= B(fF (s1) � F (t1); F (t2) � F (s2)g [S01) by induction= B(fF (t1)! F (t2) � F (s1)! F (s2)g [S01) de�nition of B= B(fF (t1 ! t2) � F (s1 ! s2)g [S01) de�nition of F= B(S0)� S = fs � tg [S1 and no previous case applies. Then B(S) = fs � tg [B(S1).Since B(S) is a subset of a (V1; V2)-convertible system of constraints, it followsthat s = � and t = � for some distinct variables � and � and that eitherF (�) = � and F (�) = � or F (�) = � and F (�) = �. The rest is similar to thecase for t � t above.

19
We are now ready to state and prove the �rst of the major theorems concerningcompleteness.Theorem 4 If the semantic domain has standard function types and standard glbtypes, then any two reduced quanti�ed simple type expressions are equivalent i�they are �-equivalent.Proof: The if-direction is clear and does not even require that the semanticdomain have standard function types. To prove the only-if direction, let �0 and �00be two reduced quanti�ed simple type expressions. If necessary, �-convert �0 to�1 = 8V1:�1 and �-convert �00 to �2 = 8V2:�2 so that �1 and �2 are compatible. Itsu�ces to show that �1 and �2 are �-equivalent.By Lemma 5, B(f�1 � �2g) is a (V1; V2)-miniscule system of constraints. ByLemma 4, B(f�1 � �2g) is a (V1; V2)-convertible system of constraints; let f becorresponding bijection mapping variables in V1 to V2. De�neF (x) = � f(x) if x 2 V1x otherwiseBecause �1 and �2 are compatible, vars(�1) \ vars(�2) \ (V1 [V2) = ;. Then, byLemma 6, we haveB(fF (�1) � F (�2)g) = ;Since F is the identity on �2 it follows thatB(fF (�1) � �2g) = ;from which it follows by the de�nition of B that �2 = F (�1). This shows that �1and �2 are �-equivalent as desired.Corollary 2 If the semantic domain has standard function types, then no twodi�erent unquanti�ed simple type expressions are equivalent.Proof: Given a semantic domain D construct another semantic domain D0 suchthat D0 = D00 and D0 has standard glb types using the construction in Example 1.Using the semantic domain D0 su�ces because the meaning of an unquanti�ed typeexpression is always an element of D0 and D00 = D0. If � and � 0 are equivalent,unquanti�ed simple type expressions, then they are reduced and hence �-equivalentby Theorem 4. But since they have no quanti�ers, �-equivalence implies that � = � 0.Finally, the following theorem states our main result.

20Theorem 5 If the semantic domain has standard function types and standard glbtypes, then a simple type expression is reduced i� it is irredundant.Proof: The if direction follows from Theorem 3. To prove the only-if direction, let� be a reduced simple type expression with the goal of proving that � is irredundant.Let �0 be an irredundant type that is equivalent to �. (Such a �0 can always befound by picking it to be a type expression equivalent to � with the smallest possiblenumber of quanti�ed variables.) By Theorem 3, �0 is reduced. By Theorem 4, �is �-equivalent to �0. Therefore, it follows that � and �0 have the same number ofquanti�ed variables. Hence, � is irredundant as desired.Theorem 5 shows that a syntactic test (reduced) is equivalent to a semantic test(irredundant). Theorem 5 requires that the semantic domain has standard functiontypes. The following examples show that this assumption is necessary.Example: Consider the minimal semantic domain (Example 1). It is clear that8�:(� ! �) � (> ! >) in the minimal semantic domain. Therefore, 8�:(� ! �)is reduced but not irredundant.Example: In the semantic domain used in [2], x ! > = y ! > regardless ofthe values of x and y, because if the answer can be anything (i.e., >), it doesnot matter what the domain is. In this case, 8�:((� ! �) ! >) � > ! >.Thus, 8�:((� ! �) ! >) is not irredundant even though it is reduced.Theorem 6 shows that the Variable Elimination Procedure (Procedure 1) is com-plete provided that the semantic domain has standard function types.Theorem 6 Let � be a quanti�ed simple type expression. If the semantic domainhas standard function types and standard glb types, then V EP (�) is an irredundantsimple type expression equivalent to �.Proof: Follows easily from Theorem 2 and Theorem 5.To summarize, for simple type expressions the Variable Elimination Procedurethat removes quanti�ed variables occurring positively or negatively in a type pro-duces an equivalent type with the minimum number of quanti�ed variables. Fur-thermore, this type is unique up to the renaming and order of quanti�ed variables.A good feature of Theorem 6 is that the irredundant type expression producedby the Variable Elimination Procedure has no more arrows than the original typeexpression. This need not be the case if the semantic domain does not have standardfunction types.Example: Let D0 = D1 = f?;> ! ?; x;? ! ?;> ! >;? ! >;>g where x isa function type, > ! ? is less than x, and x is less than the other three functiontypes.Let the set of type expressions be > and ? closed under !. For this domain,we de�ne the ! operator as follows. The four possibilities for combining > and ?

21using ! map to the corresponding elements of D0. For all other types y0 ! y1,either y1 or y2 (or both) is a function type. If either y0 or y1 is a function type,de�ne y0 ! y1 = x.In this domain �(8�:(� ! �)) = x for all assignments �. This follows becausex � > ! > and x � ? ! ? and for any other y ! y, we have �(y ! y) = x (e.g.,�((? ! ?) ! (? ! ?)) = x). Now we have that 8�:(� ! �) � (? ! ?) ! ?and, in fact, the quanti�ed type is equivalent to exactly those unquanti�ed typeswith a function type in one or both of the domain or range. Even though 8�:(�!�) has only one arrow, every irredundant type expression equivalent to 8�:(�! �)has at least two arrows.5. Recursive Type ExpressionsThis section extends the basic variable elimination algorithm to a type languagewith recursive types. The proofs of soundness and completeness parallel the struc-ture of the corresponding proofs for the non-recursive case.New issues arise in two areas. First, there is new syntax for recursive type equa-tions, which requires corresponding extensions to the syntax-based algorithms (Pos,Neg, and B). Second, two new conditions on the semantic domain are needed.Roughly speaking, the two conditions are (a) that recursive equations have solu-tions in the semantic domain (which is needed to give meaning to recursive typeexpressions) and (b) that the ordering � satis�es a continuity property (which isrequired to guarantee correctness of the Pos and Neg computations). It is surprisingthat condition (b) is needed not just for completeness, but even for soundness. For-tunately, standard models of recursive types (including the ideal model and regulartrees) satisfy both conditions.5.1. PreliminariesWe begin by de�ning a type language with recursive types. We �rst require thetechnical notion of a contractive equation.De�nition 12. Let �1; : : : ; �n be distinct type variables and let �1; : : : ; �n be unquan-ti�ed simple type expressions. A variable � is contractive in an equation �1 = �1if every occurrence of � in �1 is inside a constructor (such as !). A system ofequations�1 = �1 ^ : : : ^ �n = �nis contractive i� each �i is contractive in every equation of the system.Contractiveness is a standard technical condition in systems with recursive types[13]. Contractiveness is necessary for equations to have unique solutions (e.g., anequation such as � = � may have many solutions). The results of this section onlyapply to systems of contractive equations.

22De�nition 13. An (unquanti�ed) recursive type expression is of the form: �=Ewhere E is a set of contractive equations and � is an unquanti�ed simple typeexpression.Throughout this section, we use �; �1; �0; : : : for the de�ned variables that are givende�nitions in the set of equations E, and we use �; �0; �1; : : : to indicate the regularvariables, i.e., those that are not given de�nitions. To give meaning to recursive typeexpressions, the equations in a recursive type must have solutions in the semanticdomain. The following de�nition formalizes this requirement.De�nition 14. A semantic domain has contractive solutions i� for every contractivesystem E of equations�1 = �1 ^ : : : ^ �n = �nand for every assignment �, there exists a unique assignment �E such that:1. �E(�) = �(�) for all � 62 f�1; : : : ; �ng2. �E(�i) = �E(�i) for all i = 1; : : : ; n.Note that De�nition 14 is well formed because assignments are applied only tounquanti�ed simple type expressions, an operation that already has meaning (seeDe�nition 3).Lemma 7 Let E and E0 be contractive systems of equations and assume the se-mantic domain has contractive solutions.1. Let � be an assignment. If E0 � E, then (�E)E0 = �E .2. If E does not mention variables �1; : : : ; �m, then (�[�1 d1; : : : ; �m dm])E =�E [�1 d1; : : : ; �m dm]Proof:1. Immediate from the uniqueness of �E .2. By repeated applications, it su�ces to consider the case m = 1. If � is notde�ned by E, it is easy to see that �E [�1 d1](�) = �[�1 d1](�). If � = � isa de�nition in E, then �E [�1 d1](�) = �E(�) = �E(�) = �E [� d1](�). Byuniqueness of (�[�1 d1])E , it follows that (�[�1 d1])E = �E [�1 d1].An assignment is extended to (quanti�ed) recursive type expressions as follows:De�nition 15.

231. �(�=E) = �E(�) for any unquanti�ed simple type expression � .2. �(8�:�=E) = uf�[� x](�=E)jx 2 D0gJust as for simple type expressions, every unquanti�ed simple type expressionis assigned a meaning in D0 whereas quanti�ed simple type expressions typicallyhave meanings that are in D1 but not in D0. Lemma 8 shows that if a domain hascontractive solutions, then de�nitions of \unused" variables can be dropped.Lemma 8 Assume the domain has contractive solutions. Let E by a set of equa-tions and let E0 � E. Assume that whenever a de�ned variable � of E occurs in�0=E0, then � is a de�ned variable of E0. Then �0=E � �0=E0.Proof: Let �1; : : : ; �m be the variables de�ned by E but not E0. Then we have:�(�0=E)= �E(�0)= (�E)E0(�0) by part 1 of Lemma 7, since E0 � E= �[�1 �E(�1); : : : ; �m �E(�m)]E0(�0)= �E0 [�1 �E(�1); : : : ; �m �E(�m)](�0) by part 2 of Lemma 7= �E0(�0) since �1; : : : ; �m do not appear in �0= �(�0=E0)Surprisingly, even though contractive solutions guarantee that equations haveunique solutions, this is not su�cient for soundness of the Variable EliminationProcedure. The crux of the problem is found in the reasoning that justi�es usingPos and Neg (see De�nition 18) as the basis for replacing variables by > or ?(Lemma 1). The Pos and Neg algorithms traverse a type expression to computethe set of positive and negative variables of the expression. In the case of recur-sive types, Pos and Neg can be regarded as using �nite unfoldings of the recursiveequations. We must ensure that these �nite approximations correctly character-ize the limit, which is the \in�nite" unfolding of the equations. Readers familiarwith denotational semantics will recognize this requirement as a kind of continuityproperty. De�nition 17 de�nes type continuity, which formalizes the appropriatecondition. Later in this section we give an example showing that type continuity isin fact necessary.De�nition 16. A de�nable operator is a function F : D0 ! D0 such that there is arecursive type expression �0=Vmi=1 �i = �i, an assignment �, and a (regular) variable� such that �0 6= �, � is contractive in all equations, andF (d) = �[� d](�0= m̂i=1 �i = �i)

24holds for all d 2 D0.De�nition 17. A semantic domain D has type-continuity i� for every monotonic,de�nable operator F and every d0; d00 2 D0,(F (d00) = d00 ^ F (d0) � d0)) d00 � d0The minimal semantic model (Example 1) has contractive solutions, type conti-nuity, and standard glb types, but it lacks standard function types. The standardsemantic model (Example 1) has standard glb types and standard function typesbut lacks contractive solutions (e.g., because the equation � = � ! � has no so-lution). The standard model does have type continuity, but without contractivesolutions type continuity is not very interesting; for the standard model, the onlymonotonic de�nable operators with a �xed point are constant functions. The stan-dard semantic model can be extended to the usual regular tree model to providecontractive solutions without sacri�cing the other properties.Lemma 9 The usual semantic domain of regular trees has contractive solutions,standard glb types, standard function types, and type continuity.Proof: We brie
y sketch the usual semantic domain D0 of regular trees. Thisdiscussion is not intended to give a detailed construction of the domain, but ratherto highlight the important features. As usual, D1 consists of the non-empty upwardclosed subsets of D0. Therefore, the semantic domain has standard glb types.A �nite or in�nite tree is regular if it has only a �nite number of subtrees. The setD0 consists of the regular trees built from > and ? using the ! operator. Thus, >and ? are elements of D0 and every other element x of D0 is equal to x0 ! x00 forsome x0; x00 2 D0. Furthermore, x0 and x00 are unique. It is well-known that such adomain has contractive solutions [6].Let x �0 y hold for all x; y 2 D0. Let x �i+1 y hold i� x = ? or y = > orx = x0 ! x00 and y = y0 ! y00 and x00 �i y00 and y0 �i x0. Notice that �i+1��i.Then x � y holds i� x �i y holds for all i � 0 [4].First we check that � has standard function types.x0 ! x00 � y0 ! y00, 8i(x0 ! x00 �i+1 y0 ! y00), 8i(x00 �i y00 and y0 �i x0), 8i(x00 �i y00) and 8i(y0 �i x0), x00 � y00 and y0 � x0Thus � has standard function types.Next we check that D0 has type continuity. Let x =i y stand for x �i y andy �i x. Let F be a de�nable monotonic operator. For any x; y 2 D0,F i(x) =i F i(y)

25This fact follows by induction on i, using the fact that F is de�nable by a systemof equations contractive in F 's argument. To see this, note that in the base caseF 0(x) =0 F 0(y), since every value is =0 to every other value. Recall that =imeans equal to depth i (where depth is the number of nested constructors) andthat F (z) is equivalent to a system of equations with occurrences of z embeddedinside at least one constructor (contractiveness). Therefore, for the inductive step,it su�ces to note that if F i(x) =i F i(y) (i.e., equal to a depth of i constructors)then F (F i(x)) =i+1 F (F i(y)) (i.e., equal to a depth of i+ 1 constructors).Let d0 and d00 be elements of D0 such that F (d00) = d00 and F (d0) � d0. It is easy tosee by induction that F i(d00) = d00 and, using monotonicity of F , that F i(d0) � d0.Therefore, we haved00 = F i(d00) =i F i(d0) � d0for all i. Hence, d00 �i d0 holds for all i. By de�nition of �, it follows that d00 � d0and we conclude that the domain has type continuity.5.2. SoundnessIn this section, we extend variable elimination to recursive types. The �rst step isto extend the functions Pos and Neg to include type expressions that have de�nedvariables (recall variables de�ned in E are denoted by �):De�nition 18. Pos0 and Neg0 are the smallest sets of variables such that1. If � is not de�ned in E, then Pos0(�=E) = f�g and Neg0(�=E) = ;.2. If � = � is in E, then Pos0(�=E) = Pos0(�=E)[f�g and Neg0(�=E) = Neg0(�=E).3. Pos0(?=E) = Neg0(?=E) = ;4. Pos0(>=E) = Neg0(>=E) = ;5. Pos0(�1 ! �2=E) = Pos0(�2=E) [Neg0(�1=E)and Neg0(�1 ! �2=E) = Neg0(�2=E) [Pos0(�1=E)Let D be the set of E's de�ned variables.Then de�ne Pos(�=E) = Pos0(�=E)�D and Neg(�=E) = Neg0(�=E)�D.Note that Pos and Neg exclude de�ned variables while Pos0 and Neg0 includede�ned variables. Many functions satisfy these equations (so picking the smallestsuch sets is necessary to make Pos0 and Neg0 well-de�ned). For example, choosingPos(�=� = � ! �) = Neg(�=� = � ! �) = f�4; �29gsatis�es the equations, but the least solution isPos(�=� = � ! �) = Neg(�=� = � ! �) = ;

26Our results apply to the least solutions of the equations. It is easy to constructthe least sets for Pos and Neg by adding variables only as necessary to satisfy theclauses of De�nition 18.At this point we digress to discuss the complexity of computing Pos and Neg setsfor recursive types. Let the print representation of a system of type equations havesize n and let the system have m type variables. Observe that the problem can befactored into m independent subproblems, one for each type variable. Focusing ona single variable �, the problem is to compute two bits for each subexpression E:whether � 2 Pos0(E) and whether � 2 Neg0(E). This subproblem can be solved intime linear in n, so to solve all m subproblems is O(mn).We now explain how to decide � 2 Pos0(E) and � 2 Neg0(E) for every subexpres-sion E in linear time. De�ne a graph with one node for each subexpression of thetype and the associated system of equations. The graph has the following directededges:� There is an edge from each node for X ! Y to the node for X . These edgesare called crossing edges.� There is an edge from each node for X ! Y to the node for Y .� For each node for � there is an edge to the node for � where � = � is an equationof the system.This graph has O(n) nodes and O(n) edges.Let a be the node for variable � and let b be the node for some expression B.Assume there is a path from b to a in the graph. A path with an even number ofcrossings is positive; a path with an odd number of crossings is negative. It is easyto show � 2 Pos0(B) if there is a positive path from b to a and � 2 Neg0(B) if thereis a negative path from b to a.To compute the property for every subexpression e�ciently, we reverse all theedges in the graph and perform a modi�ed depth-�rst search from a, marking eachnode along the way as either positive or negative or both according to the marks ofits predecessor and whether the edge being traversed is a crossing. Each edge maybe visited at most twice (once for a positive path and once for a negative path) sothe overall complexity is linear. This concludes the discussion of the complexity ofcomputing Pos and Neg sets.The following relationship between de�ned and regular variables is easy to showusing De�nition 18. The intuition is that if � is positive (resp. negative) in thede�nition of �, then � is positive (resp. negative) in any position where � appearspositively, and negative (resp. positive) in any position where � appears negatively.Note that since � is not a de�ned variable (and hence in Pos i� it is in Pos0 and inNeg i� it is in Neg0), we could replace Pos0 by Pos and Neg0 by Neg in the followinglemma. This remark does not apply to � as de�ned variables are never in Pos andNeg.Lemma 10 If � 2 Pos0(�=E) then� 2 Neg0(�=E)) � 2 Neg0(�=E)� 2 Pos0(�=E)) � 2 Pos0(�=E)

27If � 2 Neg0(�=E) then� 2 Neg0(�=E)) � 2 Pos0(�=E)� 2 Pos0(�=E)) � 2 Neg0(�=E)Lemma 11 Let � be a recursive type expression and let d1; d2 2 D0 where d1 � d2.Let � be any assignment. If the semantic domain has contractive solutions and typecontinuity, then1. if � 62 Pos(�), then �[� d2](�) � �[� d1](�).2. if � 62 Neg(�), then �[� d1](�) � �[� d2](�).Proof: Let � = �0=E. The result is proven by induction on the number ofequations in E with a sub-induction on the structure of �0. The sub-induction on�0's structure proceeds as in Lemma 1. The interesting case is the new base casewhere �0 is a de�ned variable �1 with �1 = �1 in E.Assume � = �1=E where �1 = �1 is an equation in E. If � 2 Pos(�1=E) and � 2Neg(�1=E), then the result is vacuously true. If � 62 Pos(�1=E) and � 62 Neg(�1=E),then let E0 be those equations in E that do not contain � and do not (recursively)refer to a de�ned variable that contains � in its de�nition. Using Lemma 8, it canbe shown that �1=E0 � �1=E, so it su�ces to prove the result for �1=E0. Noticethat � does not occur in �1=E0. It is easy to check that �[� d](�1=E0) = �(�1=E0)holds for all d 2 D0 and the result follows.Assume � 62 Pos(�1=E) and � 2 Neg(�1=E). We claim �1 62 Neg0(�1=E). To seethis, note that�1 2 Neg0(�1=E) ^ � 2 Neg0(�1=E)) � 2 Pos0(�1=E) by Lemma 10) � 2 Pos0(�1=E) by De�nition 18) � 2 Pos(�1=E) by De�nition 18which violates the assumption � 62 Pos(�1=E). Therefore �1 62 Neg0(�1=E). Let E0be E with the equation �1 = �1 deleted. Now�1 62 Neg0(�1=E)) �1 62 Neg0(�1=E0) see below) �1 62 Neg(�1=E0) since Neg(�1=E0) � Neg0(�1=E0)The second line follows because deleting equations from E can only decrease theleast solutions of the equations for Pos0 and Neg0.Fix an assignment �. For each d0 2 D0, de�ne Fd0(d) = �[� d0][�1 d](�1=E0).It is clear that Fd0 is a de�nable operator. By the induction hypothesis, Fd0 is amonotonic operator. It is easy to see that � 62 Pos(�1=E0), so it also follows fromthe induction hypothesis that F is anti-monotonic in its subscript. More formally,if d1 � d2, then Fd2(d) � Fd1(d) holds for every d 2 D0.De�ne a function h on D0 by

28 h(d0) = �[� d0](�1=E)Now we haveFd0(h(d0))= �[� d0][�1 h(d0)](�1=E0)= (�[� d0][�1 h(d0)])E0(�1)= ((�[� d0])E)E0(�1) see below= (�[� d0])E(�1) by part 1 of Lemma 7, since E0 � E= (�[� d0])E(�1)= �[� d0](�1=E)= h(d0)To check that the fourth line follows, we would like to check that(�[� d0][�1 h(d0)])E0 = ((�[� d0]E)E0It su�ces to check that�[� d0][�1 h(d0)](v) = (�[� d0])E(v)for all v not given de�nitions in E0. If v is not given a de�nition by E, then�[� d0][�1 h(d0)](v) = �[� d0](v) = (�[� d0])E(v)If v is given a de�nition by E (but not by E0), then v = �1; in this case,�[� d0][�1 h(d0)](v)= �[� d0][�1 h(d0)](�1)= h(d0)= �[� d0](�1=E)= (�[� d0])E(�1)= (�[� d0])E(v)Hence, the fourth line follows.Thus, Fd0(h(d0)) = h(d0) holds for every d0 2 D0. Let d1 � d2. Fd2(h(d2)) =h(d2). Fd2(h(d1)) � Fd1(h(d1)) = h(d1). By type continuity, h(d2) � h(d1) whichis the desired result.If � 2 Pos(�1=E) and � 62 Neg(�1=E), then the proof is omitted since it is similarto the case where � 62 Pos(�1=E) and � 2 Neg(�1=E). Like the previous case,F is monotonic in its argument; unlike the previous case, F is monotonic in itssubscript.Corollary 3 Assume the semantic domain has type continuity and contractivesolutions.1. If � 62 Pos(�=E), then �((�=E)[� >]) � �(�=E) � �((�=E)[� ?]) holds forall assignments �.2. If � 62 Neg(�=E), then �((�=E)[� ?]) � �(�=E) � �((�=E)[� >]) holdsfor all assignments �.

29The rest of the soundness results proceed as before. In particular, the VariableElimination Procedure remains una�ected, except that it uses the new de�nitionsof Pos and Neg. Just as in Section 4, we extend Pos and Neg:Pos(8�:�) = Pos(�)� f�gNeg(8�:�) = Neg(�)� f�gLemma 12 If � is a quanti�ed recursive type expression and the semantic domainhas type continuity and contractive solutions, then� 62 Neg(�)) 8�:� � �[� ?]� 62 Pos(�)) 8�:� � �[� >]Proof: Same as the proof for Lemma 2.Example: Let � = (�3 ! �3)! (�2 ! �1)=�1 = �1 ! �1 ^ �2 = �2 ! �2 ^ �3 = �3 ! �3.Note that Pos(�) = f�2; �3g and Neg(�) = f�1; �3g. Assuming that the seman-tic domain has contractive solutions and type continuity, Lemma 12 allows us toconclude that8�18�28�3:((�3 ! �3)! (�2 ! �1)= �1 = �1 ! �1 ^ �2 = �2 ! �2 ^ �3 = �3 ! �3)� 8�3:((�3 ! �3)! (�2 ! �1)= �1 = > ! �1 ^ �2 = ? ! �2 ^ �3 = �3 ! �3)The next example shows that the assumption of type continuity is needed in theproof of Lemma 12.Example: Consider the type expression 8�:(�=� = �! �). If Lemma 12 holds,then we have�=� = >! �� 8�:(�=� = �! �) by Lemma 12� (�=� = ? ! �) since ? is an instance of �Let �0 = > ! �0 and �1 = ? ! �1 be elements of the semantic domain. Anysemantic domain in which it is not the case that �0 � �1 serves as a counterexampleto the conclusion of Lemma 12.Take the semantic domain to be the set of regular trees and de�ne x �00 y to holdi� x = y. Let x �0i+1 y hold i� x = ?, y = >, or 9x1; x2; y1; y2(x = x1 ! x2 ^ y =y1 ! y2 ^ y1 �0i x1 ^ x2 �0i y2). Let x �0 y hold i� x �0i y for some i. Next, noticethat �0 �0i+1 �1 i� > ! �0 �0i+1 ? ! �1 i� ? �0i > ^ �0 �0i �1. It is easy to see byinduction that �0 6�0i �1 is true for all i. Hence, �0 6�0 �1. Thus, the conclusion ofLemma 12 does not hold for this semantic domain.This semantic domain has contractive solutions, standard function types, andstandard glb types. What it lacks is type continuity, and it is instructive to seewhy. Consider the two de�nable operators:F?(d) = [� d](?! �)F>(d) = [� d](> ! �)

30Let > ! > ! : : : be the in�nite regular tree where > appears in the domain ofevery \!". Observe thatF>(> ! >! : : :) = > ! > ! : : :Note that for all d we have F>(d) �0 F?(d). In particular,F>(? ! ?! : : :) �0 F?(? ! ? ! : : :) = ?! ? ! : : :If the domain had type continuity, it would follow that> ! > ! : : : �0 ?! ? ! : : :As shown above, this relation does not hold, so therefore the domain does not havetype continuity.As discussed at the beginning of this section, type continuity is needed to guar-antee that the �nite computation performed by Pos and Neg is consistent withthe orderings on all �nite and in�nite trees. Example 18 shows how the problemarises when x 6�0 y, but x �i y for all i (where �i is the relation used in Lemma 9to de�ne the usual ordering on regular trees). Thus, in contrast to the case ofsimple expressions where no additional assumptions on the semantic domain areneeded for soundness, type continuity is needed to prove soundness for recursivetype expressions.We remark that the de�nition of a reduced quanti�ed recursive type expressionis the same as a reduced quanti�ed simple type expression (De�nition 6).Theorem 7 Let � be any quanti�ed recursive type expression. If the semantic do-main has type continuity and contractive solutions, then � � V EP (�) and V EP (�)is a reduced recursive type expression.Proof: Follows easily from Lemma 12.As with simple type expressions, an irredundant quanti�ed type expression is onesuch that all equivalent quanti�ed type expressions have at least as many quanti�edvariables. Note that this de�nition does not say anything about the number ofde�ned variables. It is conceivable (although we will see that this is not the caseunder our usual assumptions) that an irredundant type might require many morede�ned variables.Theorem 8 If the semantic domain has type continuity and contractive solutions,then every irredundant recursive type expression is reduced.Proof: Same as the proof of Theorem 3.

315.3. CompletenessIn this section, we face concerns similar to those found in Section 4.2.1.De�nition 19. Let S be a set of constraints over unquanti�ed recursive type ex-pressions. De�ne B to be a function on sets of constraints such that B(S) is thesmallest set of constraints where the following all hold. These clauses are to be ap-plied in order, with the earliest one that applies taking precedence. The variabless and t refer to unquanti�ed simple type expressions.1. B(;) = ;2. If t is >, ?, or a regular variable, then B(ft=E � t=E0g [S) = B(S).3. B(fs1 ! s2=E � t1 ! t2=E0g [S) = B(ft1=E0 � s1=E; s2=E � t2=E0g [S).4. If � = � is in E, then B(f�=E � tg [S) = B(f�=E � tg [S).5. If � = � is in E0, then B(fs � �=E0g [S) = B(fs � �=E0g [S).6. Otherwise, B(fs=E � t=E0g [S) = fs � tg [B(S).Lemma 13 Assume that D is a semantic domain with contractive solutions, stan-dard function types, and standard glb types. If � is a solution of ft1=E � t2=E0g,then it is a solution of B(ft1=E � t2=E0g).Proof: The proof is very similar to the proof of Lemma 3 and so is omitted. Themost important new case is Part 6 of De�nition 19. In this clause, note that s andt must be regular variables of E and E0 respectively. Thus B(S) does not mentionany de�ned variables. This observation is needed to show that if �E(t1) � �E0(t2)then � is a solution of B(ft1=E � t2=E0g).Lemma 14 Let 8V1:�1=E1 and 8V2:�2=E2 be compatible recursive type expressions.If the semantic domain has contractive solutions, standard function types, andstandard glb types, then B(f�1=E1 � �2=E2g) is a (V1; V2)-miniscule system ofconstraints.Proof: Let B(f�1=E1 � �2=E2g) = fs1 � t1; : : : ; sn � tng. We show thatB(f�1=E1 � �2=E2g) satis�es the conditions of De�nition 10.1. By compatibility V1 and V2 are disjoint sets of variables.2. By Part 3 of De�nition 19 at most one of si and ti is a ! expression.3. Consider a constraint t � t. Constraints of the form ? � ?, > � >, and� � � are eliminated by Part 2 of De�nition 19, constraints t! t0 � t! t0 areeliminated by Part 3, and constraints � � � are eliminated by Parts 4 and 5.Therefore, for all t, we have t � t is not in B(f�1=E1 � �2=E2g).4. Same as Part 4 of the proof of Lemma 5 (but using De�nition 19).

325. Proof similar to the previous step.6. Let � be any assignment. We must show that there is an assignment �0 suchthat �(v) = �0(v) for all v 62 V1 and �0(si) � �0(ti) holds for all i � n. Since�(8V1:�1=E1) � �(8V2:�2=E2);it follows that�(8V1:�1=E1) � �(�2=E2):Since the semantic domain has standard glb types, it follows that �0(�1=E1) ��(�2=E2) holds for some �0 that agrees with � except possibly on V1. Since novariable in V1 occurs in �2=E2, we know �0(�1=E1) � �0(�2=E2). By Lemma 13,it follows that �0 is a solution to B(�1=E1 � �2=E2).7. Similar to the previous step with the roles of �1 and �2 reversed.Theorem 9 If the semantic domain has contractive solutions, standard glb types,and standard function types, then any two equivalent reduced recursive type ex-pressions have the same number of quanti�ed variables.Proof: Let �0 and �00 be two equivalent reduced recursive type expressions. Ifnecessary, �-convert �0 to �1 = 8V1:�1=E and �-convert �00 to �2 = 8V2:�2=E0 insuch a way that �1 and �2 are (V1; V2) compatible. By Lemma 14, B(�1=E � �2=E0)is a (V1; V2)-miniscule system of constraints. By Lemma 4, B(�1=E � �2=E0)is a (V1; V2)-convertible system of constraints, which implies that jV1j = jV2j.Unlike the case of simple expressions, two equivalent reduced types need notbe �-equivalent. For example, consider a semantic domain that has contractivesolutions. Let �0 = �0 ! �0 and �1 = (�1 ! �1) ! (�1 ! �1). These two typesexist since the domain has contractive solutions. By substituting (�0 ! �0) in for�0, we obtain �0 = (�0 ! �0) ! (�0 ! �0). Since the domain has contractivesolutions, it follows that �0 = �1. Clearly, the type expressions �0=�0 = �0 ! �0and �1=�1 = (�1 ! �1)! (�1 ! �1) are not �-equivalent.Theorem 10 If the semantic domain has contractive solutions, type continuity,standard function types, and standard glb types, then a recursive type expressionis reduced i� it is irredundant.Proof: The if-direction follows from Theorem 8. To prove the only-if direction,let � be a reduced recursive type expression with the goal of proving that � isirredundant. Let �0 be an irredundant recursive type expression that is equivalentto �. (Such a �0 can always be found by picking it to be a type expression equivalent

33to � with the smallest possible number of quanti�ed variables.) By Theorem 8, �0is reduced. By Theorem 9, � and �0 have the same number of quanti�ed variables.Hence, � is irredundant as desired.Theorem 11 Let � be quanti�ed recursive type expression. If the semantic do-main has contractive solutions, type continuity, standard glb types, and standardfunction types, then V EP (�) is an irredundant recursive type expression equivalentto �.Proof: Follows easily from Theorem 7 and Theorem 10.6. Intersection and Union TypesIn this section we extend our results to type languages with union and intersectiontypes. This is the �rst point at which the technique of eliminating variables thatappear solely in monotonic or anti-monotonic positions is sound but not complete.6.1. PreliminariesAs a �rst step union and intersection types are added to simple type expressions.De�nition 20. Extended type expressions are generated by the grammar� ::= � j > j? j �1 + �2 j �1 � �2 j �1 ! �2Extended quanti�ed types are adapted in the obvious way to use extended typeexpressions instead of simple type expressions. The operations + and � are in-terpreted as least-upper bound and greatest-lower bound, respectively. To givemeaning to extended type expressions an assumption is needed about the upperand lower bounds that exist in the domain.De�nition 21. A semantic domain D = (D0;D1;�;u) has standard upper and lowerbounds if every pair of elements �1; �2 2 D0 have a least upper bound �1 t �2 and agreatest lower bound �1 u �2 in D0.Note that requiring �1 u �2 exist is di�erent from having standard glb types, asstandard glb types are glb's of (potentially) in�nite sets in D1.Proposition 2 The Standard Model (Example 1) and Regular Tree Model (Lemma 9)both have standard upper and lower bounds. Furthermore, in both these models,x1 ! y1 tx2 ! y2 = x1 ux2 ! y1 t y2 and x1 ! y1 ux2 ! y2 = x1 tx2 ! y1 u y2.Proof: First note that for every x 2 D0 it is the case that x = >, x = ?, orx = x1 ! x2 for some x1 and x2. Also note that both models have standardfunction types.

34We must show that xt y and xu y exist for all x; y 2 D0. It is easy to check thatthe following equations cover all possibilities:> t x = > x t > = >? t x = x x t ? = x? u x = ? x u ? = ?> u x = x x u > = xx1 ! y1 t x2 ! y2 = x1 u x2 ! y1 t y2 x1 ! y1 u x2 ! y2 = x1 t x2 ! y1 u y2The eight equations on the �rst four lines are easy to verify. To justify the equationx1 ! y1 t x2 ! y2 = x1 u x2 ! y1 t y2, note thatx1 u x2 � x1x1 u x2 � x2y1 � y1 t y2y2 � y1 t y2from which it follows that x1ux2 ! y1ty2 is an upper bound of both x1 ! y1 andx2 ! y2. Let a! b be any other upper bound of x1 ! y1 and x2 ! y2. Since thedomain has standard function types, we have a � x1 and a � x2, so a � x1 u x2.Similarly y1 t y2 � b. Therefore, x1 u x2 ! y1 t y2 is the least upper bound. Thejusti�cation of the last equation is symmetric.Finally, we need to show that the above argument is su�cient. In the case ofthe Standard Model, the above is su�cient to push the lower and upper bounds tothe leaves where they can be eliminated. In the Regular Tree Model, when takingbounds for � and �0 with associated de�nitions E and E0 respectively, create anew variable for each bound of a de�ned variable from E and a de�ned variablefrom E0. For each such newly created variable, form its de�nition by taking thebound of the right hand sides and moving the bound inside according to the aboveprocedure. This forms a new set of equations. The details of this construction areleft to the reader.Given an assignment �, the meanings of the new type operations are:�(�1 + �2) = �(�1) t �(�2)�(�1 � �2) = �(�1) u �(�2)6.2. Soundness for Non-Recursive TypesWe �rst extend Pos and Neg to include the new operations.Pos(�1 + �2) = Pos(�1) [Pos(�2)Pos(�1 � �2) = Pos(�1) [Pos(�2)Neg(�1 + �2) = Neg(�1) [Neg(�2)Neg(�1 � �2) = Neg(�1) [Neg(�2)

35We can now restate the basic lemma needed to prove soundness for the non-recursive case.Lemma 15 Let � be any extended simple type expression. Let d1; d2 2 D0where d1 � d2. If the domain has standard upper and lower bounds, then1. If � 62 Pos(�), then �(� [� d2]) � �(� [� d1]) holds for all assignments �.2. If � 62 Neg(�), then �(� [� d1]) � �(� [� d2]) holds for all assignments �.Proof: This proof is by induction on the structure of � and is an easy extension ofthe proof of Lemma 1. Let d1; d2 2 D0 where d1 � d2, and let � be any assignment.There are two new cases:� Let � = �1 + �2. Assume � 62 Pos(�). By the de�nition of Pos, we know� 62 Pos(�1) [Pos(�2)and therefore�[� d2](�1) � �[� d1](�1)�[� d2](�2) � �[� d1](�2)follow by induction. The relationships still hold if the right-hand sides are madelarger, so�[� d2](�1) � �[� d1](�1) t �[� d1](�2)�[� d2](�2) � �[� d1](�1) t �[� d1](�2)Combining these two inequalities we get�[� d2](�1) t �[� d2](�2) � �[� d1](�1) t �[� d1](�2)The proof for the subcase � 62 Neg(�) is similar.� Let � = �1 � �2. This case is very similar to the previous one, with u substitutedfor t.An inspection of the results from Section 4.1 shows that the proofs of Lemma 2and Theorem 2 depend only on Lemma 1 and not on a particular language of typeexpressions. Therefore, by Lemma 15, it is immediate that Procedure 1 is a soundvariable elimination procedure for extended simple types in domains with standardupper and lower bounds.While variable elimination is sound for extended simple type expressions, it is notcomplete.

36Example: In either the Standard Model or Regular Tree Model we have8�:(�! �) +> � >Clearly, the �rst type is reduced and not irredundant.Similarly, 8�:(� ! �)� ?� ?. In general, the Pos and Neg computations over-estimate the set of positive and negative variables for expressions �1 + �2 where�(�1) � �(�2) for all � (and similarly for �).A subtler source of incompleteness arises from interaction between universal quan-ti�cation and unions and intersections.Example:8�; �:� � � ! � � �= uf�[� x1; � x2](� � � ! � � �)jx1; x2 2 D0gby Proposition 1= ufx1 u x2 ! x1 u x2)jx1; x2 2 D0g= ufx! xjx 2 D0gsince fx1 u x2jx1; x2 2 D0g = D0= 8�:�! �Note that there is no explicit relationship between � and � in the type. Therelationship follows from the fact that the variables are always used together andthe universal quanti�cation.6.3. ImprovementsWe do not know a complete version of the Variable Elimination Procedure in thepresence of union and intersection types. In this section we brie
y illustrate someheuristic improvements that have been useful in practice [1, 9]. As illustrated inSection 6.2, redundant intersections and unions are a signi�cant source of incom-pleteness. This suggests the following procedure:Procedure 12 (Extended Variable Elimination Procedure (EVEP)) Let �be an extended quanti�ed type.1. Let �1 be the result of replacing any subexpression �1 + �2 in � by �2 if�(�1) � �(�2) for all assignments �.2. Let �2 be the result of replacing any subexpression �1 � �2 in �0 by �2 if�(�2) � �(�1) for all assignments �.3. Let �3 = V EP (�2).

374. Halt if no variables are eliminated in (3); the result is �3. Repeat (1)-(3) on�3 otherwise.Note that deciding whether a type is equivalent to > or ? in all assignments isnot necessarily easy, depending on the expressiveness of the type language underconsideration.The interesting aspect of Procedure 12 is that iterating the elimination of inter-sections, unions, and variables is necessary, as the following example shows:8�; �:� ! (� � �)� 8�:� ! (? ��) since � is not negative� 8�:� !? since ? �� =?� >!? since � is not positiveSince each iteration but the last of the Extended Variable Elimination Procedureeliminates at least one variable, the complexity is at worst the product of thenumber of quanti�ed variables O(m) and the cost of recomputing the Pos and Negsets O(mn), for a total cost of O(m2n).6.4. Soundness and Incompleteness for Recursive TypesIn this section we consider extended recursive types.De�nition 22. An extended recursive type has the form�= ^1�i�n �i = �iwhere the equations are contractive and �; �1; : : : ; �n are extended type expressions(i.e., with unions and intersections; see De�nition 20).It will come as no surprise that, in addition to standard upper and lower bounds,the domain must have contractive solutions and type continuity for variable elim-ination to be sound for extended recursive types. An inspection of the statementand proof of Lemma 11 shows that it does not depend on a particular de�nition oftype, but only on type continuity and soundness of the non-recursive case. Thus,adding the hypothesis that the domain has standard upper and lower bounds toLemma 11, and substituting Lemma 15 for Lemma 1 in the proof of the lemma,gives a proof of soundness for variable elimination on extended recursive types.Because extended simple types are a subset of the extended recursive types andthe VEP is incomplete for extended simple types, it follows that variable eliminationis incomplete for extended recursive types.

387. Constrained Type ExpressionsThis section presents results for types with polymorphism and subtyping con-straints, which is also called bounded polymorphism or constrained types. Thislanguage is the most general that we consider.7.1. PreliminariesWe begin by de�ning a type language with subsidiary subtyping constraints. Wepresent the de�nitions and proofs as though \!" were the only constructor but theresults apply more generally and we leave it to the reader to �ll in the details forother constructors.De�nition 23. An (unquanti�ed) constrained type expression has the form �0=Cwhere C is a �nite set of constraints of the form�1 � � 01: : : : : :�n � � 0nwhere �i and � 0i are unquanti�ed simple type expressions for all 1 � i � n.Unlike the case of recursive types, note that De�nition 23 makes no distinctionbetween \regular" and \de�ned" variables|all variables are regular.De�nition 24. Let � be any assignment. Then1. �(�=C) = �(�) provided that � is a solution of C.2. �(8�1; : : : ; �n:�=C) =uf�[�1 x1; : : : ; �n xn](�=C)jx1; : : : ; xn 2 D0 and�[�1 x1; : : : ; �n xn] is a solution of Cg(1)The meaning of an unquanti�ed constrained type �=C under assignment � is un-de�ned unless � is a solution of C. Furthermore, the u operation in the meaningof a quanti�ed constrained type under assignment � is restricted to those modi�ca-tions of � that satisfy the constraints. It is easy to see that constrained types area generalization of recursive types, because any recursive type8�1; : : : ; �m:�= �1 = �1 ! � 01 ^ : : : ^ �n = �n ! � 0ncan be written as a constrained type

398�1; : : : ; �m:�= �1 � �1 ! � 01 ^ �1 � �1 ! � 01 ^ : : : ^ �n � �n ! � 01 ^ �n � �n ! � 01It is also worth noting that it is well-de�ned for a quanti�ed constrained type tohave an inconsistent system of constraints. For example, if C = > � � � ?, then�(8�:�=C)= uf�[� x](�=C)jx 2 D0 and �[� x] is a solution of Cg= ufg= >An important feature of constrained types is that the constraints may have mul-tiple lower (or upper) bounds for a single variable, such as�1 ! �2 � � ^ �3 ! �4 � � ^ � �
 ^ � � �5 ! �6In any solution of these constraints, � must be an upper bound of �1 ! �2 and�3 ! �4, and � must be a lower bound of
 and �5 ! �6.To give algorithms for eliminating quanti�ed variables from constrained types, itis necessary to characterize the solutions of constraints. To minimize the number ofnew concepts needed to explain the algorithms in the case of constrained types, webuild on the results of Section 5 by characterizing solutions of constraints in termsof equations.De�nition 25. A system C of constraints is fully closed i��1 � �0 2 C ^ �0 � �2 2 C) �1 � �2 2 C�1 ! �2 � �3 ! �4 2 C) �3 � �1 2 C ^ �2 � �4 2 C�1 ! �2 � ? 2 C) > � ? 2 C> � �1 ! �2 2 C) > � ? 2 CA system is closed i� it can be obtained from a fully closed system by the deletionof some subset of the trivial constraints � � � . A closed system C is consistent i�> � ? 62 C.For example, the system f�1 ! �2 � �3; �3 � �1 ! �2; �1 ! �2 � �1 ! �2; �1 ��1; �2 � �2; �3 � �3g is fully closed (and hence closed) whereas the system f�1 !�2 � �3; �3 � �1 ! �2g is closed but not fully closed.De�nition 25 is taken from [8]. Intuitively, closing a system of constraints C isequivalent to solving C, and if the closed system has no inconsistent constraints,then it has solutions. Instead of asserting that closed consistent systems havesolutions directly, we characterize those solutions in terms of equations. In thissection, we do not assume the existence of standard function types. However, if asystem is not closed, standard function types are generally required for the closureto be equivalent.

40De�nition 26. We use � and � to abbreviate multiple type unions and intersections,respectively. Let C be a closed consistent system of constraints. Let the variablesof C be �1; : : : ; �n. For each variable �i appearing in C, de�neLC�i = ?+�f� j� � �i 2 C and if � is a variable �j ; then j < igUC�i = > � �f� j� � �i 2 C and if � is a variable �j ; then j < igLet �1; : : : ; �n be fresh variables. De�ne a system of equations EC for C:^1�i�n �i = LC�i + (�i � UC�i)The intuition behind De�nition 26 is that any solution for the equation for �iranges between LC�i (when �i = ?) and UC�i (when �i = >). For example, considerthe system C of constraints�1 � �2 ^ > ! ? � �1 ^ �1 � ? ! >Closing this system gives�1 � �2 ^ > ! ? � �1 ^ �1 � ?! > ^> ! ? � �2 ^ > ! ? � ? ! > ^ ? � > (2)which is consistent. The equations EC are�1 = (> ! ?) + (�1 � (?! >))�2 = ((> ! ?) + �1) + (�2 � >)This example shows that the equations EC are not necessarily contractive, since�1 appears outside of a constructor in the equation for �2. However, EC is alwaysequivalent to a contractive system of equations.Lemma 16 Let EC be a system of equations for a closed consistent system ofconstraints C. Then there is a system of constraints E0C that is contractive suchthat EC and E0C have the same solutions.Proof: Examination of L�i and U�i in De�nition 26 shows that if �j occurs outsideof a ! expression in the equation for �i, then j < i. We show by inductionon i how to construct a contractive equation for �i. The equation for �1 has novariable �k outside of a ! expression, so the equation for �1 is already contractive.Assume that �1; : : : ; �i�1 have contractive equations. Any variable �j outside of a! expression in the equation for �i can be eliminated by substituting the right-hand side of an equation for �j . Because j < i, we can choose a contractiveequation for �j , in which case the resulting equation for �i is also contractive.

41Applying Lemma 16 to the example system of equations above, the contractivesystem is�1 = (> ! ?) + (�1 � (?! >))�2 = ((> ! ?) + (> ! ?) + (�1 � (? ! >))) + (�2 � >)To prove that a consistent closed system has a solution, it is helpful to de�netwo additional notions. A visible expression in a system of constraints is one of thetop-level \!" arms of either an upper or lower bound. A system of constraints is
at i� every visible expressions is >, ?, or a variable. Thus, for example, in theconstraint system f�0 ! �1 � (�2 ! �3) ! �4; �5 � �6 ! >g, there are six visibleexpressions: �0, �1, �2 ! �3, �4, �6, and >; this system is not
at.Lemma 17 Assume the domain has standard upper and lower bounds. Let C bea
at, closed, consistent system of constraints. If � is a solution of EC , then � is asolution of C.Proof: Let the variables that occur in C be �1; : : : ; �n. In this proof, we use tto denote >, ?, or a variable; � is used to denote an arbitrary expression. Notethat if � is a term in LC�i , then �(�) � �(LC�i) � �(LC�i + �i � UC�i) = �(�i); hence,�(�) � �(�i). Thus, to show that �(�) � �(�i) it su�ces to show that � is a termin LC�i . To show that �(�i) � d for some d in the semantic domain, it su�ces toshow that �(LC�i) � d (for which it su�ces to show that �(�) � d for every term �in LC�i) and UC�i � d (for which it su�ces to show that � is a factor in UC�i for some� such that �(�) = d). Without loss of generality, we can assume that C is fullyclosed since we can add all constraints of the form t1 � t1 and t1 ! t2 � t1 ! t2(where t1 and t2 are either ?, >, or a variable �i for some i � n) which makes Cfully closed but leaves it �nite,
at, and consistent. Notice that adding these trivialconstraints does not change LC�i or UC�i in any way nor does it a�ect whether � is asolution of the constraints. There are four cases to consider since each upper andlower bound must either be of the form t or t1 ! t2.1. If t1 � t2 2 C, then �(t1) � �(t2).There are three subcases since t1 can be ?, >, or a variable �i.(A) If ? � t2 2 C, then �(?) � �(t2).This holds since ? is the least element in the semantic domain.(B) If > � t2 2 C, then �(>) � �(t2).Since C is consistent, either t2 = > (in which case �(>) � �(t2) holdstrivially) or t2 = �i for some i (in which case �(>) � �(t2) holds since > isa term in LC�i).(C) If �i � t2 2 C, then �(�i) � �(t2).There are three subcases since t2 can be ?, >, or a variable �j .i. If �i � ? 2 C, then �(�i) � �(?).Note that �(UC�i) = ? since ? is a factor in UC�i . Also note that �(LC�i) =? since every term in LC�i is either ? or �i0 for some i0 < i (so the

42 induction hypothesis applies since �i0 � ? 2 C and �(�i0) � ? follows).Hence, �(�i) � ? as desired.ii. If �i � > 2 C, then �(�i) � �(>).This result holds since> is the greatest element in the semantic domain.iii. If �i � �j 2 C, then �(�i) � �(�j).This result is proven by induction on i. If i < j, then �(�i) � �(�j) holdssince �i is a term in LC�j . If i = j, then �(�i) � �(�j) holds trivially. Sowe may assume that j < i. Let �1 be a term in LC�i . Hence �1 � �i 2 Cand �i � �j 2 C, from which it follows that �1 � �j 2 C. Either �1 isa term in LC�j (and so �(�1) � �(�j)) or �1 = �i0 where j � i0 < i (andso �(�1) � �(�j) holds by induction). Thus, �(LC�i) � �(�j). Since �j isa factor in UC�i , it follows that �(UC�i) � �(�j). Hence, �(�i) � �(�j) asdesired.2. If t1 ! t2 � t3 2 C, then �(t1 ! t2) � �(t3).Notice that t3 6= ? since otherwise C is not consistent.If t3 = >, the result holds since > is the greatest element in the domain.If t3 = �i, the result follows since t1 ! t2 is a term of LC�i .3. If t1 ! t2 � t3 ! t4 2 C, then �(t1 ! t2) � �(t3 ! t4).Since C is fully closed, t3 � t1 2 C and t2 � t4 2 C. It follows from case 1 that�(t3) � �(t1) and �(t2) � �(t4) hold. By Property 5 of domains (De�nition 1),it follows that �(t1 ! t2) � �(t3 ! t4) as desired.4. If t1 � t2 ! t3 2 C, then �(t1) � �(t2 ! t3).Notice that t1 6= > since otherwise C is not consistent.If t1 = ?, the result holds since ? is the least element in the domain.If t1 = �i, the result �(�i) � �(t2 ! t3) is proven by induction on i.Let � be a term in LC�i . Note that � 6= > or else C is not consistent. If � = ?,then �(�) � �(t2 ! t3) holds since ? is the least element in the semanticdomain. If � = �i0 for some i0 < i, then �(�) � �(t2 ! t3) holds by induction. If� = t4 ! t5, then �(�) � �(t2 ! t3) holds by case 3. Hence, �(�) � �(t2 ! t3)holds for every term � in LC�i . Thus, �(LC�i) � �(t2 ! t3). Since t2 ! t3 isa factor in UC�i , it follows �(UC�i) � �(t2 ! t3). Thus, �(�i) � �(t2 ! t3) asdesired.Thus, � is a solution to C as desired.De�nition 27. A domain is adequate if1. the domain has contractive solutions, and2. the domain has standard upper and lower bounds,By Proposition 2 and Lemma 9, the Regular Tree Model (Lemma 9) is adequate.Theorem 13 shows the relationship between solutions of C and solutions of EC .

43Theorem 13 Assume the domain is adequate and let C be a closed, consistentsystem of constraints. Then the following all hold:1. If � is a solution of EC , then � is a solution of C.2. If � is a solution of C, then �[: : : ; �i �(�i); : : :] is a solution of EC .3. C has a solutionProof:1. This result is proven by induction on the complexity of C where the complexityof a system is the pair (md; nvt) under the lexicographical ordering where mdrepresents the maximum nesting depth of \!" in the visible terms and nvtrepresents the number of visible terms with that maximum nesting depth. Thebase case consists of the
at systems, i.e. those in which md = 0. The resultfor the base case follows from Lemma 17.We now proceed with the induction. Let � be an arbitrary solution of EC .Assume there are n variables �1; : : : ; �n mentioned in the constraints of C. Let�0 be any one of the visible expressions with maximum depth. Since the systemis not
at (because we are in the inductive case), �0 = � 00 ! � 000 . Let �n+1be a fresh variable (distinct from �1; : : : ; �n; �1; : : : ; �n). Let R be a syntacticfunction on expressions that replaces each occurrence of �0 by �n+1. Thus, forexample, R((�0 ! �0) ! �1) = (�n+1 ! �n+1) ! �1. Let C 0 be the system ofconstraints de�ned by C 0 = fR(�1) � R(�2)j�1 � �2 2 Cg [f�0 � �n+1; �n+1 ��0g [fR(�1) � �0j�1 � �0 2 Cg [f�0 � R(�1)j�0 � �1 2 Cg. Since any solutionof C 0 satis�es �n+1 = �0 and hence satis�es R(�) = � for all expressions � , it isclear that any solution of C 0 is also a solution of C. It is easy to check that C 0 isa closed, consistent system of constraints. If V is the set of visible expressionsof C, then fR(�)j� 2 V g[f� 00; � 000 g is the set of visible expressions of C 0; since �0was eliminated as a visible expression, it is clear that C 0 is less complex than Cand so the induction hypothesis applies to C 0. Let E0 (respectively, E1) be thecontractive system of constraints equivalent to EC (respectively, EC0) that isguaranteed to exist by Lemma 16. Since the domain has contractive solutions,�E1 solves E1 and hence EC0 . By the induction hypothesis, �E1 solves C 0. Since�E1 is a solution of C 0, �E1(�n+1) = �E1(�0). Thus, �E1(R(�)) = �E1(�) holdsfor all expressions � . Let 1 � i � n. If �0 � �i 2 C, then LC�i = Li + �0 whereLi is LC�i with the �0 term removed and LC0�i = R(Li) + �0; hence it followsthat �E1(LC0�i) = �E1(R(Li) + �0) = �E1(Li + �0) = �E1(LC�i). If �0 � �i 62 C,then LC0�i = R(LC�i) and hence, �E1(LC0�i) = �E1(R(LC�i)) = �E1(LC�i). In eithercase, �E1(LC0�i) = �E1(LC�i). Similarly, �E1(UC0�i) = �E1(UC�i). Thus, �E1(�i)= �E1(LC0�i + �i �UC0�i) = �E1(LC�i + �i �UC�i). Thus, �E1 is a solution to EC andhence to E0. Since the system E0 is contractive, this implies that (�E1)E0 = �E1 .

44 �E1= (�E1)E0 by the above= (�[: : : ; �n+1 �E1(�n+1)])E0 by de�nition of �E1= (�[�n+1 �E1(�n+1)])E0 since �1 : : : �n are rede�ned by E0= �E0 [�n+1 �E1(�n+1)] by Part 2 of Lemma 7= �[�n+1 �E1(�n+1)] since � is a solution of EC (and hence E0)Since �E1 is a solution of C 0 and hence of C, it follows that �[�n+1 �E1(�n+1)]is also a solution of C. But �n+1 does not occur in C. Therefore, � is a solutionof C as desired.2. Let �0 = �[: : : ; �i �(�i); : : :].�0(�i)= �(�i)= �(LC�i) t �(�i) since �(LC�i) � �(�i)= �(LC�i) t (�(�i) u �(UC�i)) since �(�i) � �(UC�i)= �0(LC�i) t (�0(�i) u �0(UC�i)) since no �j occurs in LC�i or UC�i= �0(LC�i + �i � UC�i)This proves that �0 is a solution of EC as desired.3. By Part 1 of De�nition 27, contractive equations always have solutions in anadequate domain. By Lemma 16, EC is equivalent to a contractive system ofequations. Thus, EC has a solution. The result follows from Part 1.Corollary 4 Let C be a closed, consistent system of constraints over an adequatedomain. Let E0C be the corresponding contractive set of equations (see Lemma 16).Then 8�1; : : : ; �n:�=C � 8�1; : : : ; �n:�=E0C provided �1; : : : ; �n do not appear in8�1; : : : ; �n:�=C.Proof: Fix an assignment �.Let x1; : : : ; xn be elements of D0 such that �[: : : ; �i xi; : : :] solves C.By Part 2 of Theorem 13, it follows that �[: : : ; �i xi; : : :][: : : ; �i xi; : : :] solvesEC .By Lemma 16, it follows that �[: : : ; �i xi; : : :][: : : ; �i xi; : : :] solves E0C .Since E0C is contractive, it follows that (�[: : : ; �i xi; : : :][: : : ; �i xi; : : :])E0C= �[: : : ; �i xi; : : :][: : : ; �i xi; : : :].�(8�1; : : : ; �n:�=E0C)� �[: : : ; �i xi; : : :](�=E0C)= (�[: : : ; �i xi; : : :])E0C (�)= (�[: : : ; �i xi; : : :][: : : ; �i xi; : : :])E0C (�) since E0C rede�nes �1; : : : ; �n= �[: : : ; �i xi; : : :][: : : ; �i xi; : : :](�) by the above= �[: : : ; �i xi; : : :](�) since no �i appears in �= �[: : : ; �i xi; : : :](�=C) since �[: : : ; �i xi; : : :] solves CHence it follows that �(8�1; : : : ; �n:�=E0C) � �(8�1; : : : ; �n:�=C) for arbitrary �.

45Let x1; : : : ; xn be arbitrary elements of D0. Let �0 = �[: : : ; �i xi; : : :]. Noticethat (�0)E0C solves E0C and hence solves EC by Lemma 16. By Part 1 of Theorem 13,it follows that (�0)E0C solves C. Since (�0)E0C solves C, it follows from De�nition 24that (�0)E0C (8�1; : : : ; �n:�=C) � (�0)E0C (�).�(8�1; : : : ; �n:�=C)= �0(8�1; : : : ; �n:�=C) since no �i appears in �=C= (�0)E0C (8�1; : : : ; �n:�=C) since no �i is free in 8�1; : : : ; �n:�=C� (�0)E0C (�) by the above= �0(�=E0C)= �[: : : ; �i xi; : : :](�=E0C)Hence it follows that �(8�1; : : : ; �n:�=C) � �(8�1; : : : ; �n:�=E0C) for arbitrary �.The result follows since �(8�1; : : : ; �n:�=C) = �(8�1; : : : ; �n:�=E0C) holds for allassignments �.A solution procedure for constraints over regular trees is given in [15].7.2. SoundnessThe equivalence between constraints and equations in an adequate domain suggeststhat variable elimination can be performed by �rst translating from constraintsto equations, applying the results of Section 6.4 to eliminate variables, and thentranslating back (if desired) to constraints. We can improve on this procedure witha modi�ed Extended Variable Elimination Procedure that takes advantage of thestructure of constraint systems.Procedure 14 Let � = 8�1; : : : ; �n:�=C be a quanti�ed constrained type. Let�0 = 8�1; : : : ; �n:�=ECbe the corresponding extended quanti�ed type. Perform the following steps on �0:1. Let �1 be the result of replacing any subexpression �1+ �2 in �0 by �2 if �(�1) ��(�2) for all assignments �. In particular, if any equation of EC has the form�i = LC�i +> � UC�ithen replace the equation by�i = UC�isince �(LC�i) � �(UC�i) for any solution � of the constraints.2. Let �2 be the result of replacing any subexpression �1 � �2 in �0 by �2 if �(�2) ��(�1) for all assignments �. In particular, if any equation of EC has the form�i = LC�i +? � UC�i

46 then replace the equation by�i = LC�i3. Let �3 = V EP (�2).4. Halt if no variables are eliminated in (3); the result is �3. Repeat (1)-(3) on �3otherwise.We remark that the \in particular" parts of steps 1 and 2 will only becomerelevant if some �i is set to either ? or > by the elimination of that variable �iduring step 3.Example: Consider the type8�1; �2: �1 ! �2= �1 � �2The extended quanti�ed type is8�1; �2:�1 ! �2=E where E is (�1 = ?+ �1 � �2 ^ �2 = ?+ �2 � >) :Now Pos(�1 ! �2=E) = f�2g and Neg(�1 ! �2=E) = f�1; �2g. Thus �1 can be setto >; performing this substitution and simplifying gives:8�2:�1 ! �2= �1 = �2 ^ �2 = �2Substituting �2 for the other variables gives:8�2:�2 ! �2Soundness is easy to prove for the procedure given above.Lemma 18 Let � = 8�1; : : : ; �n:�=C and assume that C is closed and consistent.If the domain is adequate and has type continuity, then Procedure 14 is sound for�.Proof: Follows from Corollary 4 and Lemma 11.We note that it is easy to give an algorithm that implements the e�ect of Pro-cedure 14 on the constraints directly, without requiring translations to and fromequations. We have chosen to present the constrained types in terms of equationsto build on the previous sections.

478. ConclusionsPolymorphic types with subtyping have rich structure. In this paper, we haveshown that for simple non-recursive types and recursive types, it is possible tocompute an optimal representation of a polymorphic type in the sense that no otherequivalent type has fewer quanti�ed variables. Thus, the optimal representation canbe interpreted as having the minimum polymorphism needed to express the type.In more complex type languages, in particular in languages with union and in-tersection types, the same methods are sound but incomplete. The completenessresults for the simpler type languages show that the source of incompleteness isin fact union and intersection types in these languages. The problem of whetherthere is a sound and complete variable elimination procedure for languages withintersection and union types remains open.We have also given a sound variable elimination procedure for polymorphic con-strained types. Variable elimination is critically important in implementations oftype systems using constrained types [9], and in fact the desire to better under-stand variable elimination in this setting was the original motivation for this work.However, the problem of whether there is a sound and complete procedure foreliminating variables in polymorphic constrained types also remains open.Notes1. The source code for the Illyria system and an interactive demo are available at URLhttp://www.cs.berkeley.edu/~aiken/Illyria-demo.html.References1. A. Aiken and B. Murphy. Implementing regular tree expressions. In Proceedings of the1991 Conference on Functional Programming Languages and Computer Architecture, pages427{447, August 1991.2. A. Aiken and E. Wimmers. Type inclusion constraints and type inference. In Proceedingsof the 1993 Conference on Functional Programming Languages and Computer Architecture,pages 31{41, Copenhagen, Denmark, June 1993.3. A. Aiken, E. Wimmers, and T.K. Lakshman. Soft typing with conditional types. In Twenty-First Annual ACM Symposium on Principles of Programming Languages, pages 163{173,Portland, Oregon, January 1994.4. Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM Transactions onProgramming Languages and Systems, 15(4):575{631, 1993. Also in Proc. POPL'91.5. L. Cardelli and P. Wegner. On understanding types, data abstraction and polymorphism.Computing Surverys, 17(4):471{522, December 1985.6. Bruno Courcelle. In�nite trees in normal form and recursive equations having a uniquesolution. Mathematical Systems Theory, 13:131{180, 1979.7. Pavel Curtis. Constrained quanti�cation in polymorphic type analysis. Technical ReportCSL-90-1, Xerox Parc, February 1990.8. J. Eifrig, S. Smith, and V. Trifonov. Sound polymorphic type inference for objects. InOOPSLA '96, 1995.9. M. F�ahndrich and A. Aiken. Making set-constraint program analyses scale. In CP96 Work-shop on Set Constraints, August 1996.

4810. Fritz Henglein and Christian Mossin. Polymorphic binding-time analysis. In Donald Sannella,editor, Proceedings of European Symposium on Programming, volume 788 of Lecture Notesin Computer Science, pages 287{301. Springer-Verlag, April 1994.11. Stefan Kaes. Type inference in the presence of overloading, subtyping and recursive types.In 1992 ACM Conference on Lisp and Functional Programming. San Francisco, California.LISP Pointers V, 1, pages 193{204, June 1992.12. A. Koenig. An anecdote about ML type inference. In Proceedings of the USENIX 1994Symposium on Very High Level Languages, October 1994.13. D. MacQueen, G. Plotkin, and R. Sethi. An ideal model for recursive polymophic types. InEleventh Annual ACM Symposium on Principles of Programming Languages, pages 165{174,January 1984.14. J. C. Mitchell and R. Harper. The essence of ML. In Fifteenth Annual ACM Symposium onPrinciples of Programming Languages, pages 28{46, January 1988.15. J. Palsberg and P. O'Keefe. A type system equivalent to
ow analysis. ACM Transactionson Programming Languages and Systems, 17(4):576{599, July 1995. Preliminary version inProc. POPL'95, 22nd Annual SIGPLAN{SIGACT Symposium on Principles of ProgrammingLanguages, pages 367{378, San Francisco, California, January 1995.16. F. Pottier. Simplifying subtyping constraints. In Proceedings of the 1996 ACM SIGPLANInternational Conference on Functional Programming, pages 122{133, May 1996.17. Geo�rey S. Smith. Principal type schemes for functional programs with overloading andsubtyping. Science of Computer Programming, 23:197{226, 1994.

