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tionProgram analysis is 
on
erned with automati
ally extra
ting information from programs. Program anal-ysis is a large topi
, with a long history and many appli
ations, parti
ularly in optimizing 
ompilersand software engineering tools. As might be expe
ted of any broad area, there are a number of distin
tapproa
hes to program analysis.This paper provides an overview of 
onstraint-based program analysis. While mu
h has been writ-ten about 
onstraint-based program analysis in re
ent years, there is relatively little material to assistoutsiders who wish to learn something about the �eld. Two survey papers 
over the 
omputational
omplexity of various 
onstraint problems that arise in program analysis [Aik94, PP97℄. The purpose ofthe present work is to motivate the use of 
onstraints for program analysis from the perspe
tive of theappli
ations of the theory.Program analysis using 
onstraints is divisible into 
onstraint generation and 
onstraint resolution.Constraint generation produ
es 
onstraints from a program text that give a de
larative spe
i�
ation of thedesired information about the program. Constraint resolution (i.e., solving the 
onstraints) then 
omputesthis desired information. In the author's view, the 
onstraint-based analysis paradigm is appealing forthree primary reasons:� Constraints separate spe
i�
ation from implementation. Constraint generation is the spe
i�
ationof the analysis; 
onstraint resolution is the implementation. This division helps to organize andsimplify understanding of program analyses. The soundness of an analysis 
an be proven solely onthe basis of the 
onstraint systems used|there is no need to resort to reasoning about a parti
ularalgorithm for solving the 
onstraints. On the other hand, algorithms for solving 
lasses of 
onstraintproblems 
an be presented and analyzed independent of any parti
ular program analysis. Generalresults on solving 
onstraint problems provide \o�-the-shelf" tools for program analysis designers.� Constraints yield natural spe
i�
ations. Constraints are (usually) lo
al; that is, ea
h pie
e of pro-gram syntax 
ontributes its own 
onstraints in isolation from the rest of the program. The 
on-jun
tion of all lo
al 
onstraints 
aptures global properties of the program being analyzed.�This work was supported by NSF National Young Investigator award CCR-9457812. This version in
ludes 
orre
tionssuggested by Manuel F�ahndri
h. 1



� Constraints enable sophisti
ated implementations. The 
onstraint problems that arise in programanalysis have a ri
h theory that 
an be exploited in implementations. We shall only tou
h on thissubje
t in this paper.We �rst brie
y dis
uss the long history of the use of 
onstraints in program analysis, whi
h predates the
urrent interest in the area by many years (Se
tion 2). The overview proper begins with the introdu
tionof set 
onstraints, a widely used 
onstraint formalism in program analysis and the one with whi
h theauthor is best a
quainted (Se
tion 3).The balan
e of the paper shows that three 
lassi
al problems|standard data
ow equations, simpletype inferen
e, and monomorphi
 
losure analysis|
an be viewed as instan
es of set 
onstraint problems(Se
tion 4). Ea
h of these three very basi
 analyses have been developed by di�erent 
ommunities ofpeople over extended periods of time, and to our knowledge no formal 
onne
tion between the problemshas been noted previously in the literature. Our main aim in 
hoosing these problems, however, is thatwe assume most readers are familiar with at least one of them and thereby are a�orded an easy path toappre
iation of the 
onstraint-based analysis perspe
tive. We also present one simple variation of typeinferen
e suggestive of the expressive power provided by set 
onstraints (see Se
tion 4.3).To give some insight into the algorithmi
 issues involved in a general 
onstraint-based analysis sys-tem we give 
onstraint resolution algorithms for the 
onstraint systems arising from the three exampleanalyses. It is important to realize that in di�erent appli
ations we are interested in di�erent notions of
onstraint solvability. Depending on the appli
ation, we may be interested in only knowing a parti
ularsolution (e.g., the least solution) or in 
al
ulating all solutions.Set 
onstraints provide one of the most general de
idable theories known for 
onstraint-based programanalysis, and the essential issues of 
onstraint-based analysis 
an be illustrated easily using set 
onstraints.However, we do not wish to give the impression that set 
onstraints are the only useful 
onstrainttheory for program analysis. In addition, there are of 
ourse other approa
hes to program analysis notbased on 
onstraints. Other 
onstraint formalisms, altogether di�erent approa
hes, as well as the pla
eof 
onstraint-based program analysis in the general theory of abstra
t interpretation, are dis
ussed inSe
tion 6.2 HistoryUsing 
onstraints in program analysis is not a new idea. The earliest example we are aware of is dueto Reynolds, who proposed an analysis of Lisp programs based on the resolution of in
lusion 
onstraintsin 1969 [Rey69℄. Similar ideas (but based on grammars rather than 
onstraints) were developed inde-pendently later by Jones and Mu
hni
k [JM79℄. Data
ow equations and type equations, two examplesthat we shall investigate in greater depth in Se
tion 4, also have a long history. Data
ow equations formthe basis of most 
lassi
al algorithms for 
ow analysis used in 
ompilers for pro
edural languages (mostnotably C and FORTRAN). Type equations are the basis of type inferen
e for fun
tional languages andfor template-style polymorphism in obje
t-oriented languages.While the idea of program analysis using 
onstraints is not new, there has been a dramati
 shift inthe resear
h perspe
tive in re
ent years. Formerly, ea
h of the problem areas des
ribed above was viewedas a separate line of resear
h, with its own te
hniques, problems, and terminology. E�orts to hybridize orextend these te
hniques met with 
onsiderable diÆ
ulty, at least in part be
ause it was unknown whetherthe resulting 
onstraint problems 
ould be solved. Today it is understood that these problems are related,and that mu
h 
an be gained by viewing the problems as instan
es of a more general setting. In fa
t,te
hniques from ea
h of the 
lassi
al algorithms may be 
ombined quite freely to 
reate new program2



analyses.To make the advantages of the 
onstraint perspe
tive 
on
rete, we use another 
lassi
al problem forillustration. Most 
ompilers perform register allo
ation to assign ma
hine registers to program variables.Consider the following fragment of imperative 
ode, where program variables are named a,b,
, and soforth:a := 
 + de := a + bf := e - 1print(f)A valid register assignment is a mapping from variable names to register names that preserves pro-gram semanti
s. If the register names are r1, r2, r3, ..., then the program under one valid registerassignment may be:r1 := r2 + r3r4 := r1 + r5r1 := r4 - 1print(r1)The diÆ
ulty in register allo
ation is that there are usually more program variables than there areregisters to hold them. In the example above, six variables are mapped into �ve registers, with variablesa and f sharing register r1. In general, a valid register allo
ation may not even exist for a given program.In this 
ase, the number of variables in the program 
an be redu
ed by spilling some variables by inserting
ode to save and restore these variables to and from main memory.The register allo
ation problem was already re
ognized in the FORTRAN I 
ompiler in the 1950's,but the solution te
hniques were ad ho
 and not entirely e�e
tive. By the 1970's it was realized thatthe weakness of 
ontemporary register allo
ation was a limiting fa
tor in the development of optimizing
ompilers. A breakthrough 
ame in the late 1970's when Chaitin proposed a register allo
ation heuristi
based on graph 
oloring [CAC+81℄. The signi�
an
e of the 
ontribution 
an be judged by the fa
t thatthis te
hnique was the subje
t of one of the �rst software patents. Chaitin's insight was to formulateregister allo
ation as a 
onstraint problem.A variable x is said to be live at a program point p if x is referred to at some program point laterin the exe
ution ordering than p with no intervening assignment to x. Otherwise x is said to be dead.Consider an assignment statement y := :::. A basi
 observation about register allo
ation isIf variable x is live when variable y is assigned, then x and y 
annot be held in the sameregister.In the example above, we have impli
itly assumed that a is dead at the point where f is assigned, allowingreuse of a's register to hold the value of f.This observation suggests the following natural 
onstraint problem. Let Reg : Variables ! Registersbe a register assignment. The 
onstraints on Reg areReg(x) 6= Reg(y), x is live where y is assignedThis formulation neatly 
aptures the 
onstraints under whi
h a register assignment is valid. The nextproblem is to 
ompute register assignments. The 
onstraints naturally spe
ify a graph with one node for3



ea
h variable and an edge (x; y) for ea
h inequality 
onstraint Reg(x) 6= Reg(y). A graph is k-
olorable ifea
h node of the graph 
an be assigned a 
olor di�erent from the 
olor of all of its neighbors in su
h away that no more than k 
olors are used. Finding a register assignment with k registers is equivalent to�nding a k 
oloring of the 
onstraint graph.By the time of Chaitin's work, it was already known that graph 
oloring is an NP-
omplete problem,and therefore that eÆ
ient exa
t solutions were very unlikely to be found. Chaitin proposed a simpleheuristi
 for 
oloring the graph based on another observation:If a node x has fewer than k in
ident edges, then the graph is k-
olorable if and only if thegraph obtained by removing x and its edges is k-
olorable.That is, if x has fewer than k neighbors, then there is always a 
olor for x, no matter how the rest ofthe graph is 
olored. In 
ases where the heuristi
 fails to 
olor the entire graph (i.e., a point is rea
hedwhere all nodes have k or more neighbors) it is ne
essary to 
hoose a variable to spill. While subsequentwork extends the heuristi
s for 
oloring and spilling, graph 
oloring remains the best framework knownfor register allo
ation after nearly 20 years.This rather old example illustrates all of the advantages of using 
onstraint formulations in programanalysis. The 
onstraint formulation as inequalities separates the spe
i�
ation of the problem from itsimplementation, and most importantly gives a global 
hara
terization of the 
onditions to be satis�ed.The abstra
t 
onstraint problem, now free of the details of the parti
ular program and programminglanguage, 
an then be addressed by appropriate te
hniques, in this 
ase graph 
oloring. Note that the
onstraint resolution algorithm pro
eeds in a manner that has no dire
t relationship to program stru
ture,and that if one were to a
tually view the sequen
e of allo
ation de
isions made by the greedy 
oloringheuristi
 it would jump around from point to point in the program with no apparent pattern. If wewere to attempt formulating dire
tly an algorithm that was de�ned, e.g., by indu
tion on the programsyntax, it is unlikely we would arrive at something as e�e
tive as 
onverting the problem to a 
onstraintrepresentation.The reader may �nd register allo
ation heuristi
s a pe
uliar 
hoi
e for a histori
al example of programanalysis. After all, graph 
oloring register allo
ation is not usually even regarded as a program analysisproblem, let alone a 
onstraint-based one. However, it is 
lear that the 
onstraint formulation was 
entralin developing the te
hnique. Register allo
ation is interesting for another reason. To our knowledge, itis the only signi�
ant appli
ation of negative 
onstraints (i.e., inequalities) to program analysis in theliterature.3 Set ConstraintsThis se
tion gives a brief overview of set 
onstraints and the state of knowledge on set 
onstraint problems.In Se
tion 4 we illustrate 
onne
tions between disparate program analysis problems using the languageof set 
onstraints.Set 
onstraints des
ribe relationships between sets of terms. A set 
onstraint has the form X � Y ,where X and Y are set expressions. Let C be a set of 
onstru
tors and let V be a set of set-valuedvariables. Ea
h 
 2 C has a �xed arity a(
); if a(
) = 0 then 
 is a 
onstant. The set expressions arede�ned by the following grammar:E ::= � j 0 jE1 [E2 jE1 \E2 j :E1 j 
(E1; : : : ; Ea(
)) j 
�i(E1)In this grammar, � is a variable (i.e., � 2 V ) and 
 is a 
onstru
tor (i.e., 
 2 C). In the standardinterpretation, set expressions denote sets of terms. A term is 
(t1; : : : ; ta(
)) where 
 2 C and every ti is4



a term (the base 
ases of this de�nition are the 
onstants). The set of all terms is the Herbrand universeH. An assignment � is a mapping V ! 2H that assigns sets of terms to variables. The meaning of setexpressions is given by extending assignments from variables to set expressions as follows:�(0) = ;�(E1 [E2) = �(E1) [ �(E2)�(E1 \E2) = �(E1) \ �(E2)�(:E1) = H � �(E1)�(
(E1; : : : ; En)) = f
(t1; : : : ; tn)jti 2 �(Ei)g�(
�i(E)) = ftij9
(t1; : : : ; tn) 2 �(E); 1 � i � ngA system of set 
onstraints is a �nite 
onjun
tion of 
onstraints ViXi � Yi where ea
h of the Xi and Yiis a set expression. A solution of a system of set 
onstraints is an assignment � su
h that Vi �(Xi) � �(Yi)is true. A system of set 
onstraints is satis�able if it has at least one solution.The term \set 
onstraints" was 
oined by Heintze and Ja�ar [HJ90℄, who were the �rst to re
ognizeand formalize set 
onstraints in their full generality. It is a remarkable fa
t about many set 
onstraintproblems that not only is it de
idable whether or not a system of 
onstraints has a solution, but thatall (potentially in�nitely many) solutions 
an be given a �nite representation. In their original paper,Heintze and Ja�ar showed that a restri
ted 
lass of set 
onstraints 
ould be solved and the solutions�nitely presented.1A natural and interesting sub
lass of set 
onstraints ex
ludes proje
tions but in
ludes all other opera-tions. An algorithm that exhibits all solutions of su
h 
onstraints �rst appears in [AW92℄. Subsequently,many alternative proofs of this result and 
onne
tions to other dis
iplines were dis
overed, in
luding treeautomata [GTT92℄ and graph theory [AKVW93℄. A parti
ularly elegant result shows that set 
onstraintswithout proje
tions are equivalent to the monadi
 
lass of predi
ate logi
 [BGW93℄.In
luding unrestri
ted proje
tions in a 
omplete theory turns out to be a diÆ
ult problem. A seriesof papers by a variety of authors show in
reasingly powerful systems of 
onstraints to be de
idable[GTT93, BGW93, CP94a, AKW95℄. Charatonik and Pa
holski �nally show that the full set 
onstraintlanguage is de
idable in [CP94b℄.Showing de
idability is, of 
ourse, a ne
essary �rst step in obtaining pra
ti
al algorithms. Beyondde
idability, we would like eÆ
ient algorithms and algorithms that 
ompute �nite representations of so-lutions. In these areas the state of knowledge is in
omplete. Currently, the algorithms that 
ompute�nite representations of the solutions of set 
onstraints 
annot handle unrestri
ted proje
tions. Fur-thermore, the 
omplexity of solving general set 
onstraints is high. Satis�ability of set 
onstraints isNEXPTIME-
omplete; in fa
t, it remains NEXPTIME-
omplete even if proje
tions are eliminated.The 
omplexity results strongly suggest that analyses based on solving set 
onstraints in their fullgenerality are infeasible. However, there are many very useful polynomial time fragments of the fulltheory, and it is these tra
table sub-theories that are our fo
us in this paper.3.1 Expressive PowerFrom the de�nition above, it is easy to see that the set expressions 
onsist only of elementary set operationsplus 
onstru
tors|simply put, it is a set theory of terms. The 
onstraint language is ri
h enough,1It is also worth noting that for some variations of set 
onstraints, in parti
ular with the addition of fun
tion spa
es, no
omplete resolution algorithm is known for the general 
ase. 5



however, to des
ribe all of the data types 
ommonly used in programming, and this is the property thatmakes set 
onstraints a useful tool for program analysis. For example, programming language data typefa
ilities provide \sums of produ
ts" data types, whi
h means simply unions of (usually distin
t) datatype 
onstru
tors. All su
h data types 
an be expressed as set 
onstraints.Let X = Y stand for the pair of 
onstraints X � Y and Y � X. Consider the 
onstraint� = 
ons(�; �) [ nilIf 
ons and nil are interpreted in the usual way, then the solution of this 
onstraint assigns to � the set ofall lists with elements drawn from �. This example also shows that a spe
ial operation for re
ursion is notrequired in the set expression language|re
ursion is obtained naturally through re
ursive 
onstraints.We have not said whether we mean our lists above to be stri
t (as in most languages) or non-stri
t(as in lazy fun
tional languages). Set 
onstraints 
an be used for either, although di�erent models arerequired for stri
t and non-stri
t 
onstru
tors. In this paper we wish to avoid most of the 
omplexitiesof dis
ussing models, so we simply observe that for a non-stri
t 
ons the following identity holds:
ons(X;Y ) � 
ons(X 0; Y 0), X � X 0 ^ Y � Y 0For a stri
t 
ons one must naturally a

ount for stri
tness, namely that 
ons(0; Y ) = 0 for all Y (andsimilarly for a 0 in the se
ond position). Thus the identity for a stri
t 
ons is more 
omplex:
ons(X;Y ) � 
ons(X 0; Y 0), (X � X 0 ^ Y � Y 0) _X = 0 _ Y = 0It is by applying equivalen
es su
h as these that set 
onstraint solvers solve set 
onstraints (see Se
tion 5).By 
hoosing the appropriate resolution rules either stri
t or non-stri
t 
onstru
tors 
an be modeledfaithfully; in fa
t, it is possible to distinguish individual arguments of 
onstru
tors as stri
t or non-stri
t,though we know of few appli
ations for su
h generality. Be
ause of the disjun
tion on the right-handside of the ,, it is in general more expensive to resolve 
onstraints involving stri
t 
onstru
tors than
onstraints using only non-stri
t 
onstru
tors.The set of non-nil lists (with elements drawn from �) 
an be de�ned as 
 = � \ :nil, where � isde�ned as above. The set 
 is useful be
ause it des
ribes the proper domain of the fun
tion that sele
tsthe �rst element of a list; su
h a fun
tion is unde�ned for empty lists. This example also illustrates thatset 
onstraints 
an des
ribe proper subsets of standard sums of produ
ts data types.A red-bla
k tree is a binary sear
h tree with the following properties:1. Every node is either red or bla
k.2. Every leaf is bla
k.3. Every red node has two bla
k 
hildren.4. Every path from the root to a leaf has the same number of bla
k nodes.Together these properties imply that a red-bla
k tree of n nodes has height at most 2 log(n + 1), sored-bla
k trees are well-balan
ed trees. Set 
onstraints 
an des
ribe properties (1)-(3) of red-bla
k trees.In the following equations, the set � des
ribes subtrees rooted at bla
k nodes and � des
ribes subtreesrooted at red nodes. Red and bla
k are both binary 
onstru
tors:� = bla
k(� [ �; � [ �) [ bla
kleaf� = red(�; �) 6



Property (4) of red-bla
k trees 
annot be des
ribed by set 
onstraints. This follows from the fa
t thatthe solutions of set 
onstraints are always des
ribable by regular equations(see Se
tion 5).The �nal, admittedly 
ontrived, example shows a non-trivial system of 
onstraints where some work isrequired to derive the solutions. Consider the universe of the natural numbers with one unary 
onstru
torsu

 and one nullary 
onstru
tor zero. Let the system of 
onstraints be:su

(�) � :� ^ su

(:�) � �These 
onstraints say that if x 2 � (resp. x 2 :�) then su

(x) 2 :� (resp. su

(x) 2 �). In otherwords, these 
onstraints have two solutions, one where � is the set of even natural numbers and onewhere � is the set of odd natural numbers. The solutions are des
ribed by the following equations:� = zero [ su

(su

(�))� = su

(zero) [ su

(su

(�))The two solutions are in
omparable; in general, there is no least solution of a system of set 
onstraints.3.2 ExtensionsThere are extensions of set 
onstraints that have proven useful in various appli
ations. The most impor-tant extensions are surveyed here.3.2.1 Fun
tion Spa
eFun
tion spa
es X ! Y 
an be added to the set expressions. In an appropriate model, the meaning ofX ! Y is X ! Y = ff jx 2 X ) f(x) 2 Y gNote that semanti
ally ! is not a labelled 
ross produ
t of the domain and the range; thus the termsemanti
s of set expressions given above are not adequate to model fun
tion spa
es. A suitable domain
an be 
onstru
ted using standard te
hniques of denotational semanti
s and, given su
h a domain, set
onstraint resolution te
hniques still apply, although so far as is known additional restri
tions are neededon union and interse
tion to guarantee that the 
onstraints 
an be solved [AW93℄.The fun
tion spa
e 
onstru
tor is the �rst example we have seen of a 
onstru
tor that is not monotoni
.2Fun
tion spa
e is anti-monotoni
 in its �rst argument and monotoni
 it its se
ond argument. That is,the following hold: X ! Y � X ! Y [ Y 0 monotoni
X ! Y � X [X 0 ! Y anti-monotoni
People unfamiliar with the type theory of fun
tions often �nd the property of anti-monotoni
ity surprising.The explanation is in the de�nition of fun
tion spa
e above. Note the impli
ation in the set quali�
ation\x 2 X ) f(x) 2 Y ". In
reasing X strengthens the hypothesis, so fewer fun
tions f satisfy theimpli
ation and the resulting set is smaller. In
reasing Y weakens the 
on
lusion, so more fun
tions fsatisfy the impli
ation and the resulting set is larger. Fun
tion spa
es are used primarily in the analysisof fun
tional programming languages [AW93, AWL94, AF95, FA97, MW97, FFK+96, FF97℄.32A fun
tion f is monotoni
 if whenever x � y then f(x) � f(y).3It is also possible to de�ne analyses involving fun
tions that avoid anti-monotoni
 
onstru
tors altogether, althoughthese te
hniques assume the entire program is available to be analyzed at on
e [Hei94, FF97℄.7



3.2.2 Conditional ExpressionsConditional expressions Y ) X are equal to X if Y is non-empty and equal to 0 otherwise:Y ) X = ( 0 if Y = 0X if Y 6= 0Conditional expressions are very useful for expressing 
onstraints on 
ow of 
ontrol in programs. Forexample, 
onsider the following 
ase statement on a boolean expression.
ase x oftrue: y;false: z;esa
We may wish to 
onstru
t an analysis that 
aptures the fa
t that the result of this expression 
an be y onlyif x evaluates to true and that the result 
an be z only if x evaluates to false. Let [[�℄℄ : Expressions !SetVariables be a fun
tion mapping a program phrase to a set variable 
orresponding to the analysis ofthat phrase in the solutions of the 
onstraints (this notation is taken from [PS91℄). Assuming that trueand false are set 
onstru
tor 
onstants with the obvious interpretations, then the desired 
onstraint forthe 
ase expression is(([[x℄℄ \ true)) [[y℄℄) [ (([[x℄℄ \ false)) [[z℄℄) � [[
ase x of true: y; false: z; esa
℄℄It is worthwhile noting that from the point of view of de
idability, 
onditional expressions add nothingto set 
onstraints as they are a spe
ial 
ase of proje
tions. To see this, observe thatY ) X � 
�1(
(X;Y ))Here we rely on the fa
t that the interpretation of 
onstru
tors requires that if Y = 0, then 
(X;Y ) = 0for any X. If one wishes to 
ompute solutions (and not just know that solutions exist), then it turns outthat for a language without expli
it proje
tions but with 
onditional expressions it is possible to �nitelyrepresent all solutions of the 
onstraints [AWL94℄.We shall sometimes �nd it 
onvenient to allow 
onditional 
onstraints in addition to 
onditionalexpressions. A 
onditional 
onstraint has the formX ) (Y � Z)and has the meaning that if X 6= 0 then Y � Z must hold and otherwise there is no 
onstraint.Conditional expressions and 
onditional 
onstraints are equivalent in the sense thatX ) (Y � Z) � (X ) Y ) � Z4 Appli
ationsThis se
tion presents appli
ations of set 
onstraints to three 
lassi
al program analysis problems: data
owanalysis, type inferen
e, and 
losure analysis. We expe
t that at least one of the 
hosen appli
ations isfamiliar to any reader with a ba
kground in one of the major program analysis 
ommunities. We use set
onstraints as the 
ommon language in whi
h the analysis problems are presented.8



4.1 Data
ow AnalysisClassi
al data
ow 
omputations for imperative languages in
lude live variable analysis, rea
hing de�ni-tions, and 
onstant propagation, among others [ASU86℄. These algorithms are formalized as the solutionof systems of 
onstraints over expressions built from sets of 
onstants, set variables, and the set operations:E ::= a1 j : : : j an j� jE1 \E2 jE1 [E2 j :E1In this grammar a1; : : : ; an are the 
onstants (nullary 
onstru
tors) and � stands for a family of setvariables. The meaning of an expression is a set of 
onstants. A system of 
onstraints is a 
onjun
tionof equalities Vi �i = Ei. We assume that ea
h variable appears on the left-hand side of at most oneequation.For example, in a live variable analysis in a language su
h as FORTRAN there is one 
onstant forea
h program variable. The problem is to 
ompute, for ea
h program statement S, the variables x thatmay be used after the exe
ution of S without any intervening assignments to x. For brevity we 
onsideronly the 
ase where S is an assignment statement; the formulation for other program 
onstru
ts is alsostraightforward. For ea
h assignment statement we need to know two 
onstant sets:� Sdef is the set of variables de�ned (written) by S.� Suse is the set of variables used (read) by S.For example, in the statement x = x + y we have Sdef = x and Suse = x [ y. For ea
h statement Sthere are two set variables [[S℄℄in and [[S℄℄out, 
orresponding to the set of variables live immediately beforeand after S respe
tively. Let su

(S) be the statements immediately after S in program exe
ution. Thesystem of 
onstraints is then [[S℄℄in = Suse [ ([[S℄℄out \ :Sdef)[[S℄℄out = [X2su

(S)[[X℄℄inThese 
onstraints express how live variables are (or are not) propagated from one program statement toanother. For example, for the statement x = x+ y the �rst 
onstraint is[[S℄℄in = fx; yg [ ([[S℄℄out \ :fxg)whi
h is equivalent to [[S℄℄in = fx; yg [ [[S℄℄outThere are a few subtleties in our formulation of live variable analysis worth dis
ussing. First, note theoptimization of the 
onstraint representation in the immediately pre
eding lines (i.e., where an interse
tionis eliminated from the right-hand side of the equation). In the pro
ess of solving the equations it maybe ne
essary to evaluate individual equations many times under di�erent assignments to the variables.Thus, applying identities to simplify 
onstraints 
an signi�
antly improve the performan
e of 
onstraintresolution implementations. This example merely hints at what transformations are possible, and thereis a substantial literature on simplifying set 
onstraints [Pot96, TS96, FA96, FF97, MW97℄.9



Se
ond, we have a
tually stret
hed the truth and presented a signi�
ant generalization of the 
lassi
aldata
ow theory. Note that the set expression grammar above allows negation of arbitrary expressions:E. The standard proof that data
ow equations have solutions requires that all operators be monotoni
,whi
h : 
learly is not. To a
hieve monotoni
ity, set 
omplement is restri
ted to stati
ally known sets(i.e., set expressions without variables) in whi
h 
ase the right-hand sides of equations are monotone inall variables. This restri
tion is not stri
tly required|the 
onstraints presented (with :) 
an be solved asthey are a spe
ial 
ase of more general set 
onstraints for whi
h resolution algorithms are known [AW92℄.There are reasons, however, to prefer restri
ted set 
omplement in data
ow analysis. First, addinggeneral 
omplement raises the 
omputational 
omplexity signi�
antly (see dis
ussion at the end of thisse
tion). Se
ond, in data
ow analysis we usually are interested in a best solution, either the least or thegreatest. A unique best solution need not exist if set 
omplement is unrestri
ted. For the purposes ofdata
ow analysis, we shall assume simply that negation is used in a su
h a way that set expressions aremonotone in all variables.For live variable analysis it is the least solution that is desired. In this 
ase, the following in
lusion
onstraints are equivalent: [[S℄℄in � Suse [ ([[S℄℄out \ :Sdef)[[S℄℄out � [X2su

(S)[[X℄℄inAs a useful exer
ise in manipulating 
onstraints we now show that these in
lusions have the sameleast solution as the equalities. (Solution � is least if for any other solution �0, we have �(x) � �0(x) forall x.) Be
ause equality implies in
lusion, it follows that every solution of the equalities is also a solutionof the in
lusions. Therefore, it suÆ
es to show that the in
lusions have a least solution that is also asolution of the equations.As a �rst step, note that the 
onstraints always have a solution �i = fa1; : : : ; ang (the set of all
onstants). Every in
lusion 
onstraint is satis�ed be
ause the left-hand side is the largest possible set.Let �1 and �2 be any solutions of the in
lusions and let �3(�) = �1(�)\�2(�). Now for every in
lusion
onstraint � � E we have �1(�) � �1(E) � �3(E)�2(�) � �2(E) � �3(E)where the last step of both lines follows by monotoni
ity. It follows that�1(�) \ �2(�) = �3(�) � �3(E)so �3 is also a solution of the in
lusions. Sin
e there always exists a solution, solutions are 
losed underinterse
tion, and there are only �nitely many solutions (be
ause the domain is �nite and there are a �nitenumber of variables), there must be a least solution.Let � be the least solution of the in
lusions and assume for the sake of a 
ontradi
tion that it is not asolution of the equalities. Then there is a 
onstraint � � E su
h that �(�) � �(E). Let �0 = �[� �(E)℄.Now we have �(�) � �0(�) = �(E) � �0(E)by monotoni
ity. For any other 
onstraint �0 � E0 we know � 6= �0 (re
all every variable appears in atmost one left-hand side), and we have �(�0) = �0(�0) � �0(E0)10



where the last � again follows by monotoni
ity. Thus, �0 is a solution smaller than �, a 
ontradi
tion.We 
on
lude that � is a solution of the equalities.Data
ow equations are a spe
ial 
ase of set 
onstraints where the only 
onstru
tors are 
onstants, theleft-hand side of an equation is always a variable, and set 
omplement is restri
ted. The de
idability ofthese equality 
onstraints follows immediately from the de
idability of set 
onstraints. More interestingly,though, the de
idability of extensions also follows immediately. As noted above, unrestri
ted 
omplement
an be added and all solutions are still 
omputable, although the 
omputational 
omplexity in
reases frompolynomial time to NP-
omplete [AKVW93℄.Two other set 
onstraint extensions to data
ow analysis are parti
ularly useful. The �rst is theaddition of 
onditional expressions X ) Y . As noted earlier, 
onditional expressions 
an be used tomodel 
ontrol 
ow, whi
h 
omplements the emphasis on data 
ow in (aptly named) data
ow analysis. Agood example of the 
ombination of these features is found in [Hei94, AFS98℄. The se
ond extension is theability to perform data
ow analysis of data stru
tures by in
luding non-atomi
 
onstru
tors. Set-basedanalysis is a 
anoni
al example of a system that exploits this feature of set 
onstraints [Hei92, Hei94℄.Finally, the algorithm given by the 
onstraint resolution rules is unlikely to be as eÆ
ient as thestandard algorithms for live variable analysis. The 
ulprit is the rule for adding transitive 
onstraintsE1 � � ^ � � E2 � E1 � � ^ � � E2 ^E1 � E2whi
h adds new 
onstraints between variables � � � � 
 ) � � 
, something that pra
ti
al implemen-tations for this problem do not do. To a
hieve an algorithm with eÆ
ien
y akin to those used in pra
ti
e,we 
an modify the rule for transitive 
onstraints to propagate only 
onstants in lower bounds to upperbounds: a � � ^ � � E � a � � ^ � � E ^ a � EIt is easy to show that this rule makes the least solution expli
it; ea
h variable is assigned the set of
onstants appearing in its lower bound.4.2 Simple Type Inferen
eType inferen
e is a 
entral 
omponent of stati
ally typed fun
tional languages. The essen
e of theinferen
e algorithm is to generate a system of type 
onstraints from the program text. If the 
onstraintsare solvable then the program is typable and the types of program phrases are exhibited by the solutionsof the 
onstraints.For our purposes the pure lambda 
al
ulus suÆ
es as the programming language:e ::= x j�x:e1 j e1 e2For simpli
ity, we assume that variables in an expression are renamed as ne
essary so that all lambdabound variables are distin
t. For a simple (that is, not polymorphi
) type system, the expressions of the
onstraint language are E ::= � jE1 ! E2where ! is an in�x binary type 
onstru
tor. Constraint systems are 
onjun
tions of equations ViEi1 =Ei2. As dis
ussed in Se
tion 3.2.1, the term model presented in Se
tion 3 is inadequate for fun
tionspa
es, but adequate models do exist.There are many equivalent ways to spe
ify simple type inferen
e. One whi
h is 
lose to a
tualimplementations of type inferen
e algorithms uses systems of type equations. As before, we use [[e℄℄ tostand for a type variable asso
iated with e. 11



[[�x:e℄℄ = [[x℄℄! [[e℄℄[[e1℄℄ = [[e2℄℄! [[e1 e2℄℄This formulation is equivalent to the standard one whi
h uses inferen
e rules and is well-known[Wan87℄. Under these rules it is easy to verify the types of the following examples:�x:x : �x ! �x�z:�y:z : �z ! (�y ! �z)(�z:�y:z)�x:x : �y ! (�x ! �x)�f:�x:f(f(x)) : (�x ! �x)! �x ! �xDepending on whether �nite or in�nite solutions are desired, the 
onstraints are solved using respe
-tively uni�
ation or 
ir
ular uni�
ation. If 
ir
ular uni�
ation is used, then every lambda expression hasa type. (To see this, note that both equations 
an be solved by assigning every expression the re
ursivetype � = � ! �.) Not every expression has a type using ordinary uni�
ation. Of 
ourse, an alternativeproof of de
idability is to observe that these are set 
onstraints. Note, however, that just as in the 
aseof uni�
ation an o

urs 
he
k is required if only �nite solutions are desired.4.3 A VariationOn
e again we 
an obtain generalizations of the familiar theory. For example, by generalizing terms tosets we 
an de�ne the following grammar for types:E = � jE1 ! E2 jE1 \E2 jE1 [E2 j 0We re
ast the 
onstraints to use in
lusion instead of equality and allow solutions to be expressed in termsof the more expressive types: [[�x:e℄℄ � [[x℄℄! [[e℄℄[[e1℄℄ � [[e2℄℄! [[e1 e2℄℄The �rst 
onstraint says simply that the type of �x:e must in
lude all the fun
tions of type [[x℄℄ ! [[e℄℄.To understand the se
ond 
onstraint, note that for the 
onstraints to have any solutions [[e1℄℄ must be aset of fun
tions. Assume [[e1℄℄ = X ! Y for some X and Y . We then have[[e1℄℄ = X ! Y � [[e2℄℄! [[e1 e2℄℄whi
h implies, using the anti-monotoni
ity of the domain and monotoni
ity of the range, that[[e2℄℄ � X ^ Y � [[e1 e2℄℄In other words, the domain X of e1 must a

ept the type of the argument [[e2℄℄, and the type of the result[[e1 e2℄℄ must be at least the range Y of e1.Under these in
lusion 
onstraints many fun
tions have substantially more pre
ise types than underthe original equality 
onstraints. For example, the fun
tion that applies a fun
tion twi
e to its argumenthas the type: �f:�x:f(f(x)) : ((�! �) \ (� ! 
))! (�! 
)12



Note that now the fun
tion f may be overloaded. The 
onstraints imply that the fun
tion is well-typedprovided that f has signatures � ! � and � ! 
 that 
an be 
omposed to produ
e a fun
tion of type�! 
.The extended type system presented here is somewhat related to interse
tion type dis
iplines. Thelanguage of interse
tion types retains variables, fun
tion spa
es, and interse
tions between types, but no0 or type union. However, most interse
tion type dis
iplines have mu
h more general rules for assigningtypes to expressions than the 
onstraint generation rules we give above. As a result, even type
he
k-ing for the natural interse
tion type dis
ipline is unde
idable [CC90℄. Restri
ted, de
idable versions ofinterse
tion type systems have re
eived 
onsiderable attention (see, e.g., [CG92℄).4.4 Closure AnalysisA standard program analysis for fun
tional languages is 
losure analysis. Be
ause 
losure analysis is notas well-known as data
ow analysis and type inferen
e, we �rst des
ribe a simple 
losure analysis beforedis
ussing 
onstraints.Intuitively, the 
losure analysis problem for the lambda 
al
ulus is to estimate the set of lambdaabstra
tions to whi
h a program variable 
an be bound during redu
tion. For example, in the expression(�x:x)�y:y, the variable x will be bound to an expression beginning �y, while y will not be bound to anyexpression. Closure analysis is used to derive an approximation of the 
ontrol 
ow graph in a higher orderfun
tional language. In a �rst order language (su
h as FORTRAN) the 
ontrol 
ow graph is stati
allyknown|the order in whi
h expressions are evaluated is obvious from program syntax, and this order isthe stru
ture from whi
h data
ow analysis algorithms are built. In a higher order language, the orderin whi
h expressions are evaluated must be inferred and, in general, approximated. Closure analysis isa well-known algorithm for approximating the 
ontrol-
ow graph of a program and has been studiedextensively [Shi88, Ses91, PS91, Pal95, NN97℄.Our development of 
losure analysis follows Palsberg's. Let [[e℄℄ be a variable asso
iated with expressione; this variable ranges over sets of lambda bindings appearing in the 
omplete expression. For example,for the expression �x:�y:x the set of lambdas is f�x; �yg. For a �xed lambda expression e, the 
losureanalysis is the least solution of a system of 
onstraints derived from the sub-expressions of e:Sub-Expression Constraints�x:e0 �x � [[�x:e0℄℄e1 e2 for every �x:e3 in e�x � [[e1℄℄) ([[e2℄℄ � [[x℄℄ ^ [[e3℄℄ � [[e1 e2℄℄)For the expression (�x:x)�y:y, the 
onstraints aref�xg � [[�x:x℄℄f�yg � [[�y:y℄℄�x � [[�x:x℄℄) ([[�y:y℄℄ � [[x℄℄ ^ [[x℄℄ � [[(�x:x)�y:y℄℄)�y � [[�x:x℄℄) ([[�y:y℄℄ � [[y℄℄ ^ [[y℄℄ � [[(�x:x)�y:y℄℄)Solutions of the 
onstraints are ordered pointwise; i.e., � � �0 if and only if �(x) � �0(x) for all x. It iseasy to verify that the least solution of the 
onstraints is[[x℄℄ = f�yg[[y℄℄ = ;13



[[�x:x℄℄ = f�xg[[�y:y℄℄ = f�yg[[(�x:x)�y:y℄℄ = f�ygOur de�nition of 
losure analysis introdu
es two small extensions to the 
onstraint notation we havede�ned. De�ne 
 � X ) P to mean X \ 
 ) P , whi
h is equivalent but stays within our syntax. Also,de�ne X ) (Y ^ Z) to mean (X ) Y ) ^ (X ) Z).The fa
t that set 
onstraints of this form 
an be solved for the least solution in time O(n3) follows im-mediately from more general results on solving systems of set 
onstraints [Hei94, AWL94℄ (see Se
tion 5).Histori
ally, however, 
losure analysis has been investigated over a period of many years in isolationfrom other te
hniques and, essentially, the fragment of set 
onstraints needed for the problem has beendis
overed from �rst prin
iples [Shi88, PS91℄. Set-based analysis 
an be viewed as a more general formof 
losure analysis where, among other things, there is some ability to tra
k the 
ow of 
ontrol through
onditional tests [Hei94℄.5 Solving ConstraintsSo far we have worked at the level of spe
ifying the 
onstraints for parti
ular program analysis appli
a-tions. In this se
tion we dis
uss 
omputing solutions of 
onstraints. The general strategy in 
onstraintresolution algorithms is always the same: An initial system of 
onstraints is repeatedly transformed usingsimple rules until the system is in a \solved form." We illustrate this approa
h using the three analysisproblems presented in Se
tion 4.We begin by de�ning our notion of a solved form system of 
onstraints. We show that any indu
tivesystem of 
onstraints has solutions, and that in fa
t all solutions are expli
it in the form of the 
onstraints(Se
tion 5.1). In the following subse
tions we give algorithms for transforming the 
onstraint systemsdeveloped in Se
tion 4 into indu
tive form.5.1 Indu
tive SystemsWe shall limit our dis
ussion to the following expression language, whi
h ex
ludes proje
tions.E ::= � j 0 jE1 [E2 jE1 \E2 j :E1 j 
(E1; : : : ; Ea(
))Mu
h of the development in this se
tion follows [AW93℄.We make use of two previous results in the proof that indu
tive systems have solutions. The �rst is ate
hnique for transforming in
lusion 
onstraints to an equivalent system of equations [AW92℄. The se
ondis the fa
t that systems of 
ontra
tive equations have unique solutions [MPS84℄. The 
onstraint-solvingalgorithm presented in Se
tion 5 redu
es an initial system of 
onstraints to a set of systems of indu
tive
onstraints or reports that the initial system is in
onsistent.To dis
uss 
onstraint solving it is ne
essary to be fairly spe
i�
 about the semanti
 domain. We havedis
ussed two domains, a domain of terms and a domain that in
ludes fun
tion spa
es. For simpli
ity,we shall prove our results only for the term domain. We need the following de�nition. Let Dj be anin
reasing sequen
e of sets that 
ontain larger terms (terms of greater height) as j in
reases:� D0 = ;� Dj = f
(t1; : : : ; ta(
))jtj 2 Dj�1g [Dj�1 14



To help motivate the te
hni
al de�nitions that follow, 
onsider the following natural indu
tive strategyfor showing that an arbitrary system of in
lusion 
onstraints over variables �1; : : : ; �n has a solution.Initially, let �i = 0 for 1 � i � n. At step j of the indu
tion, assign some terms of Dj to �1, then to �2,and so on, up to �n. At ea
h step (j; i) of this double indu
tion over the terms of Dj and variables �i,we must ensure that the 
onstraints are satis�ed for all elements in Dj. If this 
an be done for all pairs(j; i) then the system has a solution.In su
h an indu
tive proof, we must distinguish between variables inside of 
onstru
tors 
(�), whi
h
ontribute terms from Dj�1, and variables outside of 
onstru
tors �\
(: : :), whi
h 
ontribute terms fromDj .De�nition 5.1 The top-level variables ofX (denoted TLV(X)) are the variables inX that appear outsideof a 
onstru
tor. Formally, TLV(�i) = f�igTLV(0) = ;TLV(
(: : :)) = ;TLV(E1 [E2) = TLV(E1) [TLV(E2)TLV(E1 \E2) = TLV(E1) [TLV(E2)TLV(:E1) = TLV(E1)Top-level variables are also 
alled the non-expansive variables [MPS84℄.De�nition 5.2 A system S of 
onstraints is indu
tive if the following three 
onditions hold:1. S = V1�i�n Li � �i � Ui (i.e., there is one lower bound Li and upper bound Ui per variable �i)2. TLV(Li) [TLV(Ui) � f�1; : : : ; �i�1g for 1 � i � n3. For all i0 = 1; : : : ; n and integers j, the following holds in all assignments:(8i = 1; : : : ; i0 � 1 (Li \Dj � �i \Dj � Ui \Dj) and8i = i0; : : : ; n (Li \Dj�1 � �i \Dj�1 � Ui \Dj�1))) Li0 \Dj � Ui0 \DjParts 1 and 2 are simple synta
ti
 properties. Part 3 is a more 
omplex semanti
 
ondition. Thedouble indu
tion outlined above for 
onstru
ting solutions is expressed in part 3, whi
h says that if the
onstraints are satis�able up to some level i0 and variable �j�1, then the 
onstraints are satis�ed for thenext lower and upper bound pair in the indu
tion Li0 \Dj � Ui0 \Dj .De�nition 5.2 makes it possible to build solutions indu
tively at level Dj by assigning values in orderto �1; : : : ; �n sin
e part 2 ensures that variables are 
onstrained only by lower-numbered variables at thetop level and part 3 ensures that �i0 
an be given a value between Li0 and Ui0 . Systems that do notsatisfy part 3 may not have any solutions (
onsider, for example, system 1 � �1 � 0).Indu
tive systems are the output of our 
onstraint resolution pro
edures. That is, we will givepro
edures (starting in Se
tion 5.3) for transforming an initial 
onstraint system into an equivalentsystem in indu
tive form. For these resolution algorithms we 
an prove that if the output of the algorithm
ontains no trivially in
onsistent 
onstraints (e.g., 1 � 0 or int � 0) then the system is in indu
tive formand therefore has solutions.We show that indu
tive systems have solutions in two steps: �rst, we show that an indu
tive systemis equivalent to a system of equations; we then show that the equations always have solutions.15



De�nition 5.3 A system of equations �1 = E1 ^ : : :^�n = En (where ea
h �i appears on one left-handside) is 
as
ading if TLV(Ei) \ f�i; : : : ; �ng = ;.Theorem 5.4 Let S = Vi Li � �i � Ui be an indu
tive system of 
onstraints. Then S is equivalent tothe 
as
ading equations �i = Li [ (�i \ Ui) where the �i are fresh variables.Proof: Assume that Li � �i � Ui and let �i = �i. Then�i = Li [ (�i \ Ui) sin
e Li � �i � Ui= Li [ (�i \ Ui) sin
e �i = �iThus, every solution of the 
onstraints indu
es a solution of the equations. For the other dire
tion, assumethat �i = Li [ (�i \ Ui) for some �i. Clearly, Li � �i. To show �i � Ui, we �rst show for all i and jthat �i \Dj � Ui \Dj . For the sake of obtaining a 
ontradi
tion, assume �i \Dj 6� Ui \Dj for somei and j. Pi
k the smallest su
h pair (j; i) ordered lexi
ographi
ally. Note Lk \Dl � �k \Dl � Uk \Dlholds if (k; l) < (j; i) by assumption and be
ause Lk � ak. Sin
e the system is indu
tive, it follows thatLi \Dj � Ui \Dj . Therefore �i \Dj= (Li [ (�i \ Ui)) \Dj= (Li \Dj) [ (�i \ Ui \Dj)� Ui \Djwhi
h 
ontradi
ts the assumption. Thus for all i,�i \Dj � Ui \Dj for all j) �i \Dj � Ui for all j) �i � Ui sin
e Sj Dj = H2 Theorem 5.5 shows that every 
hoi
e for the �i indu
es a unique solution to the 
as
ading equations.Theorem 5.5 Let �1 = E1 ^ : : : ^ �n = En be a system of 
as
ading equations and let � be anyassignment for the variables other than the f�1; : : : ; �ng. There is a unique extension �0 of � that is asolution of the equations.Proof: Variable �i 
an be eliminated from the top-level variables of every equation by substituting Eifor �i in Ei+1 through En. Let � be any remaining top-level free variable. Then � does not appear on theleft-hand side of any equation; we 
all su
h variables free. For any �xed assignment � for the top-levelfree variables, the equations be
ome 
ontra
tive (have no top-level variables). Contra
tive equations haveunique solutions [MPS84℄. 25.2 A Digression on Set ComplementSet 
omplement is quite handy for expressing analyses, but in solutions of 
onstraints we often wishto eliminate 
omplements so that we 
an see whi
h terms may belong to an expression E rather than
16



whi
h terms may not belong to E. The following identities are used to drive 
omplements inwards in the
as
ading equations: :0 = 1 where 1 = [
2C 
(1; : : : ; 1):(E1 [E2) = :E1 \ :E2:(E1 \E2) = :E1 [ :E2::E = E:
(E1; : : : ; Ea(
)) = 
(:E1; 1; : : : ; 1) [ : : : [ 
(1; : : : ; 1;:Ea(
)) [ [d2C�f
g d(1; : : : ; 1)The equation in the �rst line de�nes 1 to be the Herbrand universe. For ea
h equation �i = Ei 
reatea new equation :�i = :Ei and simplify the right-hand side.4 Now repla
e :�i everywhere by a freshvariable 
i. The pre
eding rules and this te
hnique for eliminating :�i remove all negations ex
ept on afree variable �. A negation :� 
annot be removed, as the � are free variables in the 
onstraints.There is another important issue with set 
omplement. We have assumed that the set of 
onstru
torsis �nite, and therefore :
(: : :) 
an be written as above using an expli
it union of all non-
 terms. However,in many appli
ations it is unreasonable to assume that we know all of the 
onstru
tors. Typi
ally theset of 
onstru
tors is determined by the program text. Be
ause a 
onstru
tor de�ned in one part of aprogram potentially appears in the solutions of the 
onstraints of any part of that program, assuming thatall 
onstru
tors are known at the outset makes it impossible to analyze program 
omponents separately.It is not diÆ
ult to remove the assumption that all 
onstru
tors are known. Assume now that C isan in�nite set of 
onstru
tors. We add the following new set expression with the semanti
s:�(NOT (f
1; : : : ; 
ng)) = fd(t1; : : : ; ta(d))jti 2 H ^ d 2 C � f
1; : : : ; 
nggIntuitively NOT is the set of all terms with a head 
onstru
tor not in the argument list. It is straight-forward to in
lude NOT in the algebra of set expressions. For example::NOT (f
1; : : : ; 
ng) = 
1(1; : : : ; 1) [ : : : [ 
n(1; : : : ; 1):
(E1; : : : ; En) = 
(:E1; 1; : : : ; 1) [ : : : [ 
(1; : : : ; 1;:En) [NOT (f
g)NOT (f
1; : : : ; 
ng) \NOT (fd1; : : : ; dmg) = NOT (f
1; : : : ; 
ng [ fd1; : : : ; dmg)1 = NOT (;)Even in the 
ase where all 
onstru
tors are known, NOT (f
g) is a more eÆ
ient representation than anexpli
it union of all 
onstru
tors ex
ept 
.5.3 Closure AnalysisWe now turn to algorithms for solving 
onstraints. Constraint resolution is done by applying a set ofrewrite rules repeatedly until 
losure. For pedagogi
al reasons we present the rules a few at a time, asneeded for ea
h appli
ation. However, it is emphasized that in developing new appli
ations it is usuallyunne
essary to invent new rules. New analyses generally are expressed using the established ma
hinery(the 
omplete set of rules), whi
h means the analysis designer 
an simply write the ne
essary 
onstraintsand be assured the 
onstraints 
an be solved.4This step only works be
ause the 
as
ading equations are already 
ontra
tive in the �i. For example, starting with� = � and adding 
omplements gives us an equation with exa
tly the same solutions :� = :�.17



S ^ 0 � E � S (1)S ^E1 [E2 � E3 � S ^E1 � E3 ^E2 � E3 (2)S ^ � � � � S (3)S ^E1 � � ^ � � E2 � S ^E1 � � ^ � � E2 ^E1 � E2 (4)S ^ �x 2 �) E1 � E2 ^ �x � � � S ^E1 � E2 ^ �x � � (5)Figure 1: Rules for simplifying 
onstraints.We begin with 
losure analysis as it has the simplest resolution pro
edure. Expressions have the formE ::= �x j� j 0 jE1 [E2 j�x � �) E1and a system S of 
onstraints has the form S = î Ei � �iWe say two systems are equivalent S1 � S2 if they have the same set of solutions. Figure 1 gives a numberof equivalen
es for 
losure analysis 
onstraints. It is easy to verify that these are in fa
t equivalen
es.A 
onstraint �i � U (respe
tively L � �i) is indu
tive if TLV(U) (respe
tively TLV(L) is a subset off�0; : : : ; �i�1g. The algorithm for solving the 
losure analysis 
onstraints is as follows.Read the equivalen
es as rewrite rules going from left to right. The rules are applied to the
onstraint system repeatedly, in any order, until no new indu
tive 
onstraints 
an be added.Let S0 be the result of 
losing the system S under the rewrite rules. The following statements areeasily veri�ed:� S0 � S, sin
e S0 is obtained from S by a sequen
e of �-preserving steps.� There are no 
onstraints �x � �y, sin
e no 
onstant upper bounds appear in the initial 
onstraintsand none are added by the rules.� All 
onstraints in S0 are of the form � � �, �x � �, or �x 2 � ) E1 � E2. To see this, note theprevious point and that all other forms of left-hand sides are eliminated by the rules.� The pro
edure terminates, be
ause 
onstraints on the right-hand sides of the rules involve only pairsof subexpressions of the original system. There are only �nitely many su
h pairs, so eventually nonew indu
tive 
onstraints 
an be added. To help dete
t when all indu
tive 
onstraints have beenadded it is suÆ
ient to apply the transitive rule (4) on
e only for ea
h pair of indu
tive upperand lower bounds on a variable. With that restri
tion the algorithm terminates exa
tly when norules apply. (Note that rules (3) and (4) 
annot get into a loop be
ause � � � is not an indu
tive
onstraint.)The last point 
an be used to perform 
omplexity analysis of the algorithm. If the size of the originalsystem of 
onstraints printed as a string is n, then the size of the �nal system may be O(n2) with O(n2)18




onstraints. Rules 1-3 involve only a single 
onstraint and take 
onstant time, so the total 
ost of theserules is O(n2). For Rule 4, a variable � may have O(n) upper and lower bounds. Forming all pairs ofupper and lower bounds for � takes O(n2) time. Sin
e there may be O(n) variables the total 
ost isO(n3). The 
ost of Rule 5 
an similarly be shown to be O(n3), so the total 
ost is O(n3).It remains to show that the rules a
tually solve the 
onstraints. From the dis
ussion above we knowthat there 
an be no trivially in
onsistent 
onstraints of the form �x � �y where x 6= y. Thus, when thealgorithm terminates su

essfully all 
onstraints are indu
tive.Index the variables �1; �2; : : :. We say that a 
onstraint y � �j is a lower bound on �j if y = �x ory = �i and i < j. A 
onstraint �j � y is an upper bound on �j if y = �x or y = �i and i < j. Now de�neLi = [fyjy � �i 2 S0 is a lower bound on �igUi = \fyj�i � y 2 S0 is an upper bound on �igThe Li and the Ui simply 
ombine all upper and lower bounds on variables into a single upper andlower bound per variable. Note that the Li and Ui ex
lude any 
onditional 
onstraints remaining in S0.Lemma 5.6 The system Vi Li � �i � Ui is indu
tive.Proof: Conditions (1) and (2) of De�nition 5.2 are easily veri�ed; for (2), simply note that ea
h
onstraint is indu
tive. For 
ondition (3), be
ause our domain is a set of 
onstants �x the hierar
hy ofDi's 
ollapses to D0 = ; and D1 = f�xjx is a program variableg. The 
ondition for indu
tiveness 
anthen be simpli�ed: 81 � i0 � n:81 � i < i0:Li � �i � Ui ) Li0 � Ui0The proof is by indu
tion on i0. For the base 
ase, there are no variables with index lower than �1, sono variables 
an appear in L1 or U1. In addition U1 
ontains no 
onditional 
onstraints or 
onstants (seedis
ussion above). It follows that U1 = T ;, whi
h is the entire domain, so L1 � U1 in any assignment.For the indu
tive 
ase, let � be an assignment to the variables and assume that �(Li) � �(�i) � �(Ui)for all i < i0. Let l be a disjun
t of Li0 and let u be any 
onjun
t of Ui0 . Then l � u 2 S0 by Rule 4or the 
onstraint is a trivial one � � � removed by Rule 3. Assume l � u is a non-trivial 
onstraint. Ifeither l or u is a variable its index is less than i0. Therefore, �(l) � �(u) by the indu
tion hypothesis.Sin
e l and u were 
hosen arbitrarily from Li0 and Ui0 , it follows that Li0 � Ui0 .2Let S000 be S0 with remaining 
onditional 
onstraints removed. Lemma 5.6 shows that S00 has solutionsgiven by the equations �i = Li [ (�i \ Ui)where the �i are fresh variables. Sin
e all operations are monotoni
,5 the smallest of these solutions is�i = Liwhere all �i = 0. This solution is � where�(�i) = f�xj�x appears in Lig5All operations are monotoni
 be
ause we designed the 
onstraint language to avoid negations. However, note that thisis the only pla
e monotoni
ity is used, and that it is used to show the existen
e of a least solution.19



To show that our 
onstraint resolution algorithm is sound it remains to show that S has a solution.We 
laim that � is a solution of S0 and therefore a solution of S. It suÆ
es to show that�(�x � �i)) �(E1 � E2)is satis�ed for the 
onstraints �x � �i ) E1 � E2 in S0 but not in S00. Assume for the sake of obtaininga 
ontradi
tion that �x � �(�i). The �x appears in Li. But then the hypothesis of Rule 5 is satis�ed,
ontradi
ting the assumption that S is 
losed under the rewrite rules. We 
on
lude that �x 6� �(�i), sothe 
onstraint is satis�ed.5.4 Data
ow AnalysisThe data
ow analysis dis
ussed in Se
tion 4.1 allows general set 
omplement. Here we restri
t ourattention to solving the spe
i�
 form of 
onstraints arising in the live variable analysis, whi
h do notmake essential use of set 
omplement and are therefore mu
h easier to solve.The universe H is a �nite set of 
onstants a1; a2; : : : ; an. For any set of 
onstants A, the set expression:(SA) 
an be written without a negation as S(H �A). Re
all the liveness 
onstraints from Se
tion 4.1.[[S℄℄in � Suse [ ([[S℄℄out \ :Sdef)[[S℄℄out � [X2su

(S)[[X℄℄inThe only expression not already treated in the resolution rules of Figure 1 is �\:A, where A is a unionof 
onstants. To handle this 
ase, we make use of the identity X � Y [ Z � X \ :Z � Y . Three 
asesinvolving variables and 
onstants on the left-hand side are treated separately:S ^ �i \A � �j � S ^ �i � �j [ :A i 6= jS ^ �i \A � �i � SS ^ a � �i [A � S ^ a \ :A � �iThe �rst rule works either left-to-right or right-to-left. Only one dire
tion, however, 
an result in a
onstraint in indu
tive form (i.e., with the higher-numbered variable isolated). Thus, if i > j the rule isapplied left-to-right and if i < j the rule is applied right-to-left. If i = j the 
onstraint is eliminated (these
ond rule). Finally, if the left-hand side is a 
onstant a, then a \ :A is formed to isolate the variableon the right-hand side (the third rule). The expression a \ :A is simpli�ed to either a if a 6� A or 0 ifa � A.Adding these rules to those of Figure 1 to handle the new expression � \ A is all that is required toobtain an e�e
tive algorithm. The proof of Lemma 5.6 
an be applied to this extension by noting thatthe new rules put 
onstraints in a form satisfying 
ondition (2) of De�nition 5.2, and that the proof that
onditions (1) and (3) are satis�ed is un
hanged.5.5 Simple Type Inferen
eThe 
onstraints for simple type inferen
e introdu
e one additional form of expression E1 ! E2. The
orresponding resolution rule is well-known:E1 ! E2 � E3 ! E4 � E3 � E1 ^E2 � E4 (6)20



The antimonotoni
ity of the domain and the monotoni
ity of the range are re
e
ted in the 
onstraintson the right-hand side (see the dis
ussion in Se
tion 3.2). This rule 
an be 
ombined with the pre
edingones to give a method for solving the typing 
onstraints. Resolution of the 
onstraints is again in O(n3)time.The justi�
ation for this rule is outlined in Se
tion 3.2.1. A full formalization requires 
onsiderableadditional ma
hinery from denotational semanti
s and is outside the s
ope of this paper.6 Dis
ussionWe now turn to the relationship of 
onstraint-based analysis to other approa
hes to program analysisand its pla
e in the theory of abstra
t interpretation. The a

epted intelle
tual framework for designingand justifying program analysis algorithms is abstra
t interpretation, due to Cousot and Cousot [CC77℄.Abstra
t interpretation treats a program analysis as a sound approximation to the exa
t meaning of aprogram. More pre
isely, an abstra
t interpretation gives a non-standard interpretation of the programthat is 
onsistent with the standard interpretation. Let (D;�D) and (A;�A) be partially ordered domainsand let � : D ! A and 
 : A! D be fun
tions that form a Galois 
onne
tion:8d 2 D; a 2 A �(d) �A a, d �D 
(a)Then �(d) is the abstra
tion of d and 
(a) is the 
on
retization of a.By de�ning the abstra
t domain A and expli
it mappings � and 
 it be
omes possible to statepre
isely what it means for an abstra
tion of a program to be 
orre
t. For example, let P be a programwith standard semanti
s � : Program! D ! D. Let � be a program analysis (an abstra
t interpretation)with fun
tionality � : Program ! A! A. The � is a sound abstra
tion if it satis�es:8x 2 D:(� P x) �D 
(� P �(x))Thus, the abstra
tion �(P ) 
onservatively models the behavior of P .There is 
onfusion in the literature over the meaning of the term \abstra
t interpretation," whi
h isused at least to mean either a semanti
 framework for reasoning about program analysis (sket
hed above)or a parti
ular set of te
hniques for 
onstru
ting program analyses. The author prefers to use the termto refer to the semanti
 framework only. Given that meaning, abstra
t interpretation provides a 
lear,well-de�ned framework for proving that a program analysis is 
orre
t. We are unaware of any programanalysis that 
annot be explained in this framework,6 in
luding 
onstraints, although we have left theabstra
tion and 
on
retization fun
tions impli
it in our examples.Program analysis is te
hni
ally diÆ
ult and at the same time new problems typi
ally bear someresemblan
e to older, better understood problems. Hen
e, there is little enthusiasm for inventing programanalyses from �rst prin
iples in every instan
e, and people have naturally developed sets of te
hniquesthat 
an be reused. A few of these paradigms have developed large followings. We dis
uss three: �nitelatti
e methods, type inferen
e, and 
onstraints.6.1 Finite Latti
e MethodsOne of the most popular paradigms appeared in the Cousots' seminal paper on abstra
t interpretation[CC77℄. Program analyses in this style are variations on a theme. A �nite abstra
t domain A is designed6Widening/narrowing 
an be de�ned without referen
e to abstra
tion (see [CC92℄). However, when used on an abstra
tdomain there are asso
iated abstra
tion and 
on
retization fun
tions.21



(A is generally a latti
e), and the program analysis is expressed as a system of re
ursive equations of thefollowing form x1 = �1(X) : : : xn = �n(X)where X = fx1; : : : ; xng is a set of variables and ea
h �i is a monotoni
 fun
tion with signature AjXj ! A.It is well-known that a generi
 iterative �xed point algorithm 
omputes the least solution of su
h equations[CC77℄.Given that one 
an design a 
orre
t analysis in this framework, the implementation is straightforwardand has two additional useful properties: �rst, the 
omputed analysis is the best possible within the
hosen parameters (i.e., it is the least solution of the equations) and se
ond, the analysis is guaranteedto terminate. Analyses for C and FORTRAN programs based on data
ow equations are 
lassi
 examplesof this program analysis paradigm.The 
ookbook re
ipe \�nite domains plus monotoni
 fun
tions equals program analysis" has provenvery popular, and there are an enormous number of appli
ations of this ex
ellent idea; representativeexamples in
lude [My
80, JM86, Hud87, Wad87, HY88, PBJ+91℄. The paradigm has be
ome so popularthat the term abstra
t interpretation is often used to mean this spe
i�
 te
hnique for program analysisrather than a general semanti
 framework. Pedagogi
ally this is undesirable, as it implies that thesemanti
 framework of abstra
t interpretation 
annot be applied to other paradigms.6.2 Type Inferen
eThe Hindley/Milner type inferen
e algorithm has re
ently be
ome popular as a model for program anal-yses of a di�erent sort. In this approa
h, a program analysis is spe
i�ed as a non-standard type inferen
esystem. Typi
ally, su
h systems are sets of dedu
tive inferen
e rules, with one rule for ea
h synta
ti
form in the programming language. It is worth noting that analyses in this style have been designedthat prove all sorts of fa
ts about programs, many of whi
h have little to do with types. Representativeexamples in
lude [Hen92, TT94℄.Spe
ifying a program analysis as a formal logi
 
orresponds ni
ely with the intuition that the role ofprogram analysis is to prove fa
ts about programs. However, the inferen
e rules alone normally do notspe
ify an algorithm. If the logi
 
an prove multiple fa
ts about a program, it is ne
essary to spe
ifywhi
h fa
t should be 
omputed by program analysis; that is, it is ne
essary to spe
ify how the proofsear
h is 
ondu
ted. In pra
ti
e, designing the logi
 often is only the �rst step and mu
h hard workremains in 
oming up with an algorithm and analyzing its 
omplexity. For example, implementations ofMilner's type system are based on solving systems of equality 
onstraints using uni�
ation [Rob65℄.6.3 ConstraintsIn 1987 Wand wrote a short paper on the Hindley-Milner type system in whi
h he proposed to re
ast theusual typing rules with expli
it equality 
onstraints as side 
onditions, whi
h simpli�es the understandingof Hindley-Milner type inferen
e algorithms [Wan87℄. This paper is apparently the �rst to expli
itly putforth the 
onstraint-based viewpoint (ex
epting Reynold's mu
h earlier paper [Rey69℄). Further devel-opment has 
ontinued to emphasize the problems of 
onstraint resolution over the problems of dedu
tiveinferen
e. Note that the 
onstraint-based analysis notation for traditional type inferen
e problems deftlyavoids using inferen
e rules at all (see Se
tion 4.2)!A thesis of this paper is that 
onstraint-based analysis uni�es mu
h of the traditional data
ow viewsand the type inferen
e views of program analysis. To the degree that data
ow equations are a proxy formore general abstra
t interpretations over �nite latti
es there is 
onsiderable eviden
e for this thesis. In22



the extreme, systems of equations of the form above x1 = �1(X) : : : xn = �n(X) 
an be viewed as justanother system of 
onstraints to be solved. However, this level of generality obs
ures several importantdi�eren
es.What we refer to as �nite latti
e methods generally exploit three assumptions: �rst, a parti
ularsolution (the least or the greatest) to the equations is desired; se
ond, the abstra
t fun
tions 
an bearbitrary monotoni
 fun
tions; and third, that a �nite domain of abstra
t values gives suÆ
ient pre
isionfor all programs.7With respe
t to the �rst point, in 
onstraint-based analysis a 
ommon (but not universal) view isto 
ompute all solutions of the 
onstraints. For example, the 
onstraint resolution pro
edure for livevariable analysis in Se
tion 5 does not resemble the one in textbooks pre
isely be
ause it 
omputes all,rather than the least, solution of the 
onstraints. Computing all solutions be
omes ne
essary for separateanalysis of programs split a
ross multiple �les (where the least solution of the 
onstraints for a parti
ular�le may have little to do with the least solution of the entire program) and when there is no least solution(e.g., in the presen
e of anti-monotoni
 
onstru
tors like fun
tion spa
e).The se
ond important di�eren
e lies in the nature of the abstra
tions 
hosen in �nite latti
e andin 
onstraint-based analyses. All 
ommonly used, and very nearly all proposed, �nite latti
e methodsare either forwards (information 
ows from inputs to outputs) or ba
kwards (information 
ows fromoutputs ba
k towards inputs; live variable analysis is an example). The data
ow analyses tend to useabstra
t fun
tions to represent fun
tion values. Thus, information 
an 
ow easily only in the dire
tion ofthe abstra
t fun
tion, whi
h is either forwards or ba
kwards. Constraint resolution, however, naturallyallows information to 
ow in either or both dire
tions, allowing forwards and ba
kwards information 
owto be used in the same analysis.It is important to understand that allowing bidire
tional information 
ow is not a unique propertyof 
onstraints. For example, the te
hnique of 
haoti
 iteration admits analyses that are neither forwardsnor ba
kwards [CC78℄.The third important di�eren
e is that 
onstraints 
an easily work over in�nite domains, while the�nite latti
e methods work with a �nite domain. Finite domains are a good �t for some problems (e.g.,the two point domain 
ommonly used in stri
tness analysis [My
80℄), but for others (e.g., parti
ularlyproblems involving re
ursive data stru
tures) it is more natural to work dire
tly with an in�nite domain.A problem with in�nite domains, however, is that termination of the program analysis is not automati
allyguaranteed. In the 
ase of set 
onstraints the termination of 
onstraint resolution is guaranteed; resolution
omputes a �nite representation of the solutions of 
onstraints over an in�nite domain.The distin
tion between in�nite and �nite domains is subtler than we have indi
ated. If an analysisterminates for all programs, then 
learly there is �nite stru
ture (i.e., the �nite 
omputation) regardless ofthe 
hoi
e of domain. Thus, even if the intended domain is in�nite, for ea
h program it should be possibleto substitute a �nite domain that behaves indistinguishably from the in�nite domain.8 Essentially thisobservation is used in [CC95℄ in showing the equivalen
e of several di�erent approa
hes to formulatingprogram analyses over �nite and in�nite domains.Even if in�nite domains 
an be treated using �nite equivalents (as they must be if we wish to haveterminating program analyses), that does not mean that in�nite domains serve no useful role. In many
ases an in�nite domain is simply the natural framework, while the equivalent �nite domain may bediÆ
ult to dis
over and justify. In the 
ase of set 
onstraints, the �nite domain 
an be taken to be allsubsets of the 
onstraints of the initial system plus and those added by resolution rules. The full setis only dis
overed by solving the 
onstraints. A similar perspe
tive is set forth in [CC92℄ in another7Or that a suitable �nite domain 
an be derived from ea
h parti
ular program.8Note that there may be a di�erent �nite domain for ea
h possible input program.23



dis
ussion of �nite vs. in�nite domains.No dis
ussion of in�nite domains is 
omplete without mentioning the use of widening to a
hievetermination in in�nite abstra
t domains. Widening is very general and 
an be applied in any domain,�nite or in�nite [CC92℄. Widening has two drawba
ks, however. First, the pri
e for generality is thatwidening is not guaranteed to produ
e a best solution. Se
ond, widening is de�ned operationally (in termsof how it a

elerates 
onvergen
e). Both of these properties are undesirable in appli
ations where usersmust be able to understand the results of the analysis and, if ne
essary, how to modify their programs sothat the analysis produ
es better results. (Type inferen
e is the 
anoni
al example of an analysis whereuser understanding is a requirement.) In other appli
ations where user involvement is not expe
ted, su
has low-level 
ompiler optimizations, these 
on
erns are unimportant.6.4 Other Constraint SystemsConstraints are a popular formalism for program analysis and the asso
iated literature is large. We givea ne
essarily abbreviated survey of this work.The most widely used 
onstraint language is undoubtedly equality 
onstraints between terms, solvedvia uni�
ation (see [Ste96℄ for a re
ent example). Uni�
ation and its variants are almost the only te
hniquewhere performan
e has been demonstrated to s
ale well to large programs. While we have argued thatsu
h 
onstraints 
an be 
aptured as set 
onstraints (whi
h they 
an), there is an important distin
tionto be made. The generi
 resolution algorithm for set 
onstraints is at least O(n3) while term equations
an be solved in nearly linear time. Thus, straightforward set 
onstraint algorithms are not ne
essarilythe best implementation of any parti
ular fragment of set 
onstraints.Equations between re
ord types are another popular 
onstraint formalism, intermediate in powerbetween term equations and set 
onstraints [R�89, Wan93℄. A re
ord type is a set of typed �elds. Forexample fx : int; y : int; �g is a re
ord with two �elds x and y, both of type int. In program analysisappli
ations the \types" in a re
ord are repla
ed by des
riptions appropriate to the parti
ular analysis.An important aspe
t of re
ord types is that additional, unknown �elds are permitted through variablesthat range over re
ord extensions. In the example above, � may take on any set of �elds and asso
iatedtypes ex
ept for x and y. In this way re
ord types allow polymorphism not just over parti
ular re
ord�elds but also over re
ord extensions.Missing from set 
onstraints is the notion that 
onstru
tors may stand in non-trivial in
lusion rela-tionships to ea
h other. For example, we may have a rule that 
(X) � d(X) for any X. For the 
asewhere there are only nullary 
onstru
tors (
onstants) and where the in
lusion ordering de�nes a meetsemi-latti
e, the in
lusion 
onstraints 
an be solved in linear time [RM96℄. The 
ase where the in
lusionrelationships do not de�ne a semi-latti
e is more diÆ
ult (as shown in [RM96℄; an earlier example is[Mit91℄). The situation for higher-arity 
onstru
tors with in
lusion relationships is less 
lear; see [BM97℄for an example of su
h a system.The examples dis
ussed so far are primarily aimed at analyzing data stru
ture or type des
riptions.A bit a�eld from these kinds of 
onstraints are integer 
onstraints, whi
h �nd appli
ation in gatheringinformation about patterns of array referen
es and loop bounds. The studies done using the Omegasystem are good examples of how a well-engineered integer 
onstraint library simpli�es many tasks (see,e.g., [Pug91, PW95℄).Beyond the standard formalisms, there are a number of more spe
ialized 
onstraint systems that havebeen developed for parti
ular analysis problems; [Hen92, TT94℄ are good examples. These 
onstraintlanguages have spe
ialized features that are not easily 
ategorized.A very important 
onsideration in program analysis of any sort is how polymorphism (also 
alled24



polyvarian
e and 
ontext sensitivity) is expressed. Polymorphi
 analysis is a large topi
 in its ownright and beyond the s
ope of this paper. Constraints are well adapted to using the standard let-stylepolymorphism of fun
tional languages. In some 
ases even more powerful polymorphi
 re
ursion 
an beused [Hen88, TT94℄.Another approa
h to 
onstraint-based analysis is to mix multiple 
onstraint systems in a single ap-pli
ation [FA97℄. This idea has the advantage that one need no longer �nd a single 
onstraint theorythat models all needed aspe
ts of a program. Instead, di�erent aspe
ts of 
omputation 
an be modeledseparately, using whatever 
onstraints are appropriate for eÆ
ien
y or semanti
 reasons.7 Con
lusionsAs a �eld, program analysis su�ers from a fair degree of balkanization, with several di�erent traditionsthat address related problems with related te
hniques but di�erent terminology, thereby obs
uring whatis 
ommon and what is di�erent. We have given a brief overview of 
onstraint-based program analysis,fo
using on three 
lassi
al analyses (data
ow analysis, type inferen
e, and 
losure analysis) and showinghow they 
an be presented using the 
onstraint-based point of view. We hope these examples serve tolower the barriers to understanding between the di�erent program analysis 
ommunities.8 A
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