
Solving Systems of Set Constraints(Extended Abstract)Alexander Aiken Edward L. WimmersIBM Almaden Research Center650 Harry Rd.San Jose, CA 95120phone: 408/927-1876 or 927-1882email: lastname@almaden.ibm.comfax: 408/927-2100AbstractSystems of set constraints are a natural formal-ism for many problems in program analysis. Set con-straints are also a generalization of tree automata. Wepresent an algorithm for solving systems of set con-straints built from free variables, constructors, and theset operations of intersection, union, and complement.Furthermore, we show that all solutions of such sys-tems can be �nitely represented.11 IntroductionSet constraints are a natural formalism for describ-ing relationships between sets of terms of a free alge-bra. A set constraint has the form X � Y , where Xand Y are set expressions. Examples of set expres-sions are 0 (the empty set), 1 (the set of all terms), �(a set-valued variable), c(X;Y) (a constructor appli-cation), and the union, intersection, or complement ofset expressions. Given a set of constructors C whereeach c 2 C has arity a(c), set expressions are de�nedby the grammar:E ::= 0 j 1 j� j c(E1; : : : ; Ea(c)) jE1[E2 jE1\E2 j :E1Many computational problems requiring the solu-tion of systems of set constraints arise in programanalysis. In program analysis algorithms, sets of termsdescribe the possible values computed by a program.Set constraints are generated from the program text;1To appear in the Proceedings of the 1992 IEEE Symposiumon Logic in Computer Science

solving the constraints yields some useful informationabout the program (e.g., for type-checking or opti-mization). For example, consider a program with twouses of a variable v. Assume that from one use we de-termine that v must be a number (i.e., v � Int[Float)and from the other use we determine that v cannotbe an integer (i.e., v � :Int). Combining these con-straints, we can infer that v must be a
oating-pointnumber (i.e., v � (Int [Float) \ :Int = Float).Set constraints have been used in program analysisand type inference algorithms for functional languages[1, 2, 10, 12, 14, 17]2, logic programming languages[8, 11], and imperative languages [9]. Solving a systemof set constraints is central to each of these programanalysis algorithms.Systems of set constraints can also de�ne tree au-tomata; in this case, the sets of terms are the lan-guage of a �nite-state machine. For a tree automatonA with states fa1; a2; : : :g, a set S of constraints canbe constructed over variables f�1; �2; : : :g such thatthe unique solution of the constraints assigns to �ithe set of terms accepted by state ai.Set constraints are perhaps the simplest formalismfor expressing constraints between sets of terms. De-spite this mathematical simplicity, the applications toprogram analysis, and their close relationship to treeautomata, set constraints are relatively poorly under-stood. In this paper we present an algorithm for solv-ing systems of set constraints; this algorithm producesa �nite representation of all the solutions of a system2In [17], an ad hoc formalism equivalent to set constraints isused.1

of set constraints. We show that the complexity ofdeciding whether or not a system of set constraintsis consistent (i.e., has a solution) is in NEXPTIMEand is EXPTIME-hard. The exact complexity of theproblem remains open.Our primary contribution is showing that systemsof set constraints that use all the standard set opera-tions, especially unrestricted union and complement,can be solved. Set complement has received little at-tention in previous work on set constraints, but setcomplement (or something like it) is required to ex-press the solutions of many set constraints, even thosethat do not explicitly use complement. For example,the solutions of the constraint � \ � � 0 are all sub-stitutions in which � and � are disjoint|i.e., in which� � :�.The centerpiece of our development is an algorithmthat incrementally transforms a system of constraintswhile preserving the set of solutions. Eventually, ei-ther the system is shown to be inconsistent or all solu-tions can be exhibited. Most of the work is in provingthat if this algorithm does not discover an inconsis-tency, then the system has a solution. This is done byshowing that the system of constraints generated bythe algorithm can be transformed into an equivalentset of equations that are guaranteed to have a solution.These equations are essentially tree automata.The rest of the paper is organized as follows. Sec-tion 2 contains basic de�nitions. Section 3 gives someexamples illustrating the di�culty of solving set con-straints; Section 4 covers related work. Section 5 givesan outline of the algorithm and sketches its proof ofcorrectness. Sections 6 and 7 present the algorithm,while Sections 8 and 9 prove its correctness and showhow to characterize the solutions of systems of set con-straints. Section 10 discusses the complexity of thealgorithm. Proofs of two lemmas are included in theappendix. The proof of Theorem 8.2 is presented inthe body of the paper because it is the key step in theoverall construction.2 De�nitionsLet C = fb; c; : : :g be a �nite3 set of constructorsand let V = f�; �; : : :g be a set of variables. Every3The results are easily extended to in�nite sets ofconstructors.

constructor c has arity a(c) � 0. A system of set ofconstraints has the form f: : : ; X � Y; : : :g, where Xand Y are set expressions. We write X = Y for thepair of constraints X � Y and Y � X.De�nition 2.1 (Terms) LetH0 = ; and letHi+1 =Hi [fc(t1; : : : ; ta(c))jti 2 Hi; c 2 Cg. The HerbrandUniverse H is the least upper bound of the series H0 �H1 � : : :.We use Hi in set expressions as a syntactic abbre-viation for the set of all terms in Hi. We assumethat the Herbrand Universe is non-empty (i.e., thereis at least one zero-ary constructor in C). A substitu-tion � is a function � : V ! P(H) from variables tosets of terms. The standard semantics of set expres-sions maps an expression and a substitution to a setof terms: �(0; �) = ;�(1; �) = H�(�; �) = �(�)�(:X;�) = H � �(X;�)�(X [Y; �) = �(X;�) [�(Y; �)�(X \ Y; �) = �(X;�) \ �(Y; �)�(c(X1; : : : ; Xa(c)); �) =fc(t1; : : : ; ta(c))jti 2 �(Xi; �); c 2 CgDe�nition 2.2 (Solutions) The set of solutionsS(S) of a system S of constraints is the set of allsubstitutions that satisfy the constraints: S(S) =f�j�(X;�) � �(Y; �) where X � Y 2 Sg. If a sys-tem of constraints S is inconsistent, then S(S) = ;.De�nition 2.3 (Restricted Solutions) The solu-tions of a system S restricted to a set of variables isthe set of substitutions in S(S) restricted to those vari-ables: S(S) " f�1; : : : ; �ng = f� " f�1; : : : ; �ngj� 2S(S)g. We write S(S1) =V S(S2) for S(S1) " V =S(S2) " V .3 Examples of Set ConstraintsThis section illustrates some of the di�cultiesin solving set constraints. Consider an equation� = E(�). If E() does not contain the negation sym-bol, then this equation has a solution; this follows im-mediately from the fact that all set expression opera-tions except complement are monotonic. Presumably,2

this is why equations of this form (� = E(�) withno negations) have been studied almost exclusively[1, 2, 8, 12]. However, when set complement is addedto the language, even equations of this restricted formmight not have solutions. For example, the equation� = :� has no solutions.Another way to generalize constraints of the form� = E(�) is to drop the requirement that the left-handside of the equation be a single variable. However, ifthe constraint language permits arbitrary equationsbetween set expressions (as our language does), thenthe constraint language already has all the power ofcomplement and �. The constraint E1 � E2 can beexpressed as E1 = E1 \ E2, and the expression :Ecan be replaced by a fresh variable � with the addedconstraints � \E = 0 and � [E = 1.Another problem is that set constraints do not nec-essarily have a least solution even when a solution ex-ists. Consider the system f�\� � 0; b � �[�g. Thissystem has two incomparable solutions: � = fbg and� = 0, or � = 0 and � = fbg.4 Related WorkAlgorithms are known for a number of special casesof the general problem of solving a system of set con-straints. These algorithms were developed either foran application in program analysis [7, 10, 12, 14] or inwork on �nite automata [3, 6, 13].Mishra and Reddy [12] give a method for solv-ing constraints between expressions without comple-ment where all set unions are discriminative (i.e., ifc(: : :) [d(: : :) is an expression, then c 6= d). Heintzeand Ja�ar [7] give an algorithm for the class of de�-nite constraints, which are of the form A � B, whereB contains no set operations and A contains no com-plement operations. Heintze and Ja�ar also use pro-jection functions, an additional set operation we donot consider. For every constructor f , a family of pro-jection functions f�1; : : : ; f�a(f) is de�ned as follows:�(f�i(E); �) = fxijf(x1; : : : ; xa(f)) 2 �(E; �)gReynolds [14] and Jones and Muchnick [10] presentalgorithms for solving set constraints with projectionfunctions, but without union or complement opera-tions.

In work on �nite automata, Brzozowski and Leisspresent an algorithm for solving equations betweenregular languages with free variables [3]. Since regularlanguages are equivalent to tree languages with onlyunary constructors, our algorithm can be regarded asthe generalization of their work to constructors of ar-bitrary arity.A related line of work is program analysis methodsbased on extensions of tree automata other than setconstraints [4, 5]. The expressive power of these tech-niques is di�erent than that of set constraints, but theexact relationship is as yet undetermined. We leavesuch comparisons as future work.5 Outline of the DevelopmentWe give an algorithm that takes a system of con-straints S and either reports that the constraints areinconsistent or produces a �nite set of solved form sys-tems. Solved form systems are sets of equations; theseequations always have solutions and all solutions canbe characterized easily.To motivate the de�nition of solved form systems,recall that an equation of the form � = E has a solu-tion whenever E has no negation symbols. Thus, elim-inating negations would appear to be a positive steptoward discovering the solutions of a system. Unfortu-nately, it is not always possible to eliminate negationsin equations (e.g., consider the equation � = :�), sothe de�nition of solved form uses a weaker conditionthat merely restricts where negations can appear.Another problem is that the solutions of an equa-tion can be di�cult to characterize, even if the equa-tion has no negations. For example, consider the equa-tion � = � \ �. The solutions of this equation aref�j�(�) � �(�)g, but that fact is not obvious from theform of the equation. By restricting where the right-hand side variable � appears in an equation � = E,we obtain equations whose solutions are characterizedeasily. The de�nition of solved form requires the fol-lowing two technical de�nitions.De�nition 5.1 The top-level variables of a set ex-pression are: TLV(0) = ;TLV(1) = ;TLV(�) = f�g3

TLV(:X) = TLV(X)TLV(X [Y) = TLV(X) [TLV(Y)TLV(X \ Y) = TLV(X) [TLV(Y)TLV(c(X1; : : : ; Xa(c))) = ;De�nition 5.2 The free variables of a system ofequations f�1 = X1; : : : ; �n = Xng are those vari-ables other than �1; : : : ; �n that occur in X1; : : : ; Xn.De�nition 5.3 A system of equationsf�1 = X1; : : : ; �n = Xng is in solved form if (1) when:Y is a subexpression of some Xi, then Y is a freevariable, and (2) 8i TLV(Xi) \ f�1; : : : ; �ng = ;.In De�nition 5.3, condition (1) guarantees thatthere is a solution, because any substitution for thefree variables can be extended (by monotonicity ofthe rest of the system) to a substitution satisfyingthe equations. Condition (2) guarantees that for anysubstitution for the free variables, the extension to asolution is unique. Thus, any substitution for the freevariables induces a solution to the equations. The fol-lowing lemma formalizes this discussion.Lemma 5.4 Let S = f�1 = X1; : : : ; �n = Xng bea system in solved form and let V be the set of allvariables. For any substitution � for the variables V �f�1; : : : ; �ng there is a unique extension �0 2 S(S)such that �0 " (V � f�1; : : : ; �ng) = �.Proof: In appendix A.1. 2Solved form systems are essentially alternating treeautomata [16]. Each variable on the left-hand side ofan equation corresponds to an automaton state; theset operations of intersection and union correspondto the tree automata transitions of universal branch-ing and existential branching respectively. Solved-form systems have one feature not found in tree au-tomata: the possibility of unconstrained variables.Thus, solved-form systems can be regarded as tree au-tomata with free variables.The reduction from arbitrary systems of constraintsto solved form systems has four steps; each step isexplained in subsequent sections:1. Reduce an arbitrary system of constraints to aone-level system (Section 6). This step puts allconstraints in the form X � 0, where X has nounions or nested constructors and negations ap-pear only on variables. This syntactic restriction

simpli�es subsequent steps and the complexityanalysis.2. Reduce a one-level system to a cascading sys-tem (Section 7). This step guarantees that con-straints implied by constructor expressions (i.e.,c(X;Y) � 0 implies either X � 0 or Y � 0)and transitivity (i.e., X � Y and Y � Z impliesX � Z) are consistent.3. Reduce a cascading system of constraints to a cas-cading system of equations (Section 8). In thisstep, constraints of the form L � � � U are re-placed by � = L [(� \ U), where � is a freshvariable. The variable � serves as a parameterallowing � to be anything \in between" the lowerbound L and the upper bound U . The primarypurpose of this step is change the problem froma system of constraints to a system of equations.4. Reduce a cascading system equations to a systemof equations in solved form (Section 9). This isa relatively simple step that eliminates negationsand some top-level variables.Figure 1 gives a simple but complete example of ouralgorithm in action. Each step is explained in subse-quent sections. In this example, the two constraintsc(�2) � :�2 and c(:�2) � �2 together imply thatc(x) 2 �2 i� x 62 �2. Thus, there are two possibilitiesfor the meaning of �2: fc2i(b)g or fc2i+1(b)g where iranges over the non-negative integers.To aid understanding of the system in Figure 1, wesimplify the �nal result as shown in Figure 2. Thesesimpli�cations are not part of the algorithm and arepresented just to enhance readability. In Figure 2,note that �1 and �2 serve as \free variables" that al-low �1 and �2 to be anything between the upper andlower bounds implied by the constraints. The �rstequation shows that �1 is indeed a subset of �2 and�1 serves as a parameter identifying which subset of�2. In the second equation, �1[�2 serves as a param-eter controlling whether b or c(b) is an element of �2.Finally, note that �2 recurses on c(c(�2)) as desired.4

initial system constructors b; c with arities a(b) = 0; a(c) = 1�1 � �2c(�2) � :�2c(:�2) � �2one-level system :�2 \ �1 � 0(Section 6) �2 \ c(�2) � 0:�2 \ c(:�2) � 0cascading system :�2 \ �1 � 0(Section 7) �2 \ c(�2) � 0:�2 \ c(:�2) � 0�1 \ c(�2) � 0cascading equations �1 = �1 \:c(�2)(Section 8) �2 = (�1 \ :c(�2)) [c(:�2) [(�2 \ :c(�2))solved system �1 = �1 \ (b [c(
2))(Section 9) �2 = (�1 \ (b [c(
2))) [c(
2) [(�2 \ (b [c(
2)))
2 = (:�1 [c(�2)) \ (b [c(�2)) \ (:�2 [c(�2))Figure 1: The algorithm in action.
solved system �1 = �1 \ (b [c(
2))�2 = (�1 \ (b [c(
2))) [c(
2) [(�2 \ (b [c(
2)))
2 = (:�1 [c(�2)) \ (b [c(�2)) \ (:�2 [c(�2))simplify �1 = �1 \ �2(note �1 = �1 \ �2) �2 = (�1 \ b) [(�2 \ b) [c(
2)
2 = (:�1 \ :�2 \ b) [c(�2)eliminate variable
2 �1 = �1 \ �2�2 = (�1 \ b) [(�2 \ b) [c((:�1 \ :�2 \ b) [c(�2))simplify �1 = �1 \ �2�2 = ((�1 [�2) \ b) [c(:�1 \ :�2 \ b) [c(c(�2))Figure 2: Simpli�cation of the result of Figure 1.5

6 One-Level Systems of SetConstraintsA set expression is one-level if it has no unions ornested constructors and negations appear only on vari-ables.De�nition 6.1 A literal is either a variable � or itscomplement :�. Let ~l stand for a (possibly empty)conjunction of literals in which no variable appearsboth positively and negatively. A set expression isone-level if it is 0, ~l \ 1, or ~l0 \ c(~l1 \ 1; : : : ;~la(c) \ 1).In this section, we show that all systems of set con-straints can be expressed as one-level systems, wherethe left-hand side of all constraints is a one-level ex-pression, and the right-hand side of all constraints is0. Using one-level systems simpli�es subsequent stepsand the complexity analysis.Lemma 6.2 Let var(S) be the set of all variables ina system S. There is an algorithm to compute a one-level system S0 such that S(S) =var(S) S(S0).Proof: [sketch] Replace all constraints A � B byA\:B � 0. Within expressions that are not one-level,we replace each proper subexpression E by a freshvariable � and add one-level constraints that imply� = E. For example, we can replace A \B by � andadd constraints :� \ A \ B � 0, � \ :A � 0, and� \ :B � 0. The complete proof is in appendix A.2.2From this point, we assume that all systems of con-straints are one-level.7 Cascading SystemsOur algorithm for solving a system of constraintsconsists of a pair of transformations that convert a sys-tem to one or more equivalent systems. The transfor-mations are applied repeatedly until either none applyor an inconsistency is detected. Our algorithm deter-mines a system is inconsistent when it discovers thatthe original constraints imply either 1 � 0 or c � 0(where c is a zero-ary constructor). If no inconsistencyis found, then the original system has a solution; Sec-tions 8 through 9 prove this fact by showing how tocharacterize all solutions of the original system. Thefollowing de�nition formalizes the idea of equivalentsets of systems.

De�nition 7.1 (Equivalent Systems)Let S1; : : : ; Sn and T1; : : : ; Tm be any systems of con-straints. ThenS1; : : : ; Sn � T1; : : : ; Tm , [i S(Si) =[j S(Tj)The �rst transformation enforces constraints im-plied by constructor expressions. It is the only trans-formation that may introduce multiple systems of con-straints.Rule 7.2 (Constructor Rule)S [fc(X1; : : : ; Xn) � 0g � S1; : : : ; Sn where Si =S [fXi � 0gThe Constructor Rule is correct because an expres-sion c(X1; : : : ; Xn) is empty exactly when one of itscomponents Xi is empty. Notice that the Construc-tor Rule produces one-level systems from a one-levelsystem.The second transformation enforces transitive con-straints. Constraints � \X � 0 and :� \ Y � 0 rep-resent upper and lower bounds on � because �\X �0 , � � :X and :� \ Y � 0 , Y � �. Intuitively,the constraints Y � � and � � :X have a solutiononly if Y � :X.Rule 7.3 (Transitive Rule) S [f� \X � 0;:�\Y � 0g � S [f� \X � 0;:�\ Y � 0; X \ Y � 0gConsider the system f� � 0;:� � 0g. The Tran-sitive Rule proves this system is inconsistent, becauseit adds the constraint 1 � 0. The statement of theTransitive Rule omits an important detail; the newexpression X\Y might not be one-level. It is straight-forward to transform X \ Y to a one-level expressionusing the following identities:x \:x = 00 \ x = 0c(: : : ; 0; : : :) = 0c(: : :) \ d(: : :) = 0 if c 6= dc(x1; : : : ; xa(c)) \ c(y1; : : : ; ya(c)) =c(x1 \ y1; : : : ; xa(c) \ ya(c))In addition to making the transitive constraint ex-plicit, the expression X \ Y has no occurrences of �or :� at the top level (see De�nition 5.1). This isa key fact, which we exploit as follows. Assign somearbitrary order �1; : : : ; �n to the variables in V . We6

assume from here on that all conjunctions of literalsare sorted in descending order from left to right. Thus,in an expression �j \X or :�j \X, j is greater thanthe index of any top-level variable in X. Now thelargest index of any top-level variable in the constraintX\Y � 0 added by the Transitive Rule is strictly lessthan the largest index of any top-level variable in theoriginal constraints.In the �nal steps of the proof, we need an inductionon the Herbrand level with a subinduction on the or-dering of variables to show that a system is reducibleto a system of equations in solved form. The next de�-nition provides the construction used in this induction.The set of solutions Sh;j(S) is the set of substitutionsthat satisfy all constraints up to some Herbrand levelh or h � 1, depending on whether a constraint has atop level variable with index greater than j.De�nition 7.4Sh;j(S) = \fSh;j(X � 0)jX � 0 2 SgSh;j(X � 0) = S(X \Hh0 � 0)where h0 = h if TLV(X) � f�1; : : : ; �jg and h0 =max(0; h� 1) otherwise.The intuition behind the following lemma is thatSh;j(S) provides a series of increasingly accurate ap-proximations to S(S). Initially, S0;0(S) is just theset of all substitutions. As h and j increase, the setSh;j(S) decreases monotonically, until, in the limit, itis equal to S(S).Lemma 7.5Sh;j(S) � Sh0;j0(S) if h > h0 or h = h0; j � j0S(S) = \h;j Sh;j(S)Consider the system f�8 � 0;:�8 � 0g. ThenS1;7(�8 � 0;:�8 � 0) is the set of all substitutions,but S1;8(�8 � 0;:�8 � 0) is the empty set. Thenext lemma shows that the Constructor Rule not onlypreserves the solution set but it also improves the ap-proximation Sh;j().Lemma 7.6 By applying the Constructor Rule, anyone-level constraint c(X1; : : : ; Xn) � 0 is equivalent

a �nite set of systems fX1 � 0g; : : : ; fXn � 0g suchthat S(c(X1; : : : ; Xn) � 0) = [i S(Xi � 0)8h; j Sh;j(c(X1; : : : ; Xn) � 0) � [i Sh;j(Xi � 0)The following de�nition is used in Theorem 8.2 toexplain how the Transitive Rule makes progress to-wards solving the system of constraints.De�nition 7.7 Let �j \X � 0 and :�j \ Y � 0 beconstraints in S. S is cascading with respect to a pairof constraints �j \X � 0 and :�j \ Y � 0 if for allh, Sh;j�1(S) � Sh;j�1(X \ Y � 0). S is cascading ifit is cascading with respect to all pairs of constraintsand there are no constraints of the form c(: : :) � 0 or1 � 0.Consider again the system of constraints f�8 �0;:�8 � 0g. This system is not cascading becauseS1;7(�8 � 0;:�8 � 0) 6� S1;7(1 � 0). The proofof the next lemma gives an algorithm to transform aone-level system to a set of cascading systems.Lemma 7.8 A one-level system S is equivalent to a�nite set � of cascading systems.Proof: Let � = fSg. Iterate the following foursteps:� Pick a system S0 2 � and a pair of constraints�j \X � 0 and :�j \ Y � 0 in S0.� Apply the Constructor Rule (if necessary) to geta set of systems S01; : : : ; S0k � fX \ Y � 0g.� Replace S0 in � by :::; S0 [S0i; :::� For every S 2 �, if S contains a constraint 1 � 0or c � 0, then delete S from �.By Lemma 7.6 and De�nition 7.7, S0 [S0i is cas-cading with respect to the chosen pair of constraints.Iterating these four steps until all pairs are processedyields a �nite set of cascading systems. This proce-dure terminates because there are only �nitely manyone-level expressions over a �xed set of variables andconstructors. 2Let S be a system of constraints. The algorithm inthe proof of Lemma 7.8 shows that S is inconsistent7

if � = ; when the algorithm terminates. The mainresult of Sections 8 and 9 is that if � 6= ;, then S hasat least one solution and all solutions can be easilycharacterized. Thus, the proof of Lemma 7.8 is a pro-cedure for deciding the consistency of a system of setconstraints.8 From Constraints to EquationsIn the next two sections we show that cascadingsystems of constraints always have solutions and weshow how to characterize these solutions. This sectionpresents the most di�cult step, which is to transform acascading system of constraints to a cascading systemof equations.De�nition 8.1 A system of equations f�1 =X1; : : : ; �n = Xng is cascading if for each i = 1; :::; nTLV(Xi) \ f�i; : : : ; �ng = ;Recall that constraints can be viewed as upper andlower bounds on variables because � \X � 0 , � �:X and :� \ Y � 0 , Y � �. The key idea in thisstep is to introduce a new variable � and replace theupper and lower bounds on � by the equation � = Y [(�\:X). This equation guarantees that � contains atleast Y and no more than Y [:X; the free parameter �allows the solution to be anything \in between" theseupper and lower bounds.Theorem 8.2 For any cascading system S withvar(S) = f�1; : : : ; �ng there exists a cascading sys-tem of equations S0 such that S(S) =var(S) S(S0).Proof: Let �1; : : : ; �n be new variables. De�ne setexpressions T1; : : : ; Tn as follows.Ti = ([:�i\X�02SX) [(�i \ \�i\X�02S :X)Let S0 be the set of equations f�1 = T1; : : : ; �n = Tng.Because conjunctions of literals are sorted in descend-ing order, TLV (Ti) � f�i; �1; : : : ; �i�1g. Thus, S0 isa cascading system of equations.To complete the proof, we must show thatS(S) =var(S) S(S0). We �rst show S(S) �var(S)S(S0). Let � 2 S(S) and let
 = �[: : : ; �i �(�i); : : :]. Clearly
 =var(S) �. It su�ces to provethat each equation �i = Ti holds under the substitu-tion
.

Ti = [:�i\X�02SX [(�i \ \�i\X�02S :X)= [:�i\X�02SX [(�i \ \�i\X�02S :X)= [:�i\X�02SX [�i= �iIn this proof, the �rst equation is the de�nition ofTi. The second equation follows because �(�i;
) =�(�i;
). The third equation follows because �i � :Xfor each �i\X � 0 2 S. The last step follows becauseX � �i for each :�i \X � 0 2 S.For the other direction, we must show thatS(S0) �var(S) S(S). Let � be a substitution satisfy-ing the equations. We show by induction on (h; i) that� 2 Sh;i(X � 0) for every constraint X � 0 in S. Thebase case (h; i) = (0; 0) is trivial, since X \H0 = 0.Assume the result holds for (h; i � 1). We break theinductive step into two cases: one case for constraintsof the form �j \ Y � 0, and one case for constraintsof the form :�j \Y � 0. For a constraint �j \Y � 0,note Sh;i(�j \ Y � 0) = Sh;i�1(�j \ Y � 0) holds ifi 6= j. If i = j, then�j \ Y= Tj \ Y= ([:�j\X�02SX [(�j \ \�j\X�02S :X)) \ Y� ([:�j\X�02SX [(�j \ :Y)) \ Y= [:�j\X�02S(X \ Y)= 0In this proof, the �rst equation follows because�(�j; �) = �(Tj ; �). The second equation holdsby de�nition of Tj . The third step follows because�j \ Y � 0 2 S. The last equation follows byinduction and the cascading property; this deservesmore explanation. By the inductive hypothesis � 2Sh;j�1(S), and for any constraint :�j \ X � 0,Sh;j�1(S) � Sh;j�1(Y \ X � 0) by the cascadingproperty. Therefore, �(Y \ X \ Hh; �) = 0 sinceTLV (Y \X) � f�1; : : : ; �j�1g. Checking constraints8

of the form :�j \ Y � 0 does not depend on the in-ductive hypothesis::�j \ Y= :Tj \ Y= :([:�j\X�02SX [(�j \ \�j\X�02S :X)) \ Y= (\:�j\X�02S :X \ (:�j [[�j\X�02SX)) \ Y� (:Y \ (:�j [[�j\X�02SX)) \ Y= 0The �rst equation follows because �(�j; �) = �(Tj ; �).The second equation follows by de�nition of Tj . Thethird equation is a simpli�cation; the fourth step fol-lows because :�j \ Y � 0 2 S. 29 The Final StepFor the �nal step, we show how to reduce a cas-cading system of equations to a system of equationsin solved form. This involves two relatively simpletransformations. First, we must ensure that all thetop-level variables of equations are free variables. Sec-ond, we must eliminate negations, except where theyoccur on free variables.Let f�1 = E1; : : : ; �n = Eng be a cascading systemof equations. Because the system is cascading, Ei hasno top-level occurrences of the variables �i; : : : ; �n.To eliminate the remaining top-level variables, simplyreplace, in order, �j by Ej at the top level on everyright-hand side for 1 � j � n. In the resulting system,all top-level variables are free variables.Removing negations is accomplished by an algo-rithm that drives negations inside until they occuronly on variables. Given an expression E, the negationnormal form NNF(E) of E is the expression producedby top-down application of the following transforma-tions to E: :0 = 1:1 = 0:(:X) = X:(X [Y) = :X \ :Y

:(X \ Y) = :X [:Y:c(X1; : : : ; Xa(c)) = [d2C�fcg d(1; : : : ; 1)[[1�i�a(c) c(: : : ; 1;:Xi; 1; : : :)Lemma 9.1 Let f�1 = X1; : : : ; �n = Xng be acascading system of equations with variables V , let
1; :::;
n be distinct variables not in V , and let S1 andS2 be systems of equations as de�ned below, where iand j range from 1 to n. Then S(S1) =V S(S2).S1: �i = XiS2: �i = NNF(Xi)[:::
j=:�j:::]
i = NNF(:Xi)[:::
j=:�j:::]To �nish the reduction, we observe that if all top-level variables of the cascading system of equations inLemma 9.1 are free variables, then the system S2 isin solved form. An immediate corollary is that if thealgorithm of Lemma 7.8 does not report that a systemof set constraints is inconsistent, then the system hasa solution.10 Complexity AnalysisWe show that the decision problem of determiningwhether a system of set constraints is consistent (hasa solution) is hard for exponential time, and that itis in nondeterministic exponential time. The exactcomplexity remains an open problem.Theorem 10.1 The consistency problem for systemsof set constraints is EXPTIME-hard.Proof: [sketch] In [15] it is shown that determin-ing whether two �nite tree automata accept the samelanguage is complete for EXPTIME. Finite tree au-tomata are equivalent to solved-form systems of equa-tions with no free variables. More precisely, for every�nite tree automaton A there is a solved-form systemof equations S = f�i = Eig, computable in time poly-nomial in the size of A, such that the language L(A)accepted by A is �(�1; �), where � is the unique solu-tion of S.To reduce this problem to solving systems of equa-tions, for any two �nite tree automata A and B, letf�i = Eig and f�j = E0jg be corresponding solved-form systems without free variables where the �i and9

�j are disjoint. Then the system f�i = Ei; �j =E0j; �1 = �1g has a solution if and only if L(A) =L(B). 2Theorem 10.2 The consistency problem for systemsof set constraints is in NEXPTIME.Proof: [sketch] Consider a set of constraints with mvariables, p constructors, and maximum constructorarity k. The proof is divided into three steps. We �rstprove the result for one-level systems with maximumconstructor arity k = 2. We then extend the theoremto arbitrary systems where k = 2. Finally, we sketchhow the proof is extended to systems where construc-tors have arbitrary arity. Let n be the total size (thenumber of symbols) of the system.Each step of the algorithm in the proof ofLemma 7.8 adds one one-level expression to the sys-tem of constraints. Therefore, a simple way to boundthe complexity of this algorithm is to count the num-ber of possible one-level expressions and multiply bythe time it takes to perform one step. There are 3mpossible conjunctions of literals, as each literal may bepositive, negative, or absent. When k = 2, the largestone-level expression has the form ~l0 \ c(~l1 \ 1;~l2 \ 1).Thus, there are at most about p(33m) one-level expres-sions, which is 2O(n).One iteration of the procedure of Lemma 7.8 takesat most 2O(n), because there are at most (2n)2 = 22npairs of constraints to consider and each step (consid-ering one pair of constraints) takes time at most poly-nomial in n. When applying the Constructor Rule(7.2), one of the possible sets of constraints is cho-sen nondeterministically. The procedure of Lemma7.8halts in at most 2O(n) iterations, since either the sys-tem is found to be inconsistent or it is eventually cas-cading with respect to all pairs of constraints, andthere are at most 2O(n) constraints. Thus, the overalltime is 2O(n). To �nish the proof, note that a cascad-ing system always has a solution.Now consider any system of constraints with max-imum constructor arity k = 2. From the proof ofLemma 6.2 (see Section A.2), any system can be re-duced to a one-level system with O(n) variables intime polynomial in n . From above, a one-level sys-tem with O(n) variables and k = 2 can be solved innondeterministic time 2O(n).Finally, let S be an arbitrary system of constraintswith constructors C and variables V . The following

algorithm converts S into a system S0 such that S0has a solution if and only if S does and the maximumarity of constructors in S0 is 2. The idea is to replacen-ary constructors in S by a sequence of nested binaryconstructors. For each constructor c in S where a(c) >2 let c0 be a new constructor. We will also need oneadditional constructor d and a fresh variable
. Weadd the following constraints to S:
 = [c2C c(
; : : : ;
)� �
 for every � 2 VThese constraints do not change the solutions of S be-cause
 is the entire Herbrand Universe. The purposeof these constraints is explained below. The functionh converts an expression in S to an expression withconstructors of arity at most 2.h(0) = 0h(1) =
h(�) = �h(:X) =
 \ :h(X)h(X [Y) = h(X) [h(Y)h(X \ Y) = h(X) \ h(Y)h(c(X1; : : : ; Xa(c))) =c(h(X1); : : : ; h(Xa(c))) if a(c) � 2h(c(X1; : : : ; Xa(c)�1; Xa(c))) =c0(h(X1); d(: : : ; d(Xa(c)�1; Xa(c)) : : :))Let S0 = fh(X) � h(Y)jX � Y 2 Sg. Every so-lution � 2 S(S) induces a solution �0 2 S(S0) where�0(�) = fh(t)jt 2 �(�)g. In the other direction, if�0 2 S(S0), then � 2 S(S) where �(�) = fh�1(t)jt 2�0(�)g. The function h�1 is well-de�ned because theconstraints � �
 guarantee that the solutions of S0assign only subsets of
 to the variables, and the mean-ing of
 in S0 is the image under h of the HerbrandUniverse of S. Thus, S0 has a solution if and only ifS does. The algorithm h takes linear time in the sizeof S, so from the above discussion the complexity ofdeciding whether an arbitrary system of constraintshas a solution is in NEXPTIME. 211 Future WorkThere are two outstanding problems we intend topursue. The �rst is to prove a tighter bound onthe complexity of solving systems of set constraints.10

It seems unlikely that a more e�cient algorithm ex-ists; we conjecture that the problem is complete forNEXPTIME.The second problem is to extend the algorithm tohandle a wider class of set constraints. In particular,we would like to extend these techniques to projectionfunctions.AcknowledgementsWe would like to thank Moshe Vardi for extensivediscussions, and Joe Halpern, Moshe Vardi, JenniferWidom, and John Williams for their comments on ear-lier drafts of this paper.A AppendixThis appendix includes proofs omitted from thebody of the paper.A.1 Solved Form SystemsThe following proof of Lemma 5.4 is based on tech-niques in [12].Proof: The function � is monotonic in all set ex-pression operations except for set complement. Let �be any substitution for the variables V �f�1; : : : ; �ng.By assumption, the only negations appear on free vari-ables. Thus, by the monotonicity of the rest of thesystem, there is a least extension �0 of � that satis-�es the equations. Let
 be any extension of � thatsolves the equations. We show that �(�i \Hk; �0) =�(�i \Hk;
) for all k; it follows that �0 =
. For thebase case, �(�i \H0; �0) = 0 = �(�i \H0;
).Assume that �(�i \ Hk�1; �0) = �(�i \Hk�1;
).Now �i is the left-hand side of an equation �i =Ei(�1; : : : ; �n) where no �j occurs at the top level;i.e., on the right-hand side every �i appears inside aconstructor. Therefore, Ei(�1; : : : ; �n) \ Hk equalsEi(�1 \Hk�1; : : : ; �n \Hk�1) \Hk. Using this factwe can prove by induction:�(�i \Hk; �0)= �(Ei(�1; : : : ; �n) \Hk; �0)= �(Ei(�1 \Hk�1; : : : ; �n \Hk�1) \Hk; �0)= �(Ei(�1 \Hk�1; : : : ; �n \Hk�1) \Hk;
)

= �(Ei(�1; : : : ; �n) \Hk;
)= �(�i \Hk;
)2A.2 Reduction to One-Level SystemsIn this section we prove that any systemof constraints is reducible to a one-level system(Lemma 6.2).Proof: Replace all constraints A � B by A \:B � 0. Within expressions that are not one-level,we replace each subexpression E by a fresh variable �and add one-level constraints that imply� = E. Moreformally, for each left-hand side of a constraint thatis not one-level, apply the following transformationsbottom-up. Upon termination, replace conjunctionsof literals ~l by ~l \ 1 as necessary to guarantee thatexpressions are one-level. In each transformation,
 isa fresh variable.� Replace 0 by
 and add constraint
 � 0.� Replace 1 by
 and add constraint :
 � 0.� Replace �\ � by
 and add constraints :
 \�\� � 0,
 \ :� � 0,
 \ :� � 0.� Replace �[� by
 and add constraints :
\� � 0,:
 \ � � 0,
 \:� \ :� � 0.� Replace :� by
 and add constraints
 \ � � 0,:
 \:� � 0.� Replace c(�1; : : : ; �n) by
 and add constraints:
 \ c(�1; : : : ; �n) � 0 and81 � i � n
 \ c(1; : : : ; 1;:�i; 1; : : : ; 1) � 0,8d 6= c
 \ d(1; : : : ; 1) � 0.Note that all the added constraints are one-level(assuming ~l\1 is substituted for ~l). It is easy to showthat these transformations preserve the solutions ofthe original system; we prove this only for the case� \ �. First, :
 \ � \ � � 0 implies that � \ � �
.For the other direction,
 \ :� � 0)
 � � and
 \ :� � 0)
 � � together imply that
 � � \ �.So,
 = � \ �.Let n be the size of the original system of con-straints. The time complexity of this algorithm ispolynomial in n. Also, the algorithm introduces atmost O(n) new variables. 211

References[1] A. Aiken and B. Murphy. Implementing regulartree expressions. In Proceedings of the 1991 Con-ference on Functional Programming Languagesand Computer Architecture, pages 427{447, Au-gust 1991.[2] A. Aiken and B. Murphy. Static type inference ina dynamically typed language. In Eighteenth An-nual ACM Symposium on Principles of Program-ming Languages, pages 279{290, January 1991.[3] J. A. Brzozowski and E. Leiss. On equationsfor regular languages, �nite automata, and se-quential networks. Theoretical Computer Science,10:19{35, 1980.[4] Gilberto Fil�e. Tree automata and logic programs.In Second Annual Symposium on Theoretical As-pects of Computer Science. Springer-Verlag, Jan-uary 1985. Lecture Notes in Computer Science182.[5] T. Fr�uwirth, E. Shapiro, M. Vardi, andE. Yardeni. Logic programs as types for logicprograms. In Symposium on Logic in ComputerScience, pages 300{309, July 1991.[6] F. Gecseg and M. Steinby. Tree Automata. Acade-mei Kaido, Budapest, 1984.[7] N. Heintze and J. Ja�ar. A decision procedure fora class of set constraints. In Symposium on Logicin Computer Science, pages 42{51, June 1990.[8] N. Heintze and J. Ja�ar. A �nite presentationtheorem for approximating logic programs. InSeventeenth Annual ACM Symposium on Princi-ples of Programming Languages, pages 197{209,January 1990.[9] N. Heintze and J. Ja�ar. Set-based program anal-ysis. Draft manuscript, 1991.[10] N. D. Jones and S. S. Muchnick. Flow analy-sis and optimization of LISP-like structures. InSixth Annual ACM Symposium on Principles ofProgramming Languages, pages 244{256, January1979.

[11] P. Mishra. Towards a theory of types in PRO-LOG. In Proceedings of the First IEEE Sympo-sium in Logic Programming, pages 289{298, 1984.[12] P. Mishra and U. Reddy. Declaration-free typechecking. In Proceedings of the Twelfth AnnualACM Symposium on the Principles of Program-ming Languages, pages 7{21, 1985.[13] M. O. Rabin. Decidability of second-order theo-ries and automata on in�nite trees. Transactionsof the American Mathematical Society, (141):1{35, 1969.[14] J. C. Reynolds. Automatic Computation of DataSet De�nitions, pages 456{461. Information Pro-cessing 68. North-Holland, 1969.[15] H. Seidl. Deciding equivalence of �nite tree au-tomata. SIAM Journal of Computing, 19(3):424{437, June 1990.[16] G. Slutzki. Alternating tree automata. Theoreti-cal Computer Science, 41:305{318, 1985.[17] J. Young and P. O'Keefe. Experience with atype evaluator. In D. Bj�rner, A. P. Ershov,and N. D. Jones, editors, Partial Evaluationand Mixed Computation, pages 573{581. North-Holland, 1988.
12

