Solving Systems of Set Constraints
(Extended Abstract)

Alexander Aiken

FEdward L. Wimmers

IBM Almaden Research Center
650 Harry Rd.
San Jose, CA 95120
phone: 408/927-1876 or 927-1882
email: lastname@almaden.ibm.com
fax: 408/927-2100

Abstract

Systems of set constraints are a natural formal-
wsm for many problems wn program analysis. Set con-
straints are also a generalization of tree automata. We
present an algorithm for solving systems of set con-
straints built from free variables, constructors, and the
set operations of intersection, union, and complement.
Furthermore, we show that all solutions of such sys-
tems can be finitely represented.t

1 Introduction

Set constraints are a natural formalism for describ-
ing relationships between sets of terms of a free alge-
bra. A set constraint has the form X C Y, where X
and Y are set expressions. Examples of set expres-
sions are 0 (the empty set), 1 (the set of all terms), «
(a set-valued variable), ¢(X,Y") (a constructor appli-
cation), and the union, intersection, or complement of
set expressions. Given a set of constructors C' where
each ¢ € C has arity a(c), set expressions are defined
by the grammar:

EZZIO|1|Oz|C(E1,...,Ea(C))|E1UE2|E10E2|_|E1

Many computational problems requiring the solu-
tion of systems of set constraints arise in program
analysis. In program analysis algorithms, sets of terms
describe the possible values computed by a program.
Set constraints are generated from the program text;

1To appear in the Proceedings of the 1992 IEEE Symposium
on Logic in Computer Science

solving the constraints yields some useful information
about the program (e.g., for type-checking or opti-
mization). For example, consider a program with two
uses of a variable v. Assume that from one use we de-
termine that v must be a number (i.e., v C IntUFloat)
and from the other use we determine that v cannot
be an integer (i.e., v C —Int). Combining these con-
straints, we can infer that v must be a floating-point
number (i.e., v C (Int U Float) N —Int = Float).

Set constraints have been used in program analysis
and type inference algorithms for functional languages
[1, 2, 10, 12, 14, 17)?, logic programming languages
[8, 11], and imperative languages [9]. Solving a system
of set constraints is central to each of these program
analysis algorithms.

Systems of set constraints can also define tree au-
tomata; in this case, the sets of terms are the lan-
guage of a finite-state machine. For a tree automaton
A with states {aj,as,...}, a set S of constraints can
be constructed over variables {ay, as,...} such that
the unique solution of the constraints assigns to «;
the set of terms accepted by state a;.

Set constraints are perhaps the simplest formalism
for expressing constraints between sets of terms. De-
spite this mathematical simplicity, the applications to
program analysis, and their close relationship to tree
automata, set constraints are relatively poorly under-
stood. In this paper we present an algorithm for solv-
ing systems of set constraints; this algorithm produces
a finite representation of all the solutions of a system

?In [17], an ad hoc formalism equivalent to set constraints is
used.

of set constraints. We show that the complexity of
deciding whether or not a system of set constraints
is consistent (i.e., has a solution) is in NEXPTIME
and 18 EXPTIME-hard. The exact complexity of the
problem remains open.

Our primary contribution is showing that systems
of set constraints that use all the standard set opera-
tions, especially unrestricted union and complement,
can be solved. Set complement has received little at-
tention in previous work on set constraints, but set
complement (or something like it) is required to ex-
press the solutions of many set constraints, even those
that do not explicitly use complement. For example,
the solutions of the constraint a N B C 0 are all sub-
stitutions in which « and 3 are disjoint—i.e., in which
a C 5.

The centerpiece of our development is an algorithm
that incrementally transforms a system of constraints
while preserving the set of solutions. Eventually, ei-
ther the system is shown to be inconsistent or all solu-
tions can be exhibited. Most of the work is in proving
that if this algorithm does not discover an inconsis-
tency, then the system has a solution. This is done by
showing that the system of constraints generated by
the algorithm can be transformed into an equivalent
set of equations that are guaranteed to have a solution.
These equations are essentially tree automata.

The rest of the paper is organized as follows. Sec-
tion 2 contains basic definitions. Section 3 gives some
examples illustrating the difficulty of solving set con-
straints; Section 4 covers related work. Section 5 gives
an outline of the algorithm and sketches its proof of
correctness. Sections 6 and 7 present the algorithm,
while Sections 8 and 9 prove its correctness and show
how to characterize the solutions of systems of set con-
straints. Section 10 discusses the complexity of the
algorithm. Proofs of two lemmas are included in the
appendix. The proof of Theorem 8.2 is presented in
the body of the paper because it is the key step in the
overall construction.

2 Definitions

Let C' = {b,c,...} be a finite? set of constructors
and let V = {«,3,...} be a set of variables. Every

3The results are easily extended to infinite sets of
constructors.

constructor ¢ has arity a(c) > 0. A system of set of
constraints has the form {... . X C VY,...}, where X
and Y are set expressions. We write X = Y for the
pair of constraints X CY and Y C X.

Definition 2.1 (Terms) Let H° =) and let Hi+! =
H U {e(ty,. Cotae)|ti € H? ¢ € C}. The Herbrand
Universe H is the least upper bound of the series H° C
HYC ...

We use H? in set expressions as a syntactic abbre-
viation for the set of all terms in H?. We assume
that the Herbrand Universe is non-empty (i.e., there
is at least one zero-ary constructor in C'). A substitu-
tion o is a function o : V. — P(H) from variables to
sets of terms. The standard semantics of set expres-
sions maps an expression and a substitution to a set

of terms:
(0, 0) 0
p(l,o) = H
pare) = ofa)
p(=X, o) = H—pX, o)
pXUY,0) = p(X,0)UpY, o)
wXNY,0) u(X, o) (Y, o)

(X1, .., Xae)),0) =
{e(ts, - tae)lti € p(Xi,0), ¢ € C}

Definition 2.2 (Solutions) The set of solutions
S8(S) of a system S of constraints is the set of all
substitutions that satisfy the constraints: S(S) =
{o|p(X,0) C p(Y,0) where X C Y € S}. If a sys-
tem of constraints S is inconsistent, then S(5) = 0.

Definition 2.3 (Restricted Solutions) The solu-
tions of a system S restricted to a set of variables is
the set of substitutions in S(S) restricted to those vari-
ables: 8(S) 1T {a1,...,ant = {0 1 {a1,...,an}llo €
S(S)}. We write S(S1) =v 8(52) for S§(S51) 1V =
S(S2) TV,

3 Examples of Set Constraints

This section illustrates some of the difficulties
in solving set constraints. Consider an equation
a = FE(a). If E() does not contain the negation sym-
bol, then this equation has a solution; this follows im-
mediately from the fact that all set expression opera-

tions except complement are monotonic. Presumably,

this is why equations of this form (o« = F(«) with
no negations) have been studied almost exclusively
[1, 2, 8, 12]. However, when set complement is added
to the language, even equations of this restricted form
might not have solutions. For example, the equation
a = —« has no solutions.

Another way to generalize constraints of the form
a = F(a) is to drop the requirement that the left-hand
side of the equation be a single variable. However, if
the constraint language permits arbitrary equations
between set expressions (as our language does), then
the constraint language already has all the power of
complement and C. The constraint £y C E5 can be
expressed as B, = E7 N F», and the expression —F
can be replaced by a fresh variable o with the added
constraints a N E =0 and a U E = 1.

Another problem is that set constraints do not nec-
essarily have a least solution even when a solution ex-
ists. Consider the system {aNB C 0,6 C «US}. This
system has two incomparable solutions: o = {b} and

B=0,0or « =0 and 8 = {b}.

4 Related Work

Algorithms are known for a number of special cases
of the general problem of solving a system of set con-
straints. These algorithms were developed either for
an application in program analysis [7, 10, 12, 14] or in
work on finite automata [3, 6, 13].

Mishra and Reddy [12] give a method for solv-
ing constraints between expressions without comple-
ment where all set unions are discriminative (i.e., if
e(..)Ud(...) is an expression, then ¢ # d). Heintze
and Jaffar [7] give an algorithm for the class of defi-
nite constraints, which are of the form A C B, where
B contains no set operations and A contains no com-
plement operations. Heintze and Jaffar also use pro-
jection functions, an additional set operation we do
not consider. For every constructor f, a family of pro-
jection functions f=1, ..., f=9) is defined as follows:

p(f7H(E),0) = {xil [z, ..

Reynolds [14] and Jones and Muchnick [10] present
algorithms for solving set constraints with projection

,l’a(f)) € F‘(E’ U)}

functions, but without union or complement opera-
tions.

In work on finite automata, Brzozowski and Leiss
present an algorithm for solving equations between
regular languages with free variables [3]. Since regular
languages are equivalent to tree languages with only
unary constructors, our algorithm can be regarded as
the generalization of their work to constructors of ar-
bitrary arity.

A related line of work is program analysis methods
based on extensions of tree automata other than set
constraints [4, 5]. The expressive power of these tech-
niques 1s different than that of set constraints, but the
exact relationship is as yet undetermined. We leave
such comparisons as future work.

5 Outline of the Development

We give an algorithm that takes a system of con-
straints S and either reports that the constraints are
inconsistent or produces a finite set of solved form sys-
tems. Solved form systems are sets of equations; these
equations always have solutions and all solutions can
be characterized easily.

To motivate the definition of solved form systems,
recall that an equation of the form o = F has a solu-
tion whenever E has no negation symbols. Thus, elim-
inating negations would appear to be a positive step
toward discovering the solutions of a system. Unfortu-
nately, it is not always possible to eliminate negations
in equations (e.g., consider the equation & = =), so
the definition of solved form uses a weaker condition
that merely restricts where negations can appear.

Another problem is that the solutions of an equa-
tion can be difficult to characterize, even if the equa-
tion has no negations. For example, consider the equa-
tion @« = a N B. The solutions of this equation are
{o]o(e) C o(5)}, but that fact is not obvious from the
form of the equation. By restricting where the right-
hand side variable o appears in an equation a« = F,
we obtain equations whose solutions are characterized
easily. The definition of solved form requires the fol-
lowing two technical definitions.

Definition 5.1 The top-level variables of a set ex-
pression are:

TLV(0) =
TIV(1) =
TiV(e) = Ao}

= =

TIV(-X) = TLV(X)
TIVIXUY) = TIV(X)UTLWY)
TIVIXNY) = TIV(X)UTLWY)
TIV(e(X1, ..., Xae))) = 0
Definition 5.2 The free wvariables of a system of
equations {a; = Xy,...,a, = X, } are those vari-
ables other than «y, ..., a, that occur in Xq,..., X,.

Definition 5.3 A system of equations
{Oq = Xl, N
=Y is a subexpression of some X;, then Y is a free

variable, and (2) Vi TLV(X;) N{ay,...,an} =0.

,an = Xy bis in solved form if (1) when

In Definition 5.3, condition (1) guarantees that
there is a solution, because any substitution for the
free variables can be extended (by monotonicity of
the rest of the system) to a substitution satisfying
the equations. Condition (2) guarantees that for any
substitution for the free variables, the extension to a
solution 1s unique. Thus, any substitution for the free
variables induces a solution to the equations. The fol-
lowing lemma formalizes this discussion.

Lemma 5.4 Let S = {a; = Xy,..., 0, = X,,} be
a system in solved form and let V' be the set of all
variables. For any substitution o for the variables V' —
{a1,...,an} there is a unique extension ¢’ € S§(S5)

such that ¢’ 1 (V = {aq,...,a,}) = 0.

Proof:

Solved form systems are essentially alternating tree
automata [16]. Each variable on the left-hand side of
an equation corresponds to an automaton state; the

In appendix A.1. O

set operations of intersection and union correspond
to the tree automata transitions of universal branch-
Solved-

form systems have one feature not found in tree au-

ing and existential branching respectively.

tomata: the possibility of unconstrained variables.
Thus, solved-form systems can be regarded as tree au-
tomata with free variables.

The reduction from arbitrary systems of constraints
to solved form systems has four steps; each step is
explained in subsequent sections:

1. Reduce an arbitrary system of constraints to a
one-level system (Section 6). This step puts all
constraints in the form X C 0, where X has no
unions or nested constructors and negations ap-
pear only on variables. This syntactic restriction

simplifies subsequent steps and the complexity
analysis.

2. Reduce a one-level system to a cascading sys-
tem (Section 7). This step guarantees that con-
straints implied by constructor expressions (i.e.,
e(X,Y) C 0 implies either X C 0 or Y C 0)
and transitivity (i.e., X CY and Y C 7 implies
X C Z) are consistent.

3. Reduce a cascading system of constraints to a cas-
cading system of equations (Section 8). In this
step, constraints of the form L C o C U are re-
placed by o = LU (FfNU), where 3 is a fresh
variable. The variable 3 serves as a parameter
allowing « to be anything “in between” the lower
bound L and the upper bound U. The primary
purpose of this step is change the problem from
a system of constraints to a system of equations.

4. Reduce a cascading system equations to a system
of equations in solved form (Section 9). This is
a relatively simple step that eliminates negations
and some top-level variables.

Figure 1 gives a simple but complete example of our
algorithm in action. Each step is explained in subse-
quent sections. In this example, the two constraints
c(az) € —ag and e(—az) C as together imply that
c(x) € ag iff © & ay. Thus, there are two possibilities
for the meaning of as: {c?(b)} or {c**1(b)} where i
ranges over the non-negative integers.

To aid understanding of the system in Figure 1, we
simplify the final result as shown in Figure 2. These
simplifications are not part of the algorithm and are
presented just to enhance readability. In Figure 2,
note that 31 and (s serve as “free variables” that al-
low a1 and ay to be anything between the upper and
lower bounds implied by the constraints. The first
equation shows that «; is indeed a subset of g and
1 serves as a parameter identifying which subset of
ay. In the second equation, 3 U B2 serves as a param-
eter controlling whether b or ¢(b) is an element of «s.
Finally, note that as recurses on ¢(c(az)) as desired.

initial system

constructors b, ¢ with arities a(b) =0, a(c) =1
a1 C as

e(az) C s

c(man) C as

one-level system
(Section 6)

—agsNa; CO
azNe(az) CO
—as Ne(—az) €0

cascading system
(Section 7)

—agsNa; CO
azNe(az) CO
—as Ne(—az) €0
ay Ne(az) CO

cascading equations
(Section 8)

arp = B Ne(as)
ag = (1 N —e(az)) Ue(—az) U (B2 N —e(az))

solved system
(Section 9)

ar = f1 N(bUc(y2))
ar = (BN (bUc(y2))) Ue(y2) U (B20(bUc(y2)))
Y2 = (2B Uc(an)) N (bU e(as)) N (—f2 U e(as))

Figure 1: The algorithm in action.

solved system

ar = BN (bUc(y2))
ar = (BN (bUc(y2)) Uelyz) U (B2 N (bUe(72)))
v2 = (01 Ue(as)) N(bU e(as)) N (=f2 Uc(as))

simplify
(note oy = 1 Naxa)

ap = 1 Nas
oy = (61 N b) U (62 N b) U C(’yz)
Y2 = (2f1 N =f2Nb)Uc(az)

eliminate variable 75

ay =1 Nas
oy = (61 N b) U (62 N b) U C((ﬁﬁl N —|62 N b) U C(Ozz))

simplify

ay =1 Nas
ag = ((FLUB2) Nb)Uce(=f1 N=F2Nb)Uc(e(az))

Figure 2: Simplification of the result of Figure 1.

6 One-Level Systems of Set
Constraints

A set expression is one-level if 1t has no unions or
nested constructors and negations appear only on vari-
ables.

Definition 6.1 A literal is either a variable « or its
complement —a. Let [stand for a (possibly empty)
conjunction of literals in which no variable appears
both positively and negatively. A set expression is
one-level if it is 0, n 1, or Ihn c(l_i ni,.. .,l_(;(c) n1).

In this section, we show that all systems of set con-
straints can be expressed as one-level systems, where
the left-hand side of all constraints 1s a one-level ex-
pression, and the right-hand side of all constraints is
0. Using one-level systems simplifies subsequent steps
and the complexity analysis.

Lemma 6.2 Let var(S) be the set of all variables in
a system S. There is an algorithm to compute a one-

level system .S” such that S(S) =vars) S(5).

Proof: [sketch] Replace all constraints A C B by
AN—=B C 0. Within expressions that are not one-level,
we replace each proper subexpression F by a fresh
variable « and add one-level constraints that imply
a = E. For example, we can replace AN B by « and
add constraints ~aNANB C 0, an—-A4 C 0, and
aN =B C 0. The complete proof is in appendix A.2.
O

From this point, we assume that all systems of con-
straints are one-level.

7 Cascading Systems

Our algorithm for solving a system of constraints
consists of a pair of transformations that convert a sys-
tem to one or more equivalent systems. The transfor-
mations are applied repeatedly until either none apply
or an inconsistency is detected. Our algorithm deter-
mines a system is inconsistent when it discovers that
the original constraints imply either 1 C 0 or ¢ C 0
(where ¢ is a zero-ary constructor). If no inconsistency
is found, then the original system has a solution; Sec-
tions 8 through 9 prove this fact by showing how to
characterize all solutions of the original system. The
following definition formalizes the idea of equivalent
sets of systems.

Definition 7.1 (Equivalent Systems)
Let 51,...,S5, and T7, ..
straints. Then

., T, be any systems of con-

Sty S =T, T & [JS(8) = 8(T))
{ J

The first transformation enforces constraints im-
plied by constructor expressions. It is the only trans-
formation that may introduce multiple systems of con-
straints.

Rule 7.2 (Constructor Rule)
S U {C(Xl,...,Xn) g 0} = Sl,..
SU{X; CO0}

., Sy where 5; =

The Constructor Rule is correct because an expres-
sion ¢(Xy,...,X,) is empty exactly when one of its
components X; is empty. Notice that the Construc-
tor Rule produces one-level systems from a one-level
system.

The second transformation enforces transitive con-
straints. Constraints « N X C 0 and —aNY C 0 rep-
resent upper and lower bounds on « because aN X C
0ealC—-Xand -anNY C0< Y C a. Intuitively,
the constraints ¥ C « and « € =X have a solution
only if Y C =X.

Rule 7.3 (Transitive Rule) SU{aNX C 0,-aN
YC0}=5SU{anXCO0,manY CO,XNY CO}

Consider the system {o C 0,—« C 0}. The Tran-
sitive Rule proves this system is inconsistent, because
it adds the constraint 1 C 0. The statement of the
Transitive Rule omits an important detail; the new
expression XNY might not be one-level. It is straight-
forward to transform X NY to a one-level expression
using the following identities:

xN—-zx = 0
0Nnz = 0
e(...,0,..) = 0
e(..ond(..) = 0ifc#d
c(®1, . Ta(e) N ey, - Ya(e)) =
(T1 Ny, Bage) N Ya(e))

In addition to making the transitive constraint ex-
plicit, the expression X N'Y has no occurrences of «
or mv at the top level (see Definition 5.1). This is
a key fact, which we exploit as follows. Assign some

arbitrary order aq, ..., «a, to the variables in V. We

assume from here on that all conjunctions of literals
are sorted in descending order from left to right. Thus,
in an expression «; N.X or —a; N X, j is greater than
the index of any top-level variable in X. Now the
largest index of any top-level variable in the constraint
XNY C 0 added by the Transitive Rule is strictly less
than the largest index of any top-level variable in the
original constraints.

In the final steps of the proof, we need an induction
on the Herbrand level with a subinduction on the or-
dering of variables to show that a system is reducible
to a system of equations in solved form. The next defi-
nition provides the construction used in this induction.
The set of solutions Sy, ; () is the set of substitutions
that satisfy all constraints up to some Herbrand level
h or h — 1, depending on whether a constraint has a
top level variable with index greater than j.

Definition 7.4

Sni(9) = [{Shi(X CO)IX Coes)

Sn i (X CO) S(X N H" C0)

where hy = h if TIV(X) C {ay,..

max(0, h — 1) otherwise.

Lot and hg =

The intuition behind the following lemma is that
Sn,;(S) provides a series of increasingly accurate ap-
Initially, 8o o(S) is just the
set of all substitutions. As h and j increase, the set

proximations to S(5).

Sh,;(S) decreases monotonically, until, in the limit, it

is equal to S(9).
Lemma 7.5

Sni(S) C SwiS) ifh>h orh=Hj>j
S(8) = [18n(9)
hyg

Consider the system {ag C 0,—ag C 0}. Then
81 7(as C 0,-ag C 0) is the set of all substitutions,
but 8§ s(ags € 0,mag C 0) is the empty set. The
next lemma shows that the Constructor Rule not only
preserves the solution set but it also improves the ap-
proximation S ; ().

Lemma 7.6 By applying the Constructor Rule, any

one-level constraint ¢(Xy,...,X,) C 0 is equivalent

a finite set of systems {X; C 0},...,{X,, C 0} such
that

S(e(X1,...,X,)C0) = [JS(x: o)

Vh,j Snj(e(X1, ..., Xa) C0) 2 | JSh;(Xi C0)

The following definition is used in Theorem 8.2 to
explain how the Transitive Rule makes progress to-
wards solving the system of constraints.

Definition 7.7 Let o; N X C 0 and —a; NY C 0 be
constraints in S. S is cascading with respect to a pair
of constraints a; N X C 0 and —a; NY C 0 if for all
hy Spj—1(S) € Spi—1 (X NY C0). Sis cascading if
it 1s cascading with respect to all pairs of constraints
and there are no constraints of the form ¢(...) C 0 or
1CO.

Consider again the system of constraints {ag C
0,—ag C 0}. This system is not cascading because
S17(as € 0,7 C 0) € S1,7(1 € 0). The proof
of the next lemma gives an algorithm to transform a
one-level system to a set of cascading systems.

Lemma 7.8 A one-level system S is equivalent to a
finite set T' of cascading systems.

Proof:
steps:

Let T' = {S}. Tterate the following four

e Pick a system Sy € I' and a pair of constraints
a;NX CO0and ~a; NY COin Sp.

e Apply the Constructor Rule (if necessary) to get
LS8 ={XNnY Co}.

a set of systems 57, ..
e Replace Spin T by ..., SoU S, ...

e For every S € I, if S contains a constraint 1 C 0
or ¢ C 0, then delete S from I'.

By Lemma 7.6 and Definition 7.7, Sp U S} is cas-
cading with respect to the chosen pair of constraints.
Iterating these four steps until all pairs are processed
yields a finite set of cascading systems. This proce-
dure terminates because there are only finitely many
one-level expressions over a fixed set of variables and
constructors. O

Let S be a system of constraints. The algorithm in
the proof of Lemma 7.8 shows that S i1s inconsistent

if T = (0 when the algorithm terminates. The main
result of Sections 8 and 9 is that if ' # (§, then S has
at least one solution and all solutions can be easily
characterized. Thus, the proof of Lemma 7.8 is a pro-
cedure for deciding the consistency of a system of set
constraints.

8 From Constraints to Equations

In the next two sections we show that cascading
systems of constraints always have solutions and we
show how to characterize these solutions. This section
presents the most difficult step, which is to transform a
cascading system of constraints to a cascading system
of equations.

Definition 8.1 A system of equations {ay =
Xi,...,an = X, } is cascading if for each i = 1,...,n

TLV(XZ) N {Ozi, cee Ozn} =0

Recall that constraints can be viewed as upper and
lower bounds on variables because « N X C 0 < a C
=X and maNY C0< Y C a. The key idea in this
step 1s to introduce a new variable § and replace the
upper and lower bounds on « by the equation a« = Y U
(AN—X). This equation guarantees that « contains at
least Y and no more than YU—-X; the free parameter 3
allows the solution to be anything “in between” these
upper and lower bounds.

Theorem 8.2 For any cascading system S with
var(S) = {a1, ..., an} there exists a cascading sys-
tem of equations S’ such that S(.5) =vars) S(5").

Proof: Let 3q,...
expressions 17, ..

= U

—0;NXCOES

, Bn be new variables. Define set
., T}, as follows.

Xu@n (] -X)

;N XCO0ES
Let 57 be the set of equations {ay = T4, ..., = T }.
Because conjunctions of literals are sorted in descend-
ing order, TLV(T;) C {Bi, o1, ..., ;-1}. Thus, S is
a cascading system of equations.

To complete the proof, we must show that
S(S) =varcs) S(57). We first show S(S) Cuoars)
S(S"). Let ¢ € S(5) and let v = o[...,5 —
o(ai),...]. Clearly v =yqrs) o. It suffices to prove
that each equation «; = T; holds under the substitu-
tion 7.

n=

xXu@en (] -

—~aNXCOES «iNXC0ES

= U xXu(@n () -X)
—~aNXCOES «iNXC0ES

= U X Ua;
—~aNXCOES

= O[Z'

In this proof, the first equation is the definition of
T;. The second equation follows because p(e;,y) =
#(Bi, 7). The third equation follows because a; C =X
for each a; N X C 0 € S. The last step follows because
X C q; for each ma; N X C0€S.

For the other direction, we must show that
S(5") Cuares) S(5). Let o be a substitution satisfy-
ing the equations. We show by induction on (£, 7) that
o € 8,i(X C0) for every constraint X C 0in S. The
base case (h,i) = (0,0) is trivial, since X N H" = 0.
Assume the result holds for (h,i — 1). We break the
inductive step into two cases: one case for constraints
of the form o; NY C 0, and one case for constraints
of the form —a; NY C 0. For a constraint o; NY C 0,
note Spi(a; NY C 0) = Spi—1(e; NY C 0) holds if
i£j. If i = j, then

Oz]'ﬂY
= 1I;NnY

:(U

—a;nXCOES

< U

~a;NXC0ES

= J oy
~a;NXC0ES

= 0

Xu@in N

ajNXCOeS

XU(ﬁjﬂ—!Y))ﬂY

~X)AY

In this proof, the first equation follows because
wlaj, o) = p(Tj,0). The second equation holds
by definition of 7;. The third step follows because
a; NY C 0 € S. The last equation follows by
induction and the cascading property; this deserves
more explanation. By the inductive hypothesis o €
Shj-1(S), and for any constraint —«o; N X C 0,
Snj—1(S) C Sph;—1(Y N X C 0) by the cascading
property. Therefore, u(Y N X N H" ¢) = 0 since
TLV(YNX) C{ay,..

.,j_1}. Checking constraints

of the form —a; NY C 0 does not depend on the in-
ductive hypothesis:

ﬁO[jﬂY
-~ U xu@n () -xnny
—0;NXCOES a;NXC0ES
- () -xnegu | xpny
-0;nXCoES a;NXCoeS

c (~vyn-gu

ajNXCOeS

X)ny
= 0

The first equation follows because pu(«;, o) = u(Z;, o).
The second equation follows by definition of 7;. The
third equation is a simplification; the fourth step fol-
lows because —a; NY CO0 € 5. O

9 The Final Step

For the final step, we show how to reduce a cas-
cading system of equations to a system of equations
in solved form. This involves two relatively simple
transformations. First, we must ensure that all the
top-level variables of equations are free variables. Sec-
ond, we must eliminate negations, except where they
occur on free variables.

Let {Oq = El, .
of equations. Because the system is cascading, E; has

., an = E,} be a cascading system

no top-level occurrences of the variables «;, ..., ay,.
To eliminate the remaining top-level variables, simply
replace, in order, a; by E; at the top level on every
right-hand side for 1 < j < n. In the resulting system,
all top-level variables are free variables.

Removing negations is accomplished by an algo-
rithm that drives negations inside until they occur
only on variables. Given an expression F, the negation
normal form NNF(FE) of E is the expression produced
by top-down application of the following transforma-
tions to £

-0 = 1
-1 = 0
—~(~X) = X

~(XUY) = -Xn-Y

~(XNY) = —-XUu-Y
—e(X1,.. Xa) = | dd.. U
deC—{c}
U e 1,-x1,0)
1<i<a(e)

Lemma 9.1 Let {a; = X;i,...,a, = X,} be a
cascading system of equations with variables V', let
Y1, ---, ¥n be distinct variables not in V', and let S1 and
S2 be systems of equations as defined below, where i

and j range from 1 to n. Then S(S1) =y S(52).

S1: oy = Xz'
S2: oy = NNF(XZ')[...’)/]'/—!O[]'...]
Yi = NNF(ﬁXi)[...’yj/—'Ozj...]

To finish the reduction, we observe that if all top-
level variables of the cascading system of equations in
Lemma 9.1 are free variables, then the system S2 is
in solved form. An immediate corollary is that if the
algorithm of Lemma 7.8 does not report that a system
of set constraints is inconsistent, then the system has
a solution.

10 Complexity Analysis

We show that the decision problem of determining
whether a system of set constraints is consistent (has
a solution) is hard for exponential time, and that it
is in nondeterministic exponential time. The exact
complexity remains an open problem.

Theorem 10.1 The consistency problem for systems
of set constraints is EXPTIME-hard.

Proof: [sketch] In [15] it is shown that determin-
ing whether two finite tree automata accept the same
language is complete for EXPTIME. Finite tree au-
tomata are equivalent to solved-form systems of equa-
tions with no free variables. More precisely, for every
finite tree automaton A there is a solved-form system
of equations S = {«o; = F;}, computable in time poly-
nomial in the size of A, such that the language £(A)
accepted by A is p(aq, o), where o is the unique solu-
tion of S.

To reduce this problem to solving systems of equa-
tions, for any two finite tree automata A and B, let
{ei = E;} and {8; = E}} be corresponding solved-
form systems without free variables where the «; and

3; are disjoint. Then the system {o; = E;, 5; =
Ei,ar = p1} has a solution if and only if £(4) =
L(B). O

Theorem 10.2 The consistency problem for systems
of set constraints is in NEXPTIME.

Proof:
variables, p constructors, and maximum constructor
arity k. The proof is divided into three steps. We first
prove the result for one-level systems with maximum

[sketch] Consider a set of constraints with m

constructor arity £ = 2. We then extend the theorem
to arbitrary systems where & = 2. Finally, we sketch
how the proof is extended to systems where construc-
tors have arbitrary arity. Let n be the total size (the
number of symbols) of the system.

Each step of the algorithm in the proof of
Lemma 7.8 adds one one-level expression to the sys-
tem of constraints. Therefore, a simple way to bound
the complexity of this algorithm is to count the num-
ber of possible one-level expressions and multiply by
the time 1t takes to perform one step. There are 3™
possible conjunctions of literals, as each literal may be
positive, negative, or absent. When & = 2, the largest
one-level expression has the form I_EJ N c(l_i nl, l; n1).
Thus, there are at most about p(33™) one-level expres-
sions, which is 20(?).

One iteration of the procedure of Lemma 7.8 takes
— 22n

pairs of constraints to consider and each step (consid-

at most 2°(") because there are at most (27)?

ering one pair of constraints) takes time at most poly-
nomial in n. When applying the Constructor Rule
(7.2), one of the possible sets of constraints is cho-
sen nondeterministically. The procedure of Lemma 7.8
halts in at most 2°(") iterations, since either the sys-
tem is found to be inconsistent or it is eventually cas-
cading with respect to all pairs of constraints, and
there are at most 29(") constraints. Thus, the overall
time is 2°("). To finish the proof, note that a cascad-
ing system always has a solution.

Now consider any system of constraints with max-
imum constructor arity & = 2. From the proof of
Lemma 6.2 (see Section A.2), any system can be re-
duced to a one-level system with O(n) variables in
time polynomial in n . From above, a one-level sys-
tem with O(n) variables and & = 2 can be solved in
nondeterministic time 29,

Finally, let S be an arbitrary system of constraints

with constructors C' and variables V. The following

10

algorithm converts S into a system S’ such that S’
has a solution if and only if S does and the maximum
arity of constructors in S’ is 2. The idea is to replace
n-ary constructors in S by a sequence of nested binary
constructors. For each constructor ¢ in S where a(e) >
2 let ¢’ be a new constructor. We will also need one
additional constructor d and a fresh variable v. We
add the following constraints to S:

vy = Uetriw
ceC
a C v foreverya €V

These constraints do not change the solutions of S be-
cause 7 1s the entire Herbrand Universe. The purpose
of these constraints is explained below. The function
h converts an expression in S to an expression with
constructors of arity at most 2.

h(0) = 0

h(l) = v

ha) = «

W=X) = 7 n-h(X)
MXUY) = AX)URY)
MXNY) = AMX)NhY)
h(c(X1a~~~,Xa(c))) =

c(h(X1),..., M(Xy))) if ae) < 2

h(ce(X1,. . Xa(o)=1, Xa(e))) =
CR(X0), d(. o d(X a1, Xate)))

Let 8" = {h(X) C M(Y)|X CY € S}. Every so-
lution ¢ € S(S) induces a solution ¢’ € S(S’) where
o'(a) = {h(t)|t € o(a)}. In the other direction, if
o’ € §(5), then o € S(S) where o(a) = {R™(¥)|t €
o’(a)}. The function h~=! is well-defined because the
constraints o C v guarantee that the solutions of S’
assign only subsets of y to the variables, and the mean-
ing of v in S is the image under h of the Herbrand
Universe of S. Thus, S’ has a solution if and only if
S does. The algorithm h takes linear time in the size
of S, so from the above discussion the complexity of
deciding whether an arbitrary system of constraints
has a solution is in NEXPTIME. O

11 Future Work

There are two outstanding problems we intend to
pursue. The first is to prove a tighter bound on

the complexity of solving systems of set constraints.

It seems unlikely that a more efficient algorithm ex-
ists; we conjecture that the problem is complete for
NEXPTIME.

The second problem is to extend the algorithm to
handle a wider class of set constraints. In particular,
we would like to extend these techniques to projection
functions.

Acknowledgements

We would like to thank Moshe Vardi for extensive
discussions, and Joe Halpern, Moshe Vardi, Jennifer
Widom, and John Williams for their comments on ear-
lier drafts of this paper.

A Appendix

This appendix includes proofs omitted from the
body of the paper.

A.1 Solved Form Systems

The following proof of Lemma 5.4 is based on tech-
niques in [12].

Proof:
pression operations except for set complement. Let o
e
By assumption, the only negations appear on free vari-

The function g 1s monotonic in all set ex-
be any substitution for the variables V —{ay, ..

ables. Thus, by the monotonicity of the rest of the
system, there is a least extension ¢’ of o that satis-
fies the equations. Let 7 be any extension of ¢ that
solves the equations. We show that u(a; N H* ¢') =
pla; 0 H*) for all k; it follows that o/ = 7. For the
base case, p(a; NHY ¢') =0 = p(a; N H 7).

Assume that p(a; N H*=1 6') = pla; 0 HFL 5).
Now «; is the left-hand side of an equation «; =
Ei(ozl, .
i.e., on the right-hand side every «; appears inside a
constructor. Therefore, Fj;(ay,...,a,) N HY equals
Eilay N H L e, N H*=1 N H*. Using this fact
we can prove by induction:

., &y,) where no «; occurs at the top level;

.,anﬁHk_l)ﬁHk,U/)
Lo NHEY A HE)

11

/’L(Ei(ala . 'aan) mHkaPy)
= ﬂ(ai mHk’,y)

O
A.2 Reduction to One-Level Systems

In this that
of constraints 1s reducible to a one-level system
(Lemma 6.2).

Proof: Replace all constraints A C B by AN
=B C 0. Within expressions that are not one-level,

section we prove any system

we replace each subexpression E by a fresh variable «
and add one-level constraints that imply o = E. More
formally, for each left-hand side of a constraint that
is not one-level, apply the following transformations
bottom-up. Upon termination, replace conjunctions
of literals fby Nl as necessary to guarantee that
expressions are one-level. In each transformation, v is
a fresh variable.

e Replace 0 by v and add constraint v C 0.
e Replace 1 by v and add constraint =y C 0.

e Replace a N g by v and add constraints =y Na N
BCO,yN=aC0,yN=-5C0.

e Replace aUS by v and add constraints =vNa C 0,
Yy NBCO,yN-an-5C0.

e Replace —a by 7 and add constraints y Na C 0,
-y N-a CO0.

e Replace c(ay,...,an) by 7 and add constraints
“vNelag,...,a,) C0and
Vi<i<n yne(,... 1,na;1,. ..
Vd#c¢ yNnd(l,...,1) CO0.

1) €0,

Note that all the added constraints are one-level
(assuming N1 is substituted for f) It is easy to show
that these transformations preserve the solutions of
the original system; we prove this only for the case
ang. First, =y NanNg C 0 implies that a N g C 7.
For the other direction, vy N=a € 0 = v C « and
yN =5 C0= v C G together imply that v C N 3.
So,y=anp.

Let n be the size of the original system of con-
straints. The time complexity of this algorithm is
polynomial in n. Also, the algorithm introduces at

most O(n) new variables. O

References

(1]

A. Aiken and B. Murphy. Implementing regular
tree expressions. In Proceedings of the 1991 Con-
ference on Functional Programming Languages
and Computer Architecture, pages 427-447, Au-
gust 1991.

A. Aiken and B. Murphy. Static type inference in
a dynamically typed language. In Fighteenth An-
nual ACM Symposium on Principles of Program-
ming Languages, pages 279-290, January 1991.

J. A. Brzozowski and E. Leiss.
for regular languages, finite automata, and se-

On equations

quential networks. Theoretical Computer Science,

10:19-35, 1980.

Gilberto Filé. Tree automata and logic programs.
In Second Annual Symposium on Theoretical As-
pects of Computer Science. Springer-Verlag, Jan-
uary 1985. Lecture Notes in Computer Science

182.

T. Fruwirth,
E. Yardeni.
programs. In Symposium on Logic in Computer

Science, pages 300-309, July 1991.

E. Shapiro, M. Vardi,

Logic programs as types for logic

and

F. Gecseg and M. Steinby. Tree Automata. Acade-
mei Kaido, Budapest, 1984.

N. Heintze and J. Jaffar. A decision procedure for
a class of set constraints. In Symposium on Logic
wm Computer Science, pages 42-51, June 1990.

N. Heintze and J. Jaffar. A finite presentation
theorem for approximating logic programs. In
Seventeenth Annual ACM Symposium on Princi-
ples of Programming Languages, pages 197-209,

January 1990.

N. Heintze and J. Jaffar. Set-based program anal-
ysis. Draft manuscript, 1991.

N. D. Jones and 5. S. Muchnick. Flow analy-
sis and optimization of LISP-like structures. In
Swzth Annual ACM Symposium on Principles of
Programming Languages, pages 244-256, January
1979.

12

[11]

[12]

[13]

P. Mishra. Towards a theory of types in PRO-
LOG. In Proceedings of the First IEEE Sympo-
stum in Logic Programmang, pages 289-298, 1984.

P. Mishra and U. Reddy. Declaration-free type
checking. In Proceedings of the Twelfth Annual
ACM Symposium on the Principles of Program-
ming Languages, pages 7-21, 1985.

M. O. Rabin. Decidability of second-order theo-
ries and automata on infinite trees. Transactions
of the American Mathematical Society, (141):1-
35, 1969.

J. C. Reynolds. Automatic Computation of Data
Set Definitions, pages 456-461. Information Pro-
cessing 68. North-Holland, 1969.

H. Seidl. Deciding equivalence of finite tree au-
tomata. STAM Journal of Computing, 19(3):424—
437, June 1990.

G. Slutzki. Alternating tree automata. Theoreti-
cal Computer Science, 41:305-318, 1985.

J. Young and P. O’Keefe. Experience with a
In D. Bjgrner, A. P. Ershov,
and N. D. Jones, editors, Partial Fvaluation
and Mized Computation, pages 573-581. North-
Holland, 1988.

type evaluator.

