
Better Static Memory Management: Improving Region-Based Analysis
of Higher-Order Languages

(Extended Abstract)

Alexander Aiken� Manuel Fähndrich Raph Levieny
Computer Science Division

University of California, Berkeleyz
Abstract

Static memory management replaces runtime garbage collec-
tion with compile-time annotations that make all memory al-
location and deallocation explicit in a program. We improve
upon the Tofte/Talpin region-based scheme for compile-time
memory management [TT94]. In the Tofte/Talpin approach,
all values, including closures, are stored in regions. Region
lifetimes coincide with lexical scope, thus forming a runtime
stack of regions and eliminating the need for garbage col-
lection. We relax the requirement that region lifetimes be
lexical. Rather, regions are allocated late and deallocated as
early as possible by explicit memory operations. The place-
ment of allocation and deallocation annotations is determined
by solving a system of constraints that expresses all possible
annotations. Experiments show that our approach reduces
memory requirements significantly, in some cases asymptot-
ically.

1 Introduction

In a recent paper, Tofte and Talpin propose a novel method
for memory management in typed, higher-order languages
[TT94]. In their scheme, runtime memory is partitioned into
regions. Every computed value is stored in some region. Re-
gions themselves are allocated and deallocated according to
a stack discipline akin to the standard implementation of ac-
tivation records in procedural languages and similar to that of
[RM88]. The assignment of values to regions is decided stat-
ically by the compiler and the program is annotated to include�Supported in part by an NSF NYI award.ySupported by an NSF graduate research fellowship.zAuthors’ address: Computer Science Division, Soda Hall, University of
California, Berkeley, CA 94720-1776.
Email: faiken,manuel,raphg@cs.berkeley.edu
URL: http://kiwi.cs.berkeley.edu/˜nogc

operations for managing regions. Thus, there is no need for
a garbage collector—all memory allocation and deallocation
is statically specified in the program.

The system in [TT94] makes surprisingly economical use
of memory. However, it is usually possible to do signifi-
cantly better and in some cases dramatically better than the
Tofte/Talpin algorithm. In this paper, we present an extension
to the Tofte/Talpin system that removes the restriction that re-
gions be stack allocated, so that regions may have arbitrar-
ily overlapping extent. Preliminary experimental results sup-
port our approach. Programs transformed using our analysis
typically use significantly less (by a constant factor) mem-
ory than the same program annotated with the Tofte/Talpin
system alone. We have also found that for some common
programming idioms the improvement in memory usage is
asymptotic. The memory behavior is never worse than the
memory behavior of the same program annotated using the
Tofte/Talpin algorithm.

It is an open question to what degree static decisions about
memory management are an effective substitute for runtime
garbage collection. Our results do not resolve this question,
but we do show that static memory management can be sig-
nificantly better than previously demonstrated. Much previ-
ous work has focussed on reducing, rather than eliminating,
garbage collection [HJ90, Deu90]. The primary motivation
for static memory management put forth in [TT94] is to re-
duce the amount of memory required to run general func-
tional programs efficiently. Two other applications interest
us. First, the pauses in execution caused by garbage collec-
tion pose a difficulty for programs with real-time constraints.
While there has been substantial work on real-time garbage
collection [DLM+78, NO93], we find the simpler model of
having no garbage collector at all appealing and worth inves-
tigation. Second, most programs written today are not written
in garbage-collected applicative languages, but rather in pro-
cedural languages with programmer-specified memory man-
agement. A serious barrier to using applicative languages
is that they do not always interoperate easily with procedu-
ral languages. The interoperability problem is due in part to
the gap between the two memory management models. We
expect that implementations of applicative languages with
static memory management would make writing components

of large systems in applicative languages more attractive.
Our approach to static memory management is best illus-

trated with an example. We present the example informally;
the formal presentation begins in Section 2. Consider the fol-
lowing simple program, taken from [TT94]:

(let x = (2,3) in �y:(fst x; y) end) 5
The source language is a conventional typed, call-by-value
lambda calculus; it is essentially the applicative subset of
ML [MTH90]. The annotated program produced by the
Tofte/Talpin system is:

Example 1.1
letregion �4; �5 in

letregion �6 in
let x = (2@�2,3@�6)@�4 in

(�y:(fst x; y)@�1)@�5
end

end 5@�3
end

There are two kinds of annotations: letregion � in e
binds a new region to the region variable �. The scope of �
is the expression e. Upon completion of the evaluation of e,
the region bound to � and any values it contains are deallo-
cated. The expression e@� evaluates e and writes the result
in �. All values—including integers, pairs, and closures—
are stored in some region.1 Note that certain region variables
appear free in the expression; they refer to regions needed
to hold the result of evaluation. The regions introduced by
a letregion are local to the computation and are deallo-
cated when evaluation of the letregion completes.

The solid lines in Figure 1c depict the lifetimes of regions
with respect to the sequence of memory accesses performed
by the annotated program above. Operationally, evaluat-
ing the function application first allocates the regions bound
to �4, �5, and �6. Next the integer 2 is stored (in the re-
gion bound to �2), then the integer 3 (in �6), the pair x (in�4), and the closure �y: : : : (in �5). At this point, the inner
letregion is complete and �6 is deallocated. Evaluating
the argument of the function application stores the integer 5
(in �3). Finally, evaluating the application itself requires re-
trieving the closure (from �5), retrieving the first component
of x (from �4), and constructing another pair (in �1).

In the Tofte/Talpin system, the letregion construct
combines the introduction of a region, region allocation, and
region deallocation. In our system, we separate these three
operations. For us, letregion just introduces a new, lex-
ically scoped, region variable bound to an unallocated re-
gion. The operation alloc before � e allocates space for
the region bound to � before evaluating e, and the operation
free after � e deallocates space assigned to the region
bound to � after evaluating e. The operationsfree before
and alloc after are defined analogously.

The problem we address is: given a program annotated by
the Tofte/Talpin system, produce a completion that adds allo-
cation/deallocation operations on region variables. Figure 1a1We assume small integers are boxed to make the presentation simple and
uniform. In practice, small integers can be unboxed.

shows the most conservative legal completion of the exam-
ple program. Each region is allocated immediately upon en-
tering and deallocated just before exiting the region’s scope;
this program has the same region lifetimes as the Tofte/Talpin
annotated program above. The alloc before � and
free after � annotations may be attached to any program
point in the scope of �, so long as the region bound to � actu-
ally is allocated where it is used. In addition, for correctness
it is important that a region be allocated only once and deallo-
cated only once during its lifetime. Within these parameters
there are many legal completions. Figure 1b shows the com-
pletion computed by our algorithm. There is one new opera-
tion free app. In an application e1 e2, the region contain-
ing the closure can be freed after both e1 and e2 are evaluated
but before the function body itself is evaluated. This point is
not immediately before or after the evaluation of any expres-
sion, so we introduce free app to denote freeing a region
at this point.

The dotted lines in Figure 1c depict the lifetimes of re-
gions under our completion. This particular completion is
optimal—space for a value is allocated at the last possible
moment (immediately prior to the first use of the region) and
deallocated at the earliest possible moment (immediately af-
ter the last use of the region). For example, the value 3@�6
is deallocated immediately after it is created, which is cor-
rect because there are no uses of the value. While an optimal
completion does not always exist, this example does illustrate
some characteristic features of our algorithm. For example,
space for a pair ideally is allocated only after both compo-
nents of the pair have been evaluated—the last point before
the pair itself is constructed. Similarly, at the last use of a
function its closure is deallocated after the closure has been
fetched from memory but before the function body is eval-
uated. These properties are not special cases—they follow
from the general approach we adopt.

For any given program, our method produces a system of
constraints characterizing all completions. Each solution of
the constraints corresponds to a valid completion. The con-
straints rely on knowledge of the sequence of reads and writes
to regions. Thus, the constraints are defined over the pro-
gram’s control flow. However, because of higher order func-
tions, inferring control flow from the syntactic form of the
program is difficult. A well-known solution to this problem
is closure analysis [Ses92], which gives a useful approxima-
tion to the set of possible closures at every application.

Our algorithm consists of two phases. We begin with the
Tofte/Talpin annotation of a program. In the first phase, an
extended closure analysis computes the set of closures that
may result from evaluating each expression in every possi-
ble region environment (Section 3). In the second phase, lo-
cal constraints are generated from the (expression, region en-
vironment) pairs (Section 4). These constraints express facts
about regions that must hold at a given program point in a
given context. For example, if an expression e accesses a
region z, there are constraints such as “z must be allocated
sometime before the evaluation of e” and “z must be deallo-
cated sometime after the evaluation of e.”

letregion �4; �5 in
alloc before �4 free after �4 alloc before �5 free after �5
letregion �6 in

alloc before �6 free after �6
let x = (2@�2,3@�6)@�4 in

(�y:(fst x; y)@�1)@�5
end

end 5@�3
end

(a) The example with explicit region allocation/deallocation operations.

letregion �4; �5 in
free app �5

letregion �6 in
let x = (2@�2,alloc after �4 alloc before �6 free after �6 3@�6)@�4 in

alloc before �5 (�y:(free after �4 fst x; y)@�1)@�5
end

end 5@�3
end

(b) The example with the optimal explicit region allocation/deallocation operations.: : : :�6 : : : : : : : : : : : : : : : : : :�5 :�4
operation write write write write write read read write

value 2 3 x (a pair) �y 5 �y x pair
region �2 �6 �4 �5 �3 �5 �4 �1

region lifetimes in program (a): region lifetimes in program (b)

(c) Graph of region lifetimes with respect to the sequence of memory operations.

Figure 1: An example comparing stack vs. non-stack region allocation.

A novel aspect of our algorithm arises in the resolution of
the constraints. As one might expect, solving the constraints
yields an annotation of the program, but finding a solution is
not straightforward. Some program points will be, in fact, un-
der constrained. For example, in the program in Figure 1, the
initial constraints specify that the region bound to �5 must be
allocated when �y : : : is evaluated, but there is no constraint
on the status of the region bound to �5 prior to the evaluation
of �y. That is, we must choose whether �5 is allocated prior
to the evaluation of �y or not—there are legal completions in
both scenarios. Given the choice, we prefer that �5 not be al-
located earlier to minimize memory usage; this choice forces
the completion alloc before �5 �y : : :. Adding the con-
straint that �5 is unallocated prior to evaluation of �y affects
the legal completion in other parts of the program. Thus,
our algorithm alternates between finding “choice points” and
constraint resolution until a completion has been constructed.

This structure is unusual among program analysis algorithms
and may be of independent interest.

An outline of the soundness proof is presented in Section 5.
Detailed discussion and measurements of the behavior of our
algorithm are presented in Section 6. Section 7 concludes
with a discussion of practical issues.

2 Definitions

The input to our analysis is a program annotated by the
Tofte/Talpin algorithm. The syntax of such programs ise ::= x j�x:e@� j e1 e2 j f [~�]@�j let x = e1in e2 endj letrec f [~�](x)@� = e1 in e2 endj letregion � in e end

Other operations, such as pairing and selection, are omit-
ted for brevity. The language includes region polymorphic
functions—functions that take regions as arguments. Region
polymorphism allows each invocation of a recursive function
to operate on different regions, which is important for achiev-
ing good separation of region lifetimes [TT94].

The Tofte/Talpin annotations are derived using a non-
standard type system. A type is a pair (�; �), where � indi-
cates the kind of value (integer, function, etc.) and � refers to
the region where values of the type are stored. The determi-
nation of region scope is made by tracking the effect of an ex-
pression, which is the set of regions the expression may read
or write when evaluated. Types are defined by the following
grammar: � ::= int j� �:'! �� ::= (�; �)

An object of the form �:' is called an arrow effect: it is the
effect of applying a function of type � �:'! �0. The “�:” is an
effect variable which names the effect and is useful for type
inference purposes.

To the base language we add operations to allocate and free
regions:e ::= � � �j alloc before � e j alloc after � ej free before � e j free after � ej free app � e1 e2

The operational semantics of this language derives facts of
the form s; n; r ` e! a; s0
which is read “in store s, environmentn, and region environ-
ment r the expression e evaluates to store address a and new
store s0.” The structures of the operational semantics are:RegionState = unallocated + deallocated +(O�set fin! Clos + RegClos)Store = Region fin! RegionStateClos = Lam� Env�RegEnvRegClos = RegionVar� � Lam� Env�RegEnvEnv = Var fin! Region�O�setRegEnv = RegionVar fin! Region
A store contains a set of regions z1; z2; : : :. A region has
one of three states: it is unallocated, deallocated, or it is al-
located, in which case it is a function from integer offsetso1; o2; : : : within the region to storable values. A region can
hold values only if it is allocated. Note that regions are not
of fixed size—a region potentially holds any number of val-
ues. A region environment maps region variables �1; �2; : : :
to regions. A vector of region variables is written ~�.

In this small language, the only storable values are ordi-
nary closures and region polymorphic closures. Ordinary
closures have the form h�x:e@�; n; ri, where �x:e@� is the

function,n is the closure’s environment, and r is the closure’s
region environment. A region polymorphic closure has addi-
tional region parameters. The set of �x:e@� terms is Lam;
the @� annotation is elided when it is clear from context or
unneeded.

Figure 2 gives the operational semantics. An address is a
(region, offset) pair. Given an address a = (z; o), we gener-
ally abbreviate s(z)(o) by s(a). All maps (e.g., environment,
store, etc.) in the semantics are finite. The set Dom(f) is the
domain of map f . The map f [x v] is map f modified at
argument x to give v. Finally, f jX is map f with the domain
restricted to X .

The semantics in Figure 2 enforces two important restric-
tions on regions. First, the semantics forbids operations
on a region that is not allocated; reads or writes to unallo-
cated/deallocated regions are errors. Second, every region in-
troduced by a letregion progresses through three stages:
it is initially unallocated, then allocated, and finally deallo-
cated. For example, the [ALLOCBEFORE] rule allocates a
previously unallocated region before the evaluation of an ex-
pression. Only one representative of each of the allocation
and deallocation operations is presented in the semantics; the
others are defined analogously.

An example illustrates the [LETREC] and [REGAPP]
rules. Consider the following program:

Example 2.1
letregion �1; �2; �3 in

let i = 1@�1, j = 2@�2 in
letrec f [�5; �6](k : (int; �5)) @�3 =

letregion �7 in
(k + (1@�7)) @�6

end
in

(f [�1; �4]@�0 i+ f [�2; �4]@�0 j)@�4
end

end
end

In this program, nested let and letregion constructs are
abbreviated. To make the example interesting, we use con-
structs outside the minimal language presented above. The
expression i@� stores integer i in the region bound to �; the
expression (e1 + e2) @� stores the sum of e1 and e2 in the
region bound to �. Region allocation/deallocation operations
are omitted for clarity.

In Example 2.1, letrec f [�5; �6](k) @�3 = : : : stores
a new region polymorphic closure at a fresh address a in the
region bound to �3. Next, the expression (f [�1; �4] @�0 i+f [�2; �4] @�0 j) @�4 is evaluated in an environmentnwheren(f) = a. A region application f [�1; �4] @�0 creates an or-
dinary closure (stored at the region bound to �0) with formal
region parameters �5 and �6 bound to the region values of �1
and �4 respectively. When applied to the argument i (in �1),
the result is stored in �4. The closure resulting from f [�2; �4]
expects its argument in �2 instead. Region polymorphism al-
lows the function f to take arguments and return results in
different regions in different contexts.

n(x) = as; n; r ` x! a; s [VAR]n(f) = a s(a) = h~�; �x:e; n0; r0io 62 Dom(s(r(�0)))a0 = (r(�0); o)c = h�x:e; n0; r0[~� r(~� 0)]is; n; r ` f [~� 0] @ �0 ! a0; s[a0 c] [REGAPP]o 62 Dom(s(r(�))) a = (r(�); o)s; n; r ` �x:e@ �! a; s[a h�x:e; n; ri] [ABS]s; n; r ` e1 ! a1; s1s1; n; r ` e2 ! a2; s2s2(a1) = h�x:e; n0; r0is2; n0[x a2]; r0 ` e! a3; s3s; n; r ` e1 e2 ! a3; s3 [APP]s; n; r ` e1 ! a1; s1s1; n[x a1]; r ` e2 ! a2; s2s; n; r ` let x = e1 in e2 end! a2; s2 [LET]o 62 Dom(s(r(�)))n0 = n[f (r(�); o)]s[(r(�); o) h~�; �x:e1; n0; ri]; n0; r ` e2 ! a; s0s; n; r ` letrec f [~�](x)@ � = e1 in e2 ! a; s0 [LETREC]z 62 Dom(s)s0 = s[z unallocated]s0; n; r[� z] ` e! a1; s1s1(z) = deallocateds; n; r ` letregion � in e! a1; s1jDom(s) [LETREGION]r(�) = zs(z) = unallocateds0 = s[z fg]s0; n; r ` e! a1; s1s; n; r ` alloc before � e! a1; s1 [ALLOCBEFORE]s; n; r ` e! a1; s1r(�) = zs1(z) is allocateds2 = s1[z deallocated]s; n; r ` free after � e! a1; s2 [FREEAFTER]
Figure 2: Operational semantics.

[[x]] R = [[x]] RjVis(x)[[�x:e@ �]] R = fh�x:e@ �;Rig[[e1 e2]] R for each h�x:e@ �;R0i 2 [[e1]] R[[e]] R0 � [[e1 e2]] R[[e2]] R � [[x]] R0[[let x = e1 in e2]] R = [[e2]] R[[e1]] R � [[x]] R[[letrec f [�1; : : : ; �n](x)@ � = e1 in e2]] R = [[e2]] R[[f [�01 : : : �0n] @ �0]] R = fh�x:e@ �0; (RjVis(f))[�i R(�0i)]ig
where letrec f [�1; : : : ; �n](x)@ � = e : : :[[letregion � in e]] R = [[e]] R[� c] where c is a color not in R

Figure 3: Region-based closure analysis.

3 Extended Closure Analysis

In reasoning about the memory behavior of a program, it
is necessary to know the order of program reads and writes
of memory. Closure analysis approximates execution order
in higher-order programs [Shi88, Ses92]. However, closure
analysis alone is not sufficient for our purposes, because of
problems with state polymorphism and region aliasing (see
below). Imprecision in state polymorphism gives poor com-
pletions, but failure to detect aliasing may result in unsound
completions.

Consider again the program in Example 2.1. Note that,
within the body of the function f , the + operation is always
the last use of the value k in �5. Thus, it is safe to deallocate
the region bound to �5 inside the body of f after the sum:

letrec f [�5; �6](k) @ �3 = letregion �7 in
free after �5 ((k + (1 @ �7)) @ �6) end : : :

Now consider the two uses of f in the body of theletrec in
Example 2.1. With this completion, the region bound to �1 is
allocated (not shown) when f [�1; �4] a is evaluated, and deal-
located when f [�2; �4] b is evaluated. Thus, to permit this
completion the analysis of f must be polymorphic in the state
(unallocated, allocated, or deallocated) of the region bound to�1. If the analysis requires that the region bound to �1 be in
the same state at all uses of f , then in the body of f , the same
region (now bound to �5) cannot be deallocated.

Region aliasing occurs when two region variables in the
same scope are bound to the same region value. There is no
aliasing in Example 2.1 as written. However, if the expres-
sion f [�2; �4] is replaced by f [�2; �2], then region parame-
ters �5 and �6 of f are bound to the same region. In this sce-
nario, it is incorrect to deallocate the region bound to �5 as
shown above, since the result of the call to f (stored in the
same region, but bound to �6) is deallocated even though it
is used later. This example illustrates three points. First, re-
gion aliasing must be considered in determining legal com-

pletions. Second, the completion of a function body depends
strongly on the context in which the function is used; i.e., de-
termining legal completions requires a global program analy-
sis. Third, to obtain accurate completions, we require precise
aliasing information. Approximate or may-alias information
does not permit the allocation or deallocation of a region.

Our solution to these problems is to distinguish for each
expression e the region environments in which e can be eval-
uated. We define [[e]]R to be the set of values to which e may
evaluate in region environmentR. Including region environ-
ments makes region aliasing explicit in the analysis. Since
the only values are closures, [[e]] R is represented by sets of
abstract closures fh�x:e@ �;R0ig, which intuitively denotes
closures with function �x:e and region environment R0.

Since each letregion introduces a region, the set of re-
gion environments is infinite. We use a finite abstraction of
region environments, mapping region variables to colors. A
color stands for a set of runtime regions. An abstract region
environment R has a very special property: R maps two re-
gion variables to the same color iff they are bound to the same
region at runtime. Thus, an abstract region environment pre-
serves the region aliasing structure of the underlying region
environment.

The extended closure analysis is given in Figure 3. Fol-
lowing [PS92], the analysis is presented as a system of con-
straints; any solution of the constraints is sound. We assume
that program variables are renamed as necessary so that each
variable is identified with a unique binding. We write Vis(x)
for the set of region variables in scope atletrecx[~�](y) =,
let x =, or �x.

The rule for letregion introduces a new color c not
already occurring in R. A distinct color is chosen because
letregion allocates a fresh region, distinct from all exist-
ing regions. To make the analysis deterministic, colors are
ordered and the minimal color is selected. There can be no
more colors than the maximum number of region variables
in scope at any point in the program. Thus, the set of abstract

region environments is finite, which ensures that the closure
constraints have a finite solution.

From the extended closure analysis, it is possible to derive
an ordering on program points. For example, in an applica-
tion e1 e2 within region environmentR, first e1 is evaluated,
then e2, and finally one of the closures in [[e]]R. This ordering
plays a central role in computing completions.

4 Completions

Legal completions with explicit allocation/deallocation oper-
ations are expressed as a system of constraints. This section
describes the constraint language, constraint generation, and
constraint resolution. Constraint generation is a function of
the input expression, the Tofte/Talpin types, and the result of
the extended closure analysis.

4.1 Definitions

At each program point, every region in scope is in one of three
states: unallocated (U), allocated (A), or deallocated (D).
With each program point, abstract region environment, and
color is associated a state variable ranging over fU;A;Dg.
State variables record the state of each region in the range of
an abstract region environment at a program point. State vari-
ables are associated with regions (colors) rather than region
variables because region variables may be aliased. Since
the evaluation of an expression e may allocate/deallocate re-
gions, a region state may be different before and after the
evaluation of e. Thus, there are program points in and out
for each expression e. We group state variables together into
state vectors S ine;R and Soute;R associated with every expressione and region environment R. We refer to state variables by
indexing state vectors with a color c, as in S ine;R[c].

Constraints are placed on individual state variables in a
state vector. There are three kinds of constraints: (1) alloca-
tion constraints, (2) choice constraints, and (3) equality con-
straints: s = A (1)hs1; cp; s2iahs1; cp; s2id (2)s1 = s2 (3)
Allocation constraints are placed at program points where
values are read from or written to a region; they express that
a region must be allocated at this point.

Choice constraints are either allocation triples or deallo-
cation triples. An allocation triple expresses a relationship
between two state variables s1; s2 and a boolean variable cp:(cp , (s1 = U ^ s2 = A)) ^ (:cp , s1 = s2)
The boolean cp encodes whether or not the associated region
is to be allocated at program point p. If cp = true the region
state prior to the allocation point is U and afterwards A, i.e.
allocation. If cp = false, then the state prior is equal to the
state after, i.e. no allocation. This approach is similar in spirit

to the coercions of [Hen92]. The definition of deallocation
triples is analogous:(cp , (s1 = A ^ s2 = D)) ^ (:cp , s1 = s2)

Finally, equality constraints express that the state of a re-
gion is the same at two program points.

4.2 Constraint Generation

Constraint generation produces all constraints necessary to
guarantee that regions are allocated when they are accessed.
This task involves placing allocation constraints wherever re-
gions are read or written, as well as linking the in and out
states of each subexpression with the corresponding program
points in the enclosing expression. Choice constraints are in-
troduced at possible allocation or deallocation points and link
the region states before and after the choice point.

What are the possible allocation and deallocation points?
Every program point is a potential allocation or deallocation
point for region variables that appear in the overall effect at
that program point. Recall that the effect of e is the set of
region variables possibly read or written during evaluation
of e. The overall effect of an expression e is defined to be
the arrow-effect (see Section 2) of the enclosing abstraction
plus any letregion-bound variables inside the abstraction
and in scope at e. We restrict the set of regions allowed to
change state (be allocated or deallocated) on entry or exit ofe to be regions in the overall effect of e. This restriction is
crucial to the correctness of our system. A potential allo-
cation (resp. deallocation) point is indicated by the syntax
alloc before cp e (resp. free before cp e), where cp
is the boolean variable associated with the allocation (resp.
deallocation) point. Prior to constraint generation, all poten-
tial alloc before; free after expressions are added
to the input program.

We briefly explain the constraint generation rules in Fig-
ure 4. Constraints are generated as a function of the in and out
state vectors of each expression e, the current abstract region
environment R, and the overall effect 'o at e. The notationR(') is the pointwise union of R(�) for � 2 ', giving the
set of colors in an effect. The rule for variables says that the
state of regions in the overall effect is unchanged by a vari-
able reference. No allocation constraint is needed, because
no regions are read or written.

In the abstraction rule, we place an allocation constraint on
the region where the closure is written. Furthermore, as in the
variable rule, the states of all regions in the overall effect are
the same on input and output of the abstraction expression.

The color ce;R in the letregion rule is the color chosen
for � by the extended closure analysis in the same context.

Regions may change state only at potential allocation and
deallocation points. The alloc before rule connects the
states of regions bound to � between the input states of e
and e1 with an allocation triple. The state of all other re-
gions cannot change. A key point is that allocation triples
generated from the same potential allocation point, but in dif-
ferent region environment contexts, share the same boolean

e = x ! 8c 2 R('o): S ine;R[c] = Soute;R[c]e = �x:e1@� ! S ine;R[R(�)] = A and 8c 2 R('o): S ine;R[c] = Soute;R[c]e = f [~� 0]@�0 ! S ine;R[R(�0)] = AS ine;R[R(�)] = A; where (�; �) is the type of f8c 2 R('o): S ine;R[c] = Soute;R[c]e = e1 e2 ! 8c 2 R('o): S ine;R[c] = S ine1;R[c]8c 2 R('o): Soute1;R[c] = S ine2;R[c]
let (�1 �:'! �2; �) be the type of e1Soute2;R[R(�)] = A
for all h�x:e0; R0i 2 [[e1]]R; with type (�01 �0:'0! �02; �)B = R(') = R0('0)C = R('o)�B8c 2 B: Soute2;R[c] = S ine0;R0 [c] ^ Soute0;R0 [c] = Soute;R[c]8c 2 C: Soute2;R[c] = Soute;R[c]e = let x = e1 in e2 ! 8c 2 R('o): S ine;R[c] = S ine1;R[c]8c 2 R('o): Soute1;R[c] = S ine2;R[c]8c 2 R('o): Soute2;R[c] = Soute;R[c]e = letrec f [~�](x)@� = e1 in e2 ! S ine;R[R(�)] = A8c 2 R('o): S ine;R[c] = S ine2;R[c]8c 2 R('o): Soute2;R[c] = Soute;R[c]e = letregion � in e1 ! R0 = R[� ce;R]S ine1;R0 [ce;R] = USoute1;R0 [ce;R] = D8c 2 R('o): S ine;R[c] = S ine1;R0 [c]8c 2 R('o): Soute1;R0 [c] = Soute;R[c]e = alloc before � ce e1 ! 8c 2 (R('o)� fR(�)g): S ine;R[c] = S ine1;R[c]8c 2 R('o): Soute1;R[c] = Soute;R[c]hS ine;R[R(�)]; ce; S ine1;R[R(�)]iae = free after � ce e1 ! 8c 2 R('o): S ine;R[c] = S ine1;R[c]8c 2 (R('o)�R(�)): Soute1;R[c] = Soute;R[c]hSoute1 ;R[R(�)]; ce; Soute;R[R(�)]id

Figure 4: Constraint generation rules.�6 s6;1 s6;2 = A s6;3 s6;4�5 s5;1 s5;2 s5;3 s5;4 = A s5;5 s5;6 = A s5;7 s5;8�4 s4;1 s4;2 s4;3 = A s4;4 s4;5 s4;6 s4;7 = A s4;8
operation write write write write write read read write

value 2 3 x (a pair) �y 5 �y x pair
region �2 �6 �4 �5 �3 �5 �4 �1

Table 1: Example constraint resolution.

variable, which guarantees that the completion is valid in
all contexts. Allocation/deallocation choice points for dif-
ferent region variables are sequentialized to ensure that if
two region variables are aliased (i.e. they map to the same
color in the abstract region environment), at most one alloca-
tion/deallocation point is chosen.

The application rule is the most difficult. The key idea is
that at runtime, the regions in the arrow-effect of the function
expression e1 (call this set E), are the same as the regions in
the effect of the closure. Therefore, the states of regions in E
in the caller’s context prior to evaluation of the function body
match the states of regions in E on entry to the function (and
similarly on return). In the abstract region environments of
the caller and callee, the colors of the effect of the call (setB)
are equal, justifying equality constraints between state vari-
ables at the call site and in the input vector of the function
body (similarly on output). These equality constraints model
the flow of regions from the caller into the function body and
back. All regions a function touches appear in the function’s
effect. It is thus sufficient to place the equality constraints
only on state variables corresponding to colors fromB. Other
regions in the caller’s context (set C) are not touched in the
the function body; the function is state-polymorphic in these
regions. The set of possible closures in an application of a
given region environment is computed by the extended clo-
sure analysis. For brevity, we do not describe the handling of
quantified effect variables (for details see [AFL95]).

4.3 Constraint Resolution

In general, the constraint system has multiple solutions. For
example, the state of a region after the last use is unspecified.
We may place the point of deallocation of such a region any-
where after its last use, but obviously we prefer the first pos-
sible program point. The choice of where to allocate (or deal-
locate) a region affects the states of regions in other parts of
the program. Therefore, it is necessary to iterate solving con-
straints and choosing allocation/deallocation points based on
the partial solutions.

Recall Example 1.1. Consider �5 and the control flow path
from the point p1, where the lambda abstraction is stored in
the region bound to �5, to the point p2, where it is retrieved
to perform the application. Clearly the region bound to �5
must be allocated both at p1 and p2. Because the language
semantics forbid the region to change from the deallocated
state to the allocated state, we can conclude that on all control
paths from p1 to p2, it must be allocated.

The constraints are simple first-order formulas for which
resolution algorithms are well-known. There is, however,
the issue of deciding which solution to choose; clearly some
completions are better than others. We illustrate our resolu-
tion algorithm with an example.

Refer again to the example in Figure 1. Table 1 shows
the state variables associated with �4; �5; �6. Assume that
we have added allocation triples between all consecutive pro-
gram points for colors bound by �4—�6, with associated
boolean variables ci;j , meaning a possible allocation of �i
just after state si;j .

Table 1 contains explicit allocation constraints on states
where regions are accessed. We must have s5;5 = A because
it lies on an execution path between two states where the re-
gion bound to �5 is allocated. The same holds for s4;4–6. We
also set all allocation choice points c6;2–4, c5;4–8, and c4;3–8
to false, because the regions must be allocated before these
program points are reached. At this point we have proven all
facts derivable from the initial constraints—nothing forces
other states to be unallocated, allocated, or deallocated. We
can now choose to set any boolean variable cp of an allocation
triple hs1; cp; s2ia to true, if the variable cp is not constrained.
Among the possible choices, we are particularly interested
in allocation points lying on the border of an unconstrained
state and an allocated state, i.e., allocation triples hs1; cp; s2ia
where: s1 is unconstrained^ s2 = A
By the definition of an allocation triple, choosing cp = true
forces s1 = U . The state U is propagated to earlier program
points, since the region can be in no other state there. In the
example, we choose c5;3 = true, set s5;3 = U , and propa-
gate U backwards through s5;2–1 to the letregion for �5.
Similarly, we choose c6;1 = true and c4;2 = true.

In general, given a constraint system C, we first prove all
facts C ` s = X and C ` s 6= X implied by C. If C 6` s = X
and C 6` s 6= X , then we are free to choose either s = X
or s 6= X . This procedure repeats, proving facts and making
choices, until a complete solution is constructed.

Any solution of the constraints specifies a completion of
the program, where allocate/deallocate operations are added
for the boolean variables cp that are true in the solution. The
constraints have a trivial solution, obtained by choosing for
each region the first allocation choice point and the last deal-
location choice point inside the correspondingletregion.
This most conservative completion has exactly the same
memory behavior as the original Tofte/Talpin program (e.g.
Figure 1a).

5 Soundness

This section states a soundness theorem for our system and
sketches the proof. The soundness theorem is formulated as
follows. Assume that s; r; n ` e ! a; s0, and assume that[[e]]R = V is the result of the extended closure analysis for e,
where R is an abstraction of the region environment r. As-
sume further that the regions of the overall effect 'o mapped
by r in store s are initially in the states given by S ine;R. The
theorem shows that the evaluation of e leaves these regions
in the states specified by Soute;R. To prove this theorem we first
state the relationship between the concrete semantics and our
abstraction. For the proof concrete regions in the operational
semantics are colored the same way as in the extended clo-
sure analysis. We use capital letters for abstract entities and
lowercase letters for concrete entities, zc denotes a concrete
region with color c, s is a concrete store, and S : StateVar!fU;A;Dg is the solution of the constraints.

We say a concrete region environment r satisfies an ab-
stract region environment R if they have the same domain

and aliasing structure.r sat R def�
Dom(R) = Dom(r) ^R(�) = R(�0) () r(�) = r(�0) ^R(�) = c () r(�) = zc

A store s and address a satisfy a set of abstract values V ,
if V contains an abstraction of the concrete value stored at
address a in s, and the environment of the concrete closure
satisfies the extended closure analysis [[�]].s; a sat V def�

address a is allocated in s =)s(a) = h�x:e; r0; n0i ^9h�x:e; R0i 2V s.t.s; r0; n0 sat R0; [[�]]
A store s, concrete region environment r, and concrete

value environment n satisfy an abstract region environ-
ment R and the extended closure analysis [[�]], if the region
environments match and for every variable x in the concrete
environment, [[x]] R contains an abstraction satisfying the
concrete value.s; r; n sat R; [[�]] def�r sat R ^8(x 2Dom(n))9R0 s.t.(RjDom(R0) = R0 ^ s; n(x) sat [[x]] R0)

A store s and a concrete region zc with color c satisfy a
state variableSe;R[c] if the state of the region zc in the store s
corresponds to the solution for Se;R[c].s; zc sat Se;R; c def�zc 2 Dom(s) =) state(s; zc) = S(Se;R[c])

Finally, a state s and concrete region environment r satisfy
an abstract region environment R, state vector Se;R, and ef-
fect set ' if r and R match and the states of all regions in '
match the solution of the constraints for Se;R.s; r sat R;Se;R; ' def�' � Dom(R) ^r sat R ^8(� 2') s; r(�) sat Se;R; R(�)

The soundness of our analysis is summarized by Theo-
rem 5.1.

Theorem 5.1 Given thats; r; n ` e! a; s0[[e]] R = Vs; r; n sat R; [[�]]s; r sat R;S ine;R; 'o
we conclude s0; a sat Vs0; r sat R;Soute;R; 'o
The proof is by induction on the structure of e and is included
in the full version of the paper [AFL95].

6 Implementation and Experiments

We have implemented our algorithm in Standard ML
[MTH90]. Our system is built on top of an implementation
of the system described in [TT93, TT94], generously pro-
vided to us by Mads Tofte. The implementation is extended
with numbers, pairs, lists, and conditionals, so that non-
trivial programs can be tested. For each source program,
we first use the Tofte/Talpin system to region annotate the
program. We then compute the extended closure analysis
(Section 3). The next step adds allocation and deallocation
choice points and generates the allocation constraints (Sec-
tion 4). The constraints are solved and the solution is used to
complete the source program, transforming selected choice
points into allocation/deallocation operations, and removing
the rest.

Our annotations are orthogonal to the storage mode anal-
ysis mentioned in [TT94] and described in more detail in
[Tof94]. Thus, the target programs contain both storage
mode annotations and the allocation annotations described in
this paper. On the other hand, our analysis subsumes the op-
timization described in Appendix B of [TT94], so that opti-
mization is disabled in our system. Summary performance
measures are in Table 2. We have not measured carefully the
time required to compute our analysis, but our method ap-
pears to scale as well as the Tofte/Talpin system. All of the
examples we have tried are analyzed in a matter of seconds
by our system on a standard workstation.

The target programs were run on an instrumented inter-
preter, also written in Standard ML/NJ. In addition to the data
above, we also gather complete memory traces, which we
present as graphs depicting memory usage over time.

While we have tested our system on many programs, nei-
ther the size of our benchmarks nor the size of our benchmark
suite is large enough to draw meaningful statistical conclu-
sions. Instead, we present representative examples of three
typical patterns of behavior we have identified.

A number of programs show asymptotic improvement
over the Tofte/Talpin system. One example given in their
paper (due to Appel [App92]), has O(n2) space complexity.
Our completion of this program exhibits O(n) space com-
plexity (Figure 5). In this program, our analysis is able to
deallocate a recursive function’s parameter before function
evaluation completes. Because the Tofte/Talpin system en-
forces a stack discipline, it cannot reclaim function parame-
ters that become “dead” part way through the activation of a
function.

Another typical pattern is that our system has the same
asymptotic space complexity as Tofte/Talpin, but with a con-
stant factor improvement. Representative examples include
Quicksort, Fibonacci, and Randlist. The memory usage
graphs are shown in Figures 6, 7, and 8, respectively. The
measurements for the graphs were made using smaller inputs
than the experiments in Table 2; smaller problem sizes yield
more readable graphs.

The Quicksort graph (Figure 6) has a curious feature: at
times the memory usage drops below the amount needed to
store the list! Our measurements count only heap memory

Appel(100) Quicksort(500) Fibonacci(6) Randlist(25) Fac(10)
A-F-L T-T A-F-L T-T A-F-L T-T A-F-L T-T A-F-L T-T

(1) 208 1111 112 1520 15 20 12 90 25 25
(2) 81915 81915 45694 45694 190 190 289 289 66 66
(3) 101814 101814 65266 65266 190 190 363 363 66 66
(4) 306 20709 2509 8078 10 14 85 161 14 14
(5) 1 1 1502 1502 1 1 77 77 1 1

(1) Maximum number of regions allocated (unit: 1 region)
(2) Total number of region allocations
(3) Total number of value allocations
(4) Maximum number of storable values held (unit: 1 sv)
(5) Number of values stored in the final memory (unit: 1 sv)

Table 2: Summary of results.

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200

M
em

or
y

si
ze

, i
n

va
lu

es

Time

Appel

Tofte/Talpin, max = 279
A-F-L, max = 36

Figure 5: Memory usage in Appel example [App92]
(n = 10).

0

100

200

300

400

500

600

700

0 500 1000 1500 2000 2500 3000 3500 4000

M
em

or
y

si
ze

, i
n

va
lu

es

Time

quick

Tofte/Talpin, max = 603
A-F-L, max = 259

Figure 6: Memory usage in Quicksort example
(sort 50 element list of random integers).

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120 140 160 180 200

M
em

or
y

si
ze

, i
n

va
lu

es

Time

fibonacci

Tofte/Talpin, max = 14
A-F-L, max = 10

Figure 7: Memory usage in Fibonacci example
(recursive fibonacci of 6).

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300 350 400

M
em

or
y

si
ze

, i
n

va
lu

es

Time

randlist

Tofte/Talpin, max = 161
A-F-L, max = 85

Figure 8: Memory usage in Randlist example
(generate 25 element list of random integers).

usage. The evaluation stack is not counted, a measurement
methodology consistent with [TT94]. Quicksort is not un-
usual in this behavior. The program recursively traverses its
input list, stores the contents on the evaluation stack, frees the
list cells when it reaches the end, and builds up the output list
upon return.

In the third class of programs our system has nearly the
same memory behavior as Tofte/Talpin (e.g., the factorial
function). This case arises most often when the Tofte/Talpin
annotation is either already the best possible or very con-
servative. Conservative annotations distinguish few regions.
Because values in regions must be deallocated together, hav-
ing fewer regions results in coarser annotations. Of course,
the memory behavior of a program annotated using our algo-
rithm is never worse than that of the same program annotated
using the Tofte/Talpin algorithm.

Our system is accessible for remote experimentation
through the World Wide Web at:

http://kiwi.cs.berkeley.edu/˜nogc

7 Discussion and Conclusions

It remains an open question whether our system is a practi-
cal approach to memory management. The complexity of the
extended closure analysis is worst-case exponential time. In
practice, we have found it to be of comparable complexity to
the Tofte/Talpin system, but we do not as yet have enough
experience to judge whether this holds in general. The con-
straint generation and constraint solving portions of our anal-
ysis both run in low-order polynomial time. A separate is-
sue is that the global nature of our analysis presents serious
problems for separate compilation, which we leave as fu-
ture work. Finally, we have found that static memory allo-
cation is very sensitive to the form of the program. Often,
a small change to the program, such as copying one value,
makes a dramatic difference in the quality of the completion.
Thus, for this approach to memory management to be prac-
tical, feedback to programmers about the nature of the com-
pletion will be important.

Our system does do a good job of finding very fine-grain,
and often surprising, memory management strategies. Re-
moving the stack allocation restriction in the Tofte/Talpin
system allows regions to be freed early and allocated late.
The result is that programs often require significantly less
memory (in some cases asymptotically less) than when an-
notated using the Tofte/Talpin system alone.

References

[AFL95] Alexander Aiken, Manuel Fähndrich, and Raph
Levien. Better static memory management: Improving
region-based analysis of higher-order languages. Tech-
nical Report CSD-95-866, UC Berkeley, April 1995.

[App92] Andrew W. Appel. Compiling with Continuations.
Cambridge University Press, 1992.

[Deu90] Alain Deutsch. On determining lifetime and alias-
ing of dynamically allocated data in higher-order func-
tional specifications. In Proc. of the 17th Annual ACM
Symposium on Principles of Programming Languages,
pages 157–168, January 1990.

[DLM+78] Edsger W. Dijkstra, Leslie Lamport, A.J. Mar-
tin, C.S. Scholten, and E.F.M. Steffens. On-the-fly
garbage collection: An exercise in cooperation. Com-
munications of the ACM, 21(11):966–975, November
1978.

[Hen92] Fritz Henglein. Global tagging optimization by
type inference. In Proc. of the 1992 ACM Conference
on Lisp and Functional Programming, pages 205–215,
July 1992.

[HJ90] Geoff W. Hamilton and Simon B. Jones. Compile-
time garbage collection by necessity analysis. In Proc.
of the 1990 Glasgow Workshop on Functional Program-
ming, pages 66–70, August 1990.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper.
The Definition of Standard ML. MIT Press, 1990.

[NO93] Scott Nettles and James O’Toole. Real-time repli-
cation garbage collection. In Proc. SIGPLAN ’93 Con-
ference on Programming Language Design and Imple-
mentation, pages 217–226, June 1993.

[PS92] Jens Palsberg and Michael I. Schwartzbach. Safety
analysis versus type inference. Information Processing
Letters, 43(4):175–180, September 1992.

[RM88] Cristina Ruggieri and Thomas P. Murtagh. Lifetime
analysis of dynamically allocated objects. In Proc. of
the 15th Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 285–293, January 1988.

[Ses92] Peter Sestoft. Analysis and Efficient Implementa-
tion of Functional Programs. PhD dissertation, Univer-
sity of Copenhagen, Department of Computer Science,
1992.

[Shi88] Olin Shivers. Control flow analysis in Scheme.
In Proc. SIGPLAN ’88 Conference on Programming
Language Design and Implementation, pages 164–174,
June 1988.

[Tof94] Mads Tofte. Storage mode analysis. Personal com-
munication, October 1994.

[TT93] Mads Tofte and Jean-Pierre Talpin. A theory of stack
allocation in polymorphically typed languages. Tech-
nical Report 93/15, Department of Computer Science,
University of Copenhagen, July 1993.

[TT94] Mads Tofte and Jean-Pierre Talpin. Implementation
of the typed call-by-value�-calculus using a stack of re-
gions. In Proc. of the 21st Annual ACM Symposium on
Principles of Programming Languages, pages 188–201,
January 1994.

