Better Static Memory Management: Improving Region-Based Analysis
of Higher-Order Languages
(Extended Abstract)

Alexander Aiken*

Manuel Fahndrich

Raph Levien'

Computer Science Division
University of California, Berkeley?

Abstract

Static memory management repl aces runtime garbage collec-
tion with compile-time annotationsthat make all memory al-
location and deallocation explicit in a program. We improve
upon the Tofte/Tal pin region-based scheme for compile-time
memory management [TT94]. In the Tofte/Talpin approach,
all values, including closures, are stored in regions. Region
lifetimes coincide with lexical scope, thusforming aruntime
stack of regions and eliminating the need for garbage col-
lection. We relax the requirement that region lifetimes be
lexical. Rather, regions are allocated late and deallocated as
early as possible by explicit memory operations. The place-
ment of allocation and deall ocation annotationsisdetermined
by solving a system of constraintsthat expressesall possible
annotations. Experiments show that our approach reduces
memory requirements significantly, in some cases asymptot-
icaly.

1 Introduction

In arecent paper, Tofte and Talpin propose a novel method
for memory management in typed, higher-order languages
[TT94]. Intheir scheme, runtime memory is partitioned into
regions. Every computed valueis stored in someregion. Re-
gions themselves are allocated and deallocated according to
a stack discipline akin to the standard implementation of ac-
tivation recordsin procedural languagesand similar to that of
[RM88]. The assignment of valuesto regionsis decided stat-
ically by thecompiler and the programisannotated to include

*Supported in part by an NSF NY| award.

T Supported by an NSF graduate research fellowship.

fAuthors' address: Computer Science Division, SodaHall, University of
California, Berkeley, CA 94720-1776.
Email: {ai ken, manuel , raph}@s. ber kel ey. edu
URL:http://kiw .cs.berkel ey. edu/ " nogc

operations for managing regions. Thus, there is no need for
agarbage collector—all memory allocation and deall ocation
is statically specified in the program.

The system in [TT94] makes surprisingly economical use
of memory. However, it is usually possible to do signifi-
cantly better and in some cases dramatically better than the
Tofte/Talpinalgorithm. Inthispaper, we present an extension
to the Tofte/Tal pin system that removestherestrictionthat re-
gions be stack allocated, so that regions may have arbitrar-
ily overlapping extent. Preliminary experimental results sup-
port our approach. Programs transformed using our analysis
typically use significantly less (by a constant factor) mem-
ory than the same program annotated with the Tofte/Talpin
system alone. We have also found that for some common
programming idioms the improvement in memory usage is
asymptotic. The memory behavior is never worse than the
memory behavior of the same program annotated using the
Tofte/Talpin algorithm.

It isan open question to what degree static decisions about
memory management are an effective substitute for runtime
garbage collection. Our results do not resolve this question,
but we do show that static memory management can be sig-
nificantly better than previously demonstrated. Much previ-
ous work has focussed on reducing, rather than eliminating,
garbage collection [HJ90, Deu9Q]. The primary motivation
for static memory management put forth in [TT94] isto re-
duce the amount of memory required to run general func-
tional programs efficiently. Two other applications interest
us. First, the pauses in execution caused by garbage collec-
tion pose adifficulty for programswith real-time constraints.
While there has been substantial work on real-time garbage
collection [DLM*78, NO93], we find the simpler mode! of
having no garbage collector at all appealing and worth inves-
tigation. Second, most programswritten today are not written
in garbage-collected applicativelanguages, but rather in pro-
cedural languages with programmer-specified memory man-
agement. A serious barrier to using applicative languages
is that they do not always interoperate easily with procedu-
ral languages. The interoperability problem is duein part to
the gap between the two memory management models. We
expect that implementations of applicative languages with
static memory management would make writing components

of large systems in applicative languages more attractive.

Our approach to static memory management is best illus-
trated with an example. We present the example informally;
theformal presentation beginsin Section 2. Consider thefol-
lowing ssimple program, taken from [TT94]:

(let z=(2,3) in)\y.(fst z,y) end) 5

The source language is a conventional typed, call-by-value
lambda calculus; it is essentially the applicative subset of
ML [MTH90]. The annotated program produced by the
Tofte/Talpin system is:

Example 1.1
[etregionpgpsin
letregionpgin
let x =(2Qp,, 3Qpg) @Qpyin
(Ay.(fst z,y) @p;) Qps
end
end 5Qp;3
end

There are two kinds of annotations: | etregionpine
binds a new region to the region variable p. The scope of p
isthe expression e. Upon completion of the evaluation of e,
the region bound to p and any values it contains are deallo-
cated. The expression e@Qp evaluates e and writes the result
in p. All values—including integers, pairs, and closures—
arestoredin someregion.! Notethat certain region variables
appear free in the expression; they refer to regions needed
to hold the result of evaluation. The regions introduced by
al et regi on arelocal to the computation and are deallo-
cated when evaluation of thel et r egi on completes.

The solid linesin Figure 1c depict the lifetimes of regions
with respect to the sequence of memory accesses performed
by the annotated program above. Operationally, evaluat-
ing the function application first allocates the regions bound
to p4, ps, @nd pg. Next the integer 2 is stored (in the re-
gion bound to p-), then the integer 3 (in pg), the pair = (in
p4), and the closure Ay. ... (in ps). At this point, the inner
| et regi on iscomplete and pg is deallocated. Evaluating
the argument of the function application stores the integer 5
(in p3). Finally, evaluating the application itself requiresre-
trieving the closure (from p;), retrieving the first component
of z (from p4), and constructing another pair (in p;).

In the Tofte/Talpin system, the | et r egi on construct
combines the introduction of aregion, region alocation, and
region deallocation. In our system, we separate these three
operations. For us, | et r egi on just introduces a new, lex-
ically scoped, region variable bound to an unallocated re-
gion. Theoperational | oc_bef or e p e alocates spacefor
the region bound to p before evaluating e, and the operation
free_after p e dedlocates space assigned to the region
boundto p after evaluating e. Theoperationsf r ee_bef or e
and al | oc_af t er aredefined analogoudly.

The problem we addressis: given aprogram annotated by
the Tofte/Tal pin system, produce a completion that adds allo-
cation/deallocation operationson region variables. Figure 1a

1 Weassume small integers are boxed to make the presentation simple and
uniform. In practice, small integers can be unboxed.

shows the most conservative legal completion of the exam-
ple program. Each regionis allocated immediately upon en-
tering and deall ocated just before exiting the region’s scope;
thisprogram hasthe sameregion lifetimesasthe Tofte/Talpin
annotated program above. The al | oc_before p and
free_af t er pannotationsmay be attached to any program
point in the scope of p, so long as the region bound to p actu-
aly isallocated whereit isused. In addition, for correctness
itisimportant that aregion be allocated only onceand deallo-
cated only once during its lifetime. Within these parameters
there are many legal completions. Figure 1b showsthe com-
pletion computed by our algorithm. There is one new opera-
tionf r ee_app. Inan application e; es, the region contain-
ing the closure can befreed after both e; and e, are evaluated
but before the function body itself is evaluated. Thispointis
not immediately before or after the evaluation of any expres-
sion, so we introduce f r ee_app to denote freeing aregion
at this point.

The dotted lines in Figure 1c depict the lifetimes of re-
gions under our completion. This particular completion is
optimal—space for a value is alocated at the last possible
moment (immediately prior to thefirst use of the region) and
deallocated at the earliest possible moment (immediately af -
ter the last use of the region). For example, the value 3@pg
is deallocated immediately after it is created, which is cor-
rect because there are no uses of the value. While an optimal
completiondoesnot alwaysexist, thisexampledoesillustrate
some characteristic features of our algorithm. For example,
space for a pair ideally is allocated only after both compo-
nents of the pair have been evaluated—the last point before
the pair itself is constructed. Similarly, at the last use of a
function its closure is deallocated after the closure has been
fetched from memory but before the function body is eval-
uated. These properties are not special cases—they follow
from the general approach we adopt.

For any given program, our method produces a system of
congtraints characterizing all completions. Each solution of
the constraints corresponds to a valid completion. The con-
straintsrely on knowledgeof the sequenceof readsand writes
to regions. Thus, the constraints are defined over the pro-
gram’s control flow. However, because of higher order func-
tions, inferring control flow from the syntactic form of the
program is difficult. A well-known solution to this problem
is closure analysis [Ses92], which gives a useful approxima-
tion to the set of possible closures at every application.

Our agorithm consists of two phases. We begin with the
Tofte/Talpin annotation of a program. In the first phase, an
extended closure analysis computes the set of closures that
may result from evaluating each expression in every possi-
ble region environment (Section 3). In the second phase, lo-
cal constraints are generated from the (expression, region en-
vironment) pairs (Section 4). These constraints express facts
about regions that must hold at a given program point in a
given context. For example, if an expression e accesses a
region z, there are constraints such as “ 2z must be allocated
sometime before the evaluation of e” and *z must be deallo-
cated sometime after the evaluation of e.”

[etregionpg,psin

al l oc_beforepsfreeafter pyall oc_beforepsfreeafter p;

letregionpgin

al | oc_beforepgfreeafter pg
et o =(2Qpy, 3Qpg) Qpyin

(Ay.(fst z,y) @p1) @Qp;

end
end 5Qp;3
end

(a) The example with explicit region allocation/deall ocation operations.

[etregionpg,psin
free_app ps
letregionpgin

let x=(2Qpq, al l oc_after pyall oc_beforepgfreeafter psg 3Qpg) Qpyin
al | oc_beforeps (Ay.(freeafter pyfst z,y) Qp) Qps

end
end 5Qp;3
end

(b) The example with the optimal explicit region allocation/deall ocation operations.

Ps
Ps
pi e
operation write write write
value 2 3 x (apair)
region P2 Pe P4

write write read read write
Ay 5 Ay x pair
Ps p3 Ps P4 P1

region lifetimesin program (a)

.... region lifetimesin program (b)

(c) Graph of region lifetimes with respect to the sequence of memory operations.

Figure 1: An example comparing stack vs. non-stack region allocation.

A novel aspect of our algorithm arises in the resolution of
the constraints. As one might expect, solving the constraints
yields an annotation of the program, but finding a solutionis
not straightforward. Some program pointswill be, infact, un-
der constrained. For example, inthe programin Figure 1, the
initial constraints specify that the region bound to p; must be
allocated when \y . . . isevaluated, but there is no constraint
on the status of the region bound to p; prior to the evaluation
of Ay. That is, we must choose whether p; is allocated prior
to the evaluation of \y or not—therearelegal completionsin
both scenarios. Given the choice, we prefer that p; not be al-
located earlier to minimize memory usage; this choiceforces
thecompletional | oc_bef or e p; Ay Adding the con-
straint that ps isunallocated prior to evaluation of Ay affects
the legal completion in other parts of the program. Thus,
our algorithm alternates between finding “ choice points’ and
constraint resolution until acompletion hasbeen constructed.

Thisstructureis unusua among program analysis algorithms
and may be of independent interest.

An outlineof the soundnessproof ispresentedin Section 5.
Detailed discussion and measurements of the behavior of our
algorithm are presented in Section 6. Section 7 concludes
with a discussion of practical issues.

2 De€finitions

The input to our analysis is a program annotated by the
Tofte/Talpin algorithm. The syntax of such programsis

x| Ar.eQp|es ez | f7]@p

l et z =e;i Neyend

letrec f[p](x)@Qp=e;inexend
letregionpineend

€

Other operations, such as pairing and selection, are omit-
ted for brevity. The language includes region polymorphic
functions—functionsthat take regions as arguments. Region
polymorphismallows each invocation of arecursivefunction
to operateon different regions, which isimportant for achiev-
ing good separation of region lifetimes[TT94].

The Tofte/Talpin annotations are derived using a non-
standard type system. A typeisapair (7, p), where 7 indi-
catesthe kind of value (integer, function, etc.) and p refersto
the region where values of the type are stored. The determi-
nation of region scopeis made by tracking the effect of an ex-
pression, which isthe set of regionsthe expression may read
or write when evaluated. Types are defined by the following
grammar:
int|p e I
(,p)

T

W

An object of theforme.p iscalled an arrow effect: itisthe

effect of applying afunction of type =¥ 4/. The“e.” isan
effect variable which names the effect and is useful for type
inference purposes.

Tothe baselanguagewe add operationsto allocateand free
regions:

e

freebeforepe | freeafter pe

| allocbeforepe | alloc.after pe
|
| free_apppe;es

The operational semanticsof thislanguage derivesfacts of
theform
s,n,re—a,s'

whichisread “in store s, environment n, and region environ-
ment r the expression e evaluatesto store address a and new
store s’.” The structures of the operational semantics are:

RegionState = unallocated + deallocated +
(Offset ™ Clos + RegClos)
Store = Region fin RegionState
Clos = Lam x Env x RegEnv
RegClos = RegionVar® x Lam x Env x RegEnv
Env = Var 3 Region x Offset
RegEnv = RegionVar fin Region

A store contains a set of regions zy, zo,.... A region has
one of three states: it is unallocated, deallocated, or it is al-
located, in which case it is a function from integer offsets
01, 09, ... Within the region to storable values. A region can
hold values only if it is allocated. Note that regions are not
of fixed size—aregion potentially holds any number of val-
ues. A region environment maps region variables py, po, . . .
to regions. A vector of region variablesis written g.

In this small language, the only storable values are ordi-
nary closures and region polymorphic closures. Ordinary
closures have the form (Az.eQp, n, r), where Az.eQp isthe

function, n isthe closure’ senvironment, and r- istheclosure's
region environment. A region polymorphic closure has addi-
tional region parameters. The set of Az.e@p termsis Lam;
the @p annotation is elided when it is clear from context or
unneeded.

Figure 2 gives the operational semantics. An addressisa
(region, offset) pair. Given an addressa = (z, 0), we gener-
ally abbreviates(z)(o) by s(a). All maps(e.g., environment,
store, etc.) inthe semanticsarefinite. Theset Dom/(f) isthe
domain of map f. Themap f[z « v] ismap f modified at
argument z to givew. Finaly, f|x ismap f with the domain
restricted to X.

The semantics in Figure 2 enforces two important restric-
tions on regions. First, the semantics forbids operations
on aregion that is not allocated; reads or writes to unallo-
cated/deall ocatedregionsareerrors. Second, every regionin-
troduced by al et r egi on progressesthrough three stages:
it isinitialy unallocated, then allocated, and finally deallo-
cated. For example, the [ALLOCBEFORE] rule allocates a
previously unallocated region before the evaluation of an ex-
pression. Only one representative of each of the allocation
and deall ocation operationsis presented in the semantics; the
others are defined analogously.

An example illustrates the [LETREC] and [REGAPP]
rules. Consider the following program:

Example2.1
I etregionpy,ps,pzin
| et Zzl@pl,] :2@p2| n
letrec flps, ps](k: (int, ps5)) Qps =
letregionp;in
(k+(1Q@p7)) Q@ps
end
in
(flp1,pal@po i + flp2, pal@po j) Qps
end
end
end

Inthisprogram, nested| et and| et r egi on constructsare
abbreviated. To make the example interesting, we use con-
structs outside the minimal language presented above. The
expression ;{@p stores integer ¢ in the region bound to p; the
expression (e; + ex) @Qp stores the sum of e; and e, in the
region boundto p. Region allocation/deall ocation operations
are omitted for clarity.

In Example2.1, 1 etrec f[ps,ps|](k) Qpz = ... stores
anew region polymorphic closure at afresh addressa in the
region bound to p;. Next, the expression (f[p1, pa] Qpo @ +
flp2, pa] Qpg §) @p4 isevaluatedin an environment n where
n(f) = a. A region application f[p1, pa] @p, createsan or-
dinary closure (stored at the region bound to py) with formal
region parameters p; and pg bound to the region values of p;
and p,4 respectively. When applied to the argument i (in p,),
theresultisstoredin p,. Theclosureresulting from f[p2, p4]
expectsitsargument in p, instead. Region polymorphismal-
lows the function f to take arguments and return results in
different regionsin different contexts.

n(x) =a
s,n,rFx —a,s

n(f) =a s(a) = (7, Az.e,ng,70)
o ¢ Dom(s(r(p')))

a' = (r(p'),0)

¢ = (Az.e,ng,mo[p — r(p")])
s,n,r E flp'lQp" — d, sla' — (]

o ¢ Dom(s(r(p))) a = (r(p),0)
s,n, T FAr.e@p — a,s[a — (Az.e,n,r)]

s,n,rFe —ay,s

S$1,M,T F ey — as, Sy

s2(a1) = (Az.e,no, 7o)
S2,Mp[T «— az],ro F e — as, s3

s,n,r ey es — ag, S3

s,n, T e — a,s
s,nx — a1],r Fex — as, sz
s,m,r-let x=ejineend — as,s:

o ¢ Dom(s(r(p)))
n' =nlf < (r(p),o)]

S[(T(p)ao) — (p-: Aw'€17nl7r>]7nl7r F €2 — aﬁsl

s,n,rFletrec flg](z)@Qp=er ine —a,s

z ¢ Dom(s)

so = s[z « unallocated]

S0,M,T[p— 2zl Fe—ay,s;

s1(z) = deallocated
s,n,rFletregionpine— a1,31|D0m(S)

r(p) =z
s(z) = unallocated
so = sz — {}]
S0, n,r e —a;, s
s,n,r Fallocbeforepe— a,s

s,n,re—a,s

rp) = =

s1(z) isalocated

so = s1[z « deallocated]
s,n,r-freeafter pe—ay,s,

Figure 2: Operational semantics.

VAR

[REGAPP]

[ABY

[APP]

[LET]

[LETREC]

[LETREGION|

[ALLOCBEFORE]

[FREEAFTER|

[«] B
[Az.e@Qp] R
[[61 62]] R

[let z=e;ine] R

[[l etrec f[/’l,---;/’n](x)@Pzel [neZ]]R
/1o, @] R

[letregionpine] R

[=] Rlvis(x)
{(Ar.e@p,R)}

foreach (A\z.e@p,R') € [e1] R
[e] R' C[e1 e2] R
[e2] R C [z] R

[[62]] R
[[61]] R g [[37]] R

[[62]] R

{(Az.e@p', (Rl p))lpi — R(p)])}
wherel etrec flp1,...,pn](x)Qp=ce ...

[e] R[p < c] wherecisacolor notin R

Figure 3: Region-based closure analysis.

3 Extended Closure Analysis

In reasoning about the memory behavior of a program, it
is necessary to know the order of program reads and writes
of memory. Closure analysis approximates execution order
in higher-order programs [Shi88, Ses92]. However, closure
analysis alone is not sufficient for our purposes, because of
problems with state polymorphism and region aliasing (see
below). Imprecision in state polymorphism gives poor com-
pletions, but failure to detect aliasing may result in unsound
completions.

Consider again the program in Example 2.1. Note that,
within the body of the function f, the + operation is always
thelast use of thevalue k in ps. Thus, it is safe to deallocate
the region bound to ps inside the body of f after the sum:

letrec flps,ps](k) @ps =letregionprin
freeafter ps (k+(1Qp7)) @Qpg)end ...

Now consider thetwo usesof f inthebody of thel et r ec in
Example2.1. With thiscompletion, theregion boundto p, is
allocated (not shown) when f[p1, p4] a isevaluated, and deal -
located when f[p2, p4] b is evaluated. Thus, to permit this
completiontheanalysisof f must be polymorphicinthestate
(unallocated, all ocated, or deall ocated) of the region boundto
p1. If the analysis requires that the region bound to p; bein
thesame state at all usesof f, theninthe body of f, the same
region (now bound to p;) cannot be deallocated.

Region aliasing occurs when two region variables in the
same scope are bound to the same region value. Thereisno
aliasing in Example 2.1 as written. However, if the expres-
sion f[p2, pa] is replaced by f[p=, p2], then region parame-
ters ps and pg of f arebound to the same region. In this sce-
nario, it isincorrect to deallocate the region bound to p; as
shown above, since the result of the call to f (stored in the
same region, but bound to pg) is deallocated even though it
isused later. This exampleillustrates three points. First, re-
gion aliasing must be considered in determining legal com-

pletions. Second, the completion of afunction body depends
strongly on the context in which the functionisused; i.e., de-
termining legal completionsrequiresaglobal program analy-
sis. Third, to obtain accurate completions, we require precise
aliasing information. Approximate or may-aliasinformation
does not permit the allocation or deallocation of aregion.

Our solution to these problemsis to distinguish for each
expression e the region environmentsin which e can be eval-
uated. We define [e] R to bethe set of valuesto which e may
evaluatein region environment R. Including region environ-
ments makes region aliasing explicit in the analysis. Since
the only values are closures, [e] R is represented by sets of
abstract closures { (Az.e @ p, R') }, which intuitively denotes
closures with function Az.e and region environment R'.

Sinceeach| et r egi on introducesaregion, the set of re-
gion environmentsis infinite. We use afinite abstraction of
region environments, mapping region variablesto colors. A
color stands for a set of runtime regions. An abstract region
environment R has avery special property: R maps two re-
gion variablesto the samecolor iff they are boundto the same
region at runtime. Thus, an abstract region environment pre-
serves the region aliasing structure of the underlying region
environment.

The extended closure analysisis given in Figure 3. Fol-
lowing [PS92], the analysisis presented as a system of con-
straints; any solution of the constraintsis sound. We assume
that program variables are renamed as necessary so that each
variableisidentified with aunique binding. We write Vis(z)
for theset of regionvariablesinscopeat| et r ec z[p](y) =,
l et z =,orAz.

The rule for | et r egi on introduces a new color ¢ not
already occurring in R. A distinct color is chosen because
| et regi on alocatesafreshregion, distinct from all exist-
ing regions. To make the analysis deterministic, colors are
ordered and the minimal color is selected. There can be no
more colors than the maximum number of region variables
in scope at any point in the program. Thus, the set of abstract

region environmentsis finite, which ensures that the closure
constraints have afinite solution.

From the extended closure analysis, it is possible to derive
an ordering on program points. For example, in an applica-
tione; es withinregion environment R, first e; isevauated,
thene,, andfinally oneof theclosuresin [e] R. Thisordering
plays a central role in computing completions.

4 Completions

L egal completionswith explicit allocation/deallocation oper-
ations are expressed as a system of constraints. This section
describes the constraint language, constraint generation, and
constraint resolution. Constraint generation is a function of
the input expression, the Tofte/Tal pin types, and the result of
the extended closure analysis.

4.1 Definitions

At each programpoint, every regionin scopeisinoneof three
states: unallocated (U), allocated (A), or deallocated (D).
With each program point, abstract region environment, and
color is associated a state variable ranging over {U, A, D}.
State variablesrecord the state of each region in the range of
an abstract region environment at aprogrampoint. Statevari-
ables are associated with regions (colors) rather than region
variables because region variables may be aliased. Since
the evaluation of an expression e may alocate/deall ocate re-
gions, a region state may be different before and after the
evaluation of e. Thus, there are program points in and out
for each expression e. We group state variablestogether into
state vectors SY' , and 52", associated with every expression
e and region environment R. We refer to state variables by
indexing state vectors with acolor ¢, asin ;' g[c|.

Congtraints are placed on individual state variablesin a
state vector. There are three kinds of constraints: (1) alloca-
tion congtraints, (2) choice constraints, and (3) equality con-
draints:

s=A (1)
A T
S1 = 82 (3)

Allocation constraints are placed at program points where
values are read from or written to a region; they express that
aregion must be allocated at this point.

Choice congtraints are either allocation triples or deallo-
cation triples. An allocation triple expresses a relationship
between two state variables sy, s, and aboolean variable c,:

(cp e (s1=UNsy=A)A(-cp & 51 = 52)

The boolean ¢,, encodes whether or not the associated region
isto be allocated at program point p. If ¢, = truethe region
state prior to the allocation point is U and afterwards A, i.e.
alocation. If ¢, = false, then the state prior is equal to the
state after, i.e. noallocation. Thisapproachissimilar inspirit

to the coercions of [Hen92]. The definition of deallocation
triplesis analogous:

(cp & (s1 =AANs2=D))A(cp & s1=52)

Finally, equality constraints express that the state of are-
gion isthe same at two program points.

4.2 Constraint Generation

Constraint generation producesall constraintsnecessary to
guarantee that regions are allocated when they are accessed.
Thistask involvesplacing allocation constraintswherever re-
gions are read or written, as well as linking the in and out
states of each subexpression with the corresponding program
pointsin the enclosing expression. Choice constraintsare in-
troduced at possibleallocation or deallocation pointsand link
the region states before and after the choice point.

What are the possible allocation and deallocation points?
Every program point is a potential allocation or deallocation
point for region variables that appear in the overall effect at
that program point. Recall that the effect of e is the set of
region variables possibly read or written during evaluation
of e. The overall effect of an expression e is defined to be
the arrow-effect (see Section 2) of the enclosing abstraction
plusany| et r egi on-boundvariablesinsidethe abstraction
and in scope at e. We redtrict the set of regions allowed to
change state (be allocated or deallocated) on entry or exit of
e to be regions in the overall effect of e. Thisrestriction is
crucia to the correctness of our system. A potential alo-
cation (resp. deallocation) point is indicated by the syntax
al | oc_bef orec,e(resp. free_bef ore ¢, €), wherec,
is the boolean variable associated with the allocation (resp.
deallocation) point. Prior to constraint generation, all poten-
tia al | oc_before, free_after expressionsare added
to the input program.

We briefly explain the constraint generation rules in Fig-
ure4. Constraintsare generated asafunction of theinand out
state vectors of each expression e, the current abstract region
environment R, and the overall effect ¢, a e. The notation
R(y) isthe pointwise union of R(p) for p € ¢, giving the
set of colorsin an effect. The rule for variables says that the
state of regionsin the overall effect is unchanged by a vari-
able reference. No alocation constraint is needed, because
no regions are read or written.

Inthe abstraction rule, we place an allocation constraint on
theregionwheretheclosureiswritten. Furthermore, asinthe
variablerule, the states of all regionsin the overall effect are
the same on input and output of the abstraction expression.

Thecolor ¢, g inthel et r egi on ruleisthe color chosen
for p by the extended closure analysisin the same context.

Regions may change state only at potential alocation and
dedllocation points. Theal | oc_bef or e rule connects the
states of regions bound to p between the input states of e
and e; with an alocation triple. The state of all other re-
gions cannot change. A key point is that allocation triples
generated from the samepotential allocation point, but in dif-
ferent region environment contexts, share the same boolean

€ =e] e

e=letz=einey

e=letrec flpl(z)@p=e1iney

e=letregionpine

e=allocbeforepc.e;

e=freeafter pc.e;

Ve € R(p,). Si;R[C] = ng‘R[C]
Se r[R(p)] = Aand Ve € R(p,). S¢ glc] = S2glc]

Se rlR(p")] = A
S a[R(p)] = A, where (7, p) isthetypeof f

Ve € R(po). 81 ple] = S%le]

Ve € R(po). S0 ple] = 57 gld
Ve € R(po). 5% gle] = ST ple]
€.p

let (11 = pe, p) bethetype of e;
Sea rlB(p)] = A

foral (Az.eo, R') € [e1] R, withtype (1} =5 pb, p)
B = R(p) = R'(¢')
C= R(@o) - B
Ve e B. 5] glel = Sgy mlel A S prlel = SEigld]
Vee C. SgiR[c] = Sg:“R[c]

Ve € R(po). 2 4l = S0 ol
Ve € R(p,). S’g“l‘ﬂ[c] = 5’2271%[0]
Ve € R(p,). Sgl;R[d = ng‘R[C]

Se rlR(p)] = A _
Ve € R(p,)- S';R[c] = Sg;,R[C]
Ve € R(p,)- S’g‘;‘?R[c] = Sg‘:‘R[c]

R' = R[p — Ce,R]

Sevwlce,r] =U

SZT,R’ [ce,r] = D

Ve & Rp,). S2plel = 7 pld
Ve € R(p,)- St R [c] = Sg“fR[c]

Ve e (R(p,) = {R(p)})- S glel =S¢, gld]
Ve € R(po). S gldl = Sgglc]

(SER[R(p)]a Ce, Sianl ,R[R(p)]>a

Ve € R(p,). S¢ gle] =S¢ gld]
Ve € (R(po) — R(p)). 5S¢ gle] = Sgglc]
(S gIR(p)]; ce, SPR[R(p)])a

Figure 4: Constraint generation rules.

Pe 56,1 56,2 = A 56,4
Ps $5,1 55,2 55,4 = A 55,5 55,6 = A 55,7 55,8
P4 54,1 54,2 54,3 = A S4.4 S4.5 54,6 54,7 = A 54,8
operation write write write write read read write
value 2 3 x (apair) Ay 5 Ay x pair
region P2 Ps Ps P3 Ps Pa P

Table 1. Example constraint resolution.

variable, which guarantees that the completion is valid in
all contexts. Allocation/deallocation choice points for dif-
ferent region variables are sequentialized to ensure that if
two region variables are aliased (i.e. they map to the same
color in the abstract region environment), at most one alloca-
tion/deall ocation point is chosen.

The application rule is the most difficult. The key ideais
that at runtime, the regionsin the arrow-effect of thefunction
expression e; (call this set E), are the same astheregionsin
the effect of the closure. Therefore, the states of regionsin E
inthe caller’s context prior to eval uation of the function body
match the states of regionsin E on entry to the function (and
similarly on return). In the abstract region environments of
the caller and callee, the colorsof the effect of thecall (set B)
are equal, justifying equality constraints between state vari-
ables at the call site and in the input vector of the function
body (similarly on output). These equality constraints model
the flow of regionsfrom the caller into the function body and
back. All regionsafunction touches appear in the function’s
effect. It is thus sufficient to place the equality constraints
only on state variablescorrespondingto colorsfrom B. Other
regionsin the caller’s context (set C') are not touched in the
the function body; the function is state-polymorphic in these
regions. The set of possible closures in an application of a
given region environment is computed by the extended clo-
sureanaysis. For brevity, we do not describe the handling of
quantified effect variables (for details see [AFL95]).

4.3 Constraint Resolution

In general, the constraint system has multiple solutions. For
example, the state of aregion after thelast useis unspecified.
We may place the point of deallocation of such aregion any-
where after itslast use, but obviously we prefer the first pos-
sible program point. The choice of whereto allocate (or deal-
locate) aregion affects the states of regionsin other parts of
the program. Therefore, it isnecessary to iterate solving con-
straints and choosing all ocation/deall ocation points based on
the partial solutions.

Recall Example1.1. Consider p; and the control flow path
from the point p;, where the lambda abstraction is stored in
the region bound to ps, to the point p,, whereit is retrieved
to perform the application. Clearly the region bound to ps
must be allocated both at p; and p,. Because the language
semantics forbid the region to change from the deallocated
stateto the all ocated state, we can concludethat on all control
paths from p, to p», it must be allocated.

The congtraints are simple first-order formulas for which
resolution algorithms are well-known. There is, however,
the issue of deciding which solution to choose; clearly some
completions are better than others. We illustrate our resolu-
tion algorithm with an example.

Refer again to the example in Figure 1. Table 1 shows
the state variables associated with py4, ps, ps. Assume that
we have added all ocation triples between al| consecutive pro-
gram points for colors bound by ps—pg, with associated
boolean variables ¢; ;, meaning a possible alocation of p;
just after state s; ;.

Table 1 contains explicit alocation constraints on states
whereregions are accessed. We must have ss 5 = A because
it lies on an execution path between two states where the re-
gionboundto p; isallocated. The same holdsfor s4 4—. We
also set @l allocation choice points cg,0—4, ¢5,4—s, 8Nd ¢4 3-8
to false, because the regions must be allocated before these
program points are reached. At this point we have proven all
facts derivable from the initial constraints—nothing forces
other states to be unallocated, allocated, or deallocated. We
can now chooseto set any booleanvariablec, of anallocation
triple(s1, ¢y, s2)4 totrue, if thevariablec, isnot constrained.
Among the possible choices, we are particularly interested
in alocation points lying on the border of an unconstrained
state and an all ocated state, i.e., alocationtriples(si, ¢p, s2)q
where:

s1 isunconstrained A s, = A

By the definition of an alocation triple, choosing ¢, = true
forcess; = U. The state U is propagated to earlier program
points, since the region can be in no other state there. In the
example, we choose ¢; 3 = true, set s5 3 = U, and propa-
gate U backwardsthrough s; »— tothel et r egi on for ps.
Similarly, we choose ¢ ; = trueand ¢4 » = true.

In general, given a constraint system C, we first prove all
factsC s = X andCF s # X impliedbyC. If Ct/ s = X
andC ¥/ s # X, then we are free to choose either s = X
or s # X. Thisprocedurerepeats, proving facts and making
choices, until acomplete solution is constructed.

Any solution of the constraints specifies a completion of
the program, where allocate/deall ocate operations are added
for the boolean variables ¢, that aretruein the solution. The
congtraints have a trivial solution, obtained by choosing for
each region the first alocation choice point and the last deal -
location choice point inside the corresponding| et r egi on.
This most conservative completion has exactly the same
memory behavior as the original Tofte/Talpin program (e.g.
Figure 1a).

5 Soundness

This section states a soundness theorem for our system and
sketches the proof. The soundness theorem is formulated as
follows. Assumethat s,7,n F e — a,s’, and assume that
[e] R = V istheresult of the extended closureanalysisfor e,
where R is an abstraction of the region environment . As-
sume further that the regions of the overall effect ¢, mapped
by r in store s are initialy in the states given by S .. The
theorem shows that the evaluation of e leaves these’regions
in the states specified by S,,. To provethistheoremwefirst
state the relationship between the concrete semantics and our
abstraction. For the proof concrete regionsin the operational
semantics are colored the same way as in the extended clo-
sure analysis. We use capital letters for abstract entities and
lowercase |etters for concrete entities, z. denotes a concrete
region with color ¢, s isaconcretestore, and S : StateVar —
{U, A, D} isthe solution of the constraints.

We say a concrete region environment » satisfies an ab-
stract region environment R if they have the same domain

and aliasing structure.

def
rsat R =

Dom(R) = Dom(r) A

R(p) = R(p') < r(p) =71(p') A

R(p)=c <= 71(p) = 2

A store s and address a satisfy a set of abstract values V/,

if V' contains an abstraction of the concrete value stored at
address ¢ in s, and the environment of the concrete closure
satisfies the extended closure analysis| -].

def
s,asatV =
addressa isdlocatedin s =
s(a) = (Az.e,r’,n'y A
I(Az.e,R'y eV st.
s,r',n' sat R, [-]

A store s, concrete region environment r, and concrete
value environment n satisfy an abstract region environ-
ment R and the extended closure analysis [- |, if the region
environments match and for every variable = in the concrete
environment, [z] R contains an abstraction satisfying the
concrete value.

d

@,

s,r,nsat R[]
rsat R A
V(z e Dom(n))3R' st.

(Rlpom(ry = R" A s,n(z) sat [z] R')

A store s and a concrete region z. with color ¢ satisfy a
statevariable S, r[c] if the state of theregion z. inthe store s
correspondsto the solution for S, g[c].

def
5,2, sat Se g, c =
2. € Dom(s) = state(s, z.) = S(Se,r[c])

Finally, astate s and concreteregion environment r satisfy
an abstract region environment R, state vector S, g, and ef-
fect set ¢ if r and R match and the states of al regionsin ¢
match the solution of the constraintsfor S, .

def
s,rsat R, Sc R, =

» C Dom(R) A
T sat R A
Y(pep) s,r(p) sat Se r, R(p)

The soundness of our analysis is summarized by Theo-
rem5.1.

Theorem 5.1 Given that
s,r,nke—a,s
[e] R=V
s,r,msat R, [-]
s,7sat R, S p, o
we conclude
s’ asatV
s',rsat R, S¢"g, ¢o

Theproof isby induction on the structure of e andisincluded
in the full version of the paper [AFL95].

6 Implementation and Experiments

We have implemented our algorithm in Standard ML
[MTH90]. Our system is built on top of an implementation
of the system described in [TT93, TT94], generously pro-
vided to us by Mads Tofte. The implementation is extended
with numbers, pairs, lists, and conditionals, so that non-
trivial programs can be tested. For each source program,
we first use the Tofte/Talpin system to region annotate the
program. We then compute the extended closure analysis
(Section 3). The next step adds allocation and deallocation
choice points and generates the allocation constraints (Sec-
tion 4). The constraints are solved and the solution is used to
complete the source program, transforming selected choice
points into all ocation/deall ocation operations, and removing
therest.

Our annotations are orthogonal to the storage mode anal-
ysis mentioned in [TT94] and described in more detail in
[Tof94]. Thus, the target programs contain both storage
mode annotationsand the all ocation annotations described in
this paper. On the other hand, our analysis subsumes the op-
timization described in Appendix B of [TT94], so that opti-
mization is disabled in our system. Summary performance
measures arein Table 2. We have not measured carefully the
time required to compute our analysis, but our method ap-
pears to scale as well as the Tofte/Talpin system. All of the
examples we have tried are analyzed in a matter of seconds
by our system on a standard workstation.

The target programs were run on an instrumented inter-
preter, also writtenin Standard ML/NJ. In addition to the data
above, we aso gather complete memory traces, which we
present as graphs depicting memory usage over time.

While we have tested our system on many programs, nei-
ther the size of our benchmarksnor the size of our benchmark
suite is large enough to draw meaningful statistical conclu-
sions. Instead, we present representative examples of three
typical patterns of behavior we have identified.

A number of programs show asymptotic improvement
over the Tofte/Talpin system. One example given in their
paper (dueto Appel [App92]), has O(n?) space complexity.
Our completion of this program exhibits O(n) space com-
plexity (Figure 5). In this program, our analysis is able to
deallocate a recursive function’s parameter before function
evaluation completes. Because the Tofte/Talpin system en-
forces a stack discipline, it cannot reclaim function parame-
ters that become “ dead” part way through the activation of a
function.

Another typical pattern is that our system has the same
asymptotic space complexity as Tofte/Talpin, but with acon-
stant factor improvement. Representative examples include
Quicksort, Fibonacci, and Randlist. The memory usage
graphs are shown in Figures 6, 7, and 8, respectively. The
measurementsfor the graphswere made using smaller inputs
than the experimentsin Table 2; smaller problem sizesyield
more readable graphs.

The Quicksort graph (Figure 6) has a curious feature: at
times the memory usage drops below the amount needed to
store the list! Our measurements count only heap memory

Memory size, in values

Memory size, in values

Appel (100) Quicksort(500) | Fibonacci(6) | Randlist(25) Fac(10)
A-F-L T-T | A-F-L TT|A-FL|TT|AFL|TT|AFL|TT
[208 1111 112 | 1520 15| 20 12| 90 25| 25
(2) | 81915 | 81915 | 45694 | 45694 190 | 190 289 | 289 66 | 66
(3) | 101814 | 101814 | 65266 | 65266 190 | 190 363 | 363 66 | 66
4 306 | 20709 | 2509 | 8078 10| 14 85 | 161 14| 14
(5) 1 1| 1502 | 1502 1 1 7|77 1 1

(1) Maximum number of regionsallocated (unit: 1 region)
(2) Total number of region allocations

(3) Total number of value alocations

(4) Maximum number of storable values held (unit: 1 sv)
(5) Number of values stored in the final memory (unit: 1 sv)

Table 2: Summary of results.

Appel fibonacci
300 | Tofte/Talpin, max =279 — | 16 1 Tofte/Talpin, max = 14
A-F-L, max =36 - 14t A-F-L, max =10 -]
250 ¢ 1 g 12 t 1
©
>
200 ¢ 1 £ 10 | i
8 8
L H D []
150 2
] 6 F 4
100 | 5
= 4t]
50 2 |
0 Lo’ \\,Mmu’l: l‘vmww" \wv” \‘,,mm’/ 1\»«%" L\,»»«m'/ ‘l\Ww/ \'wWw["’ ‘.\mer L\w 0 | L L ! ! ! ! ! !
0 200 400 600 800 1000 1200 0 20 40 60 80 100 120 140 160 180 200
Time Time
Figure 5: Memory usagein Appel example [App92] Figure 7: Memory usagein Fibonacci example
(n = 10). (recursive fibonacci of 6).
quick randlist
200 : : : : - : : . : : : : - : :
Tofte/Talpin, max = 603 —— 180 Tofte/Talpin, max = 161 —— 1
600 | A-F-L, max =259 — i 160 | A-F-L, max =85 —— |
8§ 10}]
500 r . =]
z 120 1
400 1 1 g 100]
D
300 t 1 > 80 | 1
‘ % 60
200 vy] T e 1
V/V/WM/WWM / /r/ W i - = wol]
i T e v
100 t . 20 |l]
o /i iy
0 500 1000 1500 2000 2500 3000 3500 4000 0 50 100 150 200 250 300 350 400
Time Time
Figure 6: Memory usage in Quicksort example Figure 8: Memory usage in Randlist example

(sort 50 element list of randomintegers). (generate 25 element list of random integers).

usage. The evaluation stack is not counted, a measurement
methodology consistent with [TT94]. Quicksort is not un-
usual in this behavior. The program recursively traversesits
input list, storesthe contentson the evaluation stack, freesthe
list cellswhen it reachesthe end, and builds up the output list
upon return.

In the third class of programs our system has nearly the
same memory behavior as Tofte/Talpin (e.g., the factorial
function). This case arises most often when the Tofte/Talpin
annotation is either already the best possible or very con-
servative. Conservative annotations distinguish few regions.
Because valuesin regions must be deallocated together, hav-
ing fewer regions results in coarser annotations. Of course,
the memory behavior of aprogram annotated using our algo-
rithmis never worsethan that of the same program annotated
using the Tofte/Talpin algorithm.

Our system is accessible for remote experimentation
through the World Wide Web at:

http://kiw.cs. berkel ey. edu/ " nogc

7 Discussion and Conclusions

It remains an open question whether our system is a practi-
cal approach to memory management. The complexity of the
extended closure analysis is worst-case exponential time. In
practice, we have found it to be of comparable complexity to
the Tofte/Talpin system, but we do not as yet have enough
experience to judge whether this holds in general. The con-
straint generation and constraint solving portions of our anal-
ysis both run in low-order polynomial time. A separate is-
sue is that the global nature of our analysis presents serious
problems for separate compilation, which we leave as fu-
ture work. Finally, we have found that static memory allo-
cation is very sensitive to the form of the program. Often,
a small change to the program, such as copying one value,
makes a dramatic differencein the quality of the completion.
Thus, for this approach to memory management to be prac-
tical, feedback to programmers about the nature of the com-
pletion will be important.

Our system does do a good job of finding very fine-grain,
and often surprising, memory management strategies. Re-
moving the stack allocation restriction in the Tofte/Talpin
system alows regions to be freed early and allocated late.
The result is that programs often require significantly less
memory (in some cases asymptotically less) than when an-
notated using the Tofte/Talpin system alone.

References

[AFL95] Alexander Aiken, Manudl Fahndrich, and Raph
Levien. Better static memory management: Improving
region-based analysis of higher-order languages. Tech-
nical Report CSD-95-866, UC Berkeley, April 1995.

[App92] Andrew W. Appel. Compiling with Continuations.
Cambridge University Press, 1992.

[Deud0] Alain Deutsch. On determining lifetime and alias-
ing of dynamically allocated data in higher-order func-
tional specifications. In Proc. of the 17th Annual ACM
Symposium on Principles of Programming Languages,
pages 157-168, January 1990.

[DLM*78] Edsger W. Dijkstra, Ledlie Lamport, A.J. Mar-
tin, C.S. Scholten, and E.FM. Steffens. On-the-fly
garbage collection: An exercise in cooperation. Com-
munications of the ACM, 21(11):966-975, November
1978.

[Hen92] Fritz Henglein. Global tagging optimization by
type inference. In Proc. of the 1992 ACM Conference
on Lisp and Functional Programming, pages 205215,
July 1992.

[HJ90] Geoff W. Hamilton and Simon B. Jones. Compile-
time garbage collection by necessity analysis. In Proc.
of the 1990 Glasgow Workshop on Functional Program-
ming, pages 66—70, August 1990.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper.
The Definition of Sandard ML. MIT Press, 1990.

[NO93] Scott Nettles and James O’ Toole. Real-time repli-
cation garbage collection. In Proc. SSGPLAN '93 Con-
ference on Programming Language Design and Imple-
mentation, pages 217-226, June 1993.

[PS92] Jens Palsberg and Michael |. Schwartzbach. Safety
analysis versus type inference. Information Processing
Letters, 43(4):175-180, September 1992.

[RM88] CristinaRuggieri and ThomasP. Murtagh. Lifetime
analysis of dynamically allocated objects. In Proc. of
the 15th Annual ACM Symposiumon Principles of Pro-
gramming Languages, pages 285-293, January 1988.

[Ses92] Peter Sestoft. Analysis and Efficient Implementa-
tion of Functional Programs. PhD dissertation, Univer-
sity of Copenhagen, Department of Computer Science,
1992.

[Shi88] Olin Shivers. Control flow analysis in Scheme.
In Proc. SGPLAN '88 Conference on Programming
Language Design and | mplementation, pages 164-174,
June 1988.

[Tof94] Mads Tofte. Storage mode analysis. Personal com-
munication, October 1994.

[TT93] MadsTofteand Jean-Pierre Talpin. A theory of stack
alocation in polymorphically typed languages. Tech-
nical Report 93/15, Department of Computer Science,
University of Copenhagen, July 1993.

[TT94] Mads Tofte and Jean-Pierre Talpin. |mplementation
of thetyped call-by-value \-calculususing astack of re-
gions. In Proc. of the 21st Annual ACM Symposium on
Principlesof Programming Languages, pages 188—201,
January 1994.

