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Abstract. There is a tension in program analysis between precision and efficiency. In constraint-based
program analysis, at one extreme methods based on unification of equality constraints over terms are
very fast but often imprecise. At the other extreme, methods based on the resolution of inclusion
constraints over set expressions are quite precise, but are often inefficient in practice. We describe
a parameterized framework for constraint-based program analyses that allows the analysis designer
to embed terms and set expressions within each other. Constraints over these mixed expressions are
partially between equality and inclusion, which enables an entire spectrum of program analyses with
varying degrees of precision and efficiency to be expressed. We also show that there are interesting
analyses that take advantage of this mixture. In particular, we report on the design and implementation
of an uncaught exception analysis for core ML. Our results show that the analysis approaches the
efficiency of algorithm W.

1 Introduction

The Hindley-Milner polymorphic type inference system [Mil78] is the classical example of a constraint-based
program analysis. It uses equality constraints over a term algebra to infer types for functional programming
languages such as ML [MTH90]. This system has inspired many other analyses based on equality constraints
(e.g. [Hen92, Ste96]). Such systems are appealing because they yield concise results and because the equality
constraints can be solved using unification in nearly linear time (in the monomorphic case). The disadvantage
of equality constraints is that they cannot model the direction of value flow within a program. Information
always flows in all directions, causing a loss of precision.

Another class of program analyses is based on set-inclusion constraints [Hei92, AW92, AW93]. Because
inclusion constraints can model the direction of value flow within a program quite accurately, inclusion
constraints yield more precise results than equality-based systems. Examples of such analyses are [Shi88,
Hei%4, AWL94, FFKT96, MW97]. The disadvantage of inclusion constraints is that they are more expensive
to solve than equality constraints. The best known algorithm for solving the simplest inclusion constraints is
dynamic transitive closure which requires cubic time, and for more expressive constraints solvability becomes
at least EXPTIME-hard [AKVW93, MH97].

To make inclusion constraint-based analyses practical, a lot of effort is spent on tuning the representation
and manipulation of constraints. Most importantly, inclusion constraints must be simplified to obtain more
concise representations of solutions [Pot96, FA96, TS96, FF97]. While experimenting with a type-based
program analysis system entirely based on inclusion constraints over the past two years, we have noticed
that constraints describing the inferred types have many uninteresting solutions. Simplification does not
help with this problem, because by definition constraint simplification preserves the set of solutions. The
unneeded solutions contribute directly to the size of and the expense of manipulating inferred types.

To describe precisely interesting solutions of our analyses, we have invented a new kind of constraint which
lies in between equality and inclusion. This technique opens up a new avenue to making certain program
analyses based on inclusion constraints practical. By making explicit where in an analysis the generality of
sets is needed, and where structural constraints are sufficient, solutions can be described more concisely and
computed more efficiently.

In this paper we describe a parameterized constraint formalism that combines inclusion constraints over
terms with inclusion constraints over sets. Before proceeding, we fix some terminology. We view the abstract
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properties computed in program analyses as types. Constraints in our formalism are between type expressions,
and solutions of the constraints are types. To a first approximation, types can be thought of as sets of values.
We refer to Hindley-Milner style types as term types and to types based on set expressions [AW93] as set
types. The key property of term types is that they have unique head constructors.

Our formalism covers an entire spectrum of program analyses with varying degrees of precision and
efficiency. On one extreme, the formalism can express Hindley-Milner type inference, and on the other
extreme, it can express complete inclusion-based analyses. Most importantly, we can express analyses in
between these extremes, in particular analyses that consist mostly of term types but also include set types
where precision is needed.

The formalism is based on a 2-sorted algebra of type expressions (Section 3). Inclusion constraints between
these types are solved using unification and rewrite techniques (Section 4). At the Hindley-Milner end of the
spectrum, the implementation of the constraint solving process essentially yields algorithm W [Mil78]. (Note
that the system described in [AW93] can also express Hindley-Milner type inference using only inclusion
constraints, but the inference algorithm still requires cubic time in this case.) To make our ideas concrete,
we instantiate our framework to a particular analysis near the Hindley-Milner end of the spectrum, namely
uncaught exception inference for a subset of ML (Sections 2.2 and 5) and present preliminary results from an
implementation showing that the analysis approaches the efficiency of algorithm W. We start our exposition
in Section 2 with a description of the problem that motivated the formalism described in this paper, and our
running example analysis: Type and exception inference for a subset of ML.

2 Motivation

This section motivates our framework with an example application: Uncaught exception inference for a subset
of the ML language. Exception inference is an interesting problem for our formalism because we can express
it as a minimal refinement of standard Hindley-Milner type inference, and it makes essential use of set types.
Furthermore, exception inference is an interesting problem in its own right, because in practice large ML
programs can unexpectedly terminate with uncaught exceptions.

2.1 The Problem

We begin by illustrating the problem of types that are more general than needed. In ML, the type of
an exception value v is simply exn—no indication is given of the possible exception constructors of wv.
Consider a refinement of the ML type system that models exception types with an explicit annotation of
the set of exception constructors. For example, we model the type of the exception constructor Subscript
as exn(Subscript). A possible inference rule for if expressions based on inclusion constraints is

At p:bool
A|_611T1
Al ey :m
1 Ca « fresh

-
T2 L« [IF]

Al if p then e; else ey :
The rule says that the result type must contain the types of both branches. The conditional expression
if p then Subscript else x

returns either the exception value Subscript (exceptions are first-class), or the value of the program variable
x. Assuming x has type 3, applying the inference rule to this expression gives the type « along with two
lower bounds, written

a where  exn(Subscript) Ca A BCa

There are many solutions for a and [ satisfying these constraints. One possible solution is

B +— int
« +— exn(Subscript) U int



For many programming languages (and in particular for ML), this solution is uninteresting, because the
union of an integer and an exception cannot be used anywhere. We are really only interested in solutions
where the type of the else branch is also an exception. However, we cannot simply require both branches to
have the same type as in a standard ML type system, because the else branch may contribute an exception
other than Subscript. For example, if the else branch can return exn(Match), we would like to infer that
the entire if can return exn(Subscript) or exn(Match). Thus we have two conflicting goals: On one hand
we need the generality of inclusion constraints to allow different exception constructors in the branches of
the conditional, and on the other hand we do not want the full generality of inclusion constraints, since they
admit many uninteresting solutions. In our example, the interesting solutions all have the form

B = exn(y)
a = exn(Subscript U 7)

which clarifies that the if expression and both branches return exceptions and that the set of exception
constructors of the result includes the Subscript exception and any exceptions contributed by the else
branch. In summary, the example illustrates two points:

— For particular applications, inclusion constraints may admit more solutions than required.
— Set types are needed to express sets of values with more than one head constructor (e.g. SubscriptU~).

2.2 Sample Application

This subsection sets the stage for our framework by proposing a type and exception inference system for
a subset of ML. Here we describe only the type language and some examples. The type rules and an
implementation are discussed in Section 5.

The standard ML type system gives no information about the set of exceptions that an expression may
raise. Knowing only the types, a programmer must assume that each expression e has the worst possible
effect: Every imaginable exception may be raised during evaluation of e. The exception inference we describe
here gives the programmer more precise information about possible exceptions. We present our analysis for
Mini-ML but discuss an implementation for core SML in Section 5.

As an aside, note that for first-order languages, exceptions can be inferred separately from types. In
ML however, functions and exceptions are first-class values, and as a result, exception inference cannot be
separated from type inference.

The syntax of Mini-ML is a typed lambda calculus with exception constants and raise and handle
expressions.

ex=z|fn x => e|e; ez | e handle p; => ¢; | raise e

pu=cle(x)
Handle expressions use pattern matching to provide specialized handlers for different exceptions. The set of
constants and primitives of the language are accessed through identifiers in an initial environment.

Every exception in ML has the type exn. In order to distinguish among different exception constructors,
we refine this type to exn (o), where o is a set type capturing the set of exception constructors. Furthermore,
we need to refine the type of functions to include information about the possible exceptions raised during
an application. Function types are written 7, — 7, where 7; describes the domain of the function, 7 the
range of the function, and o the possible exceptions raised by the function (notation borrowed from effect
systems, see Section 5). The resulting type language has two sorts, set types and term types, given by the
following grammar

ru=a|B|1 5 1| exn(o)
ou=¢|c|le(r)|ono|oUo|-{c}

We use 7 for term types and o for set types. Type variables are written « or €, depending on the sort. The
set B denotes a set of base types. We use ¢ € EznCons for exception constructors. Note that exceptions may
be constants or carry a value. An exception ¢ carrying a value of type 7 has type exn(c(7)). Set types can
furthermore be formed by intersection, union, and complement. The type —{c} is the set of all values except
values obtained by applying constructor ¢. Because exceptions can carry values, the two sorts of types are
mutually recursive. Note that the term types used here are ML types with embedded set types.



A few examples illustrate the refined types. First consider the primitive raise in ML, which is used to raise
an exception. Its ML type is raise : exn — a. Using our refined types, the type becomes raise : exn(e) — a,
capturing the fact that applying raise to an exception of type exn(e) causes the observable effect e.

Consider a function catchFail that calls a function argument, and if the Fail exception is raised, returns
the default value d.

exception Fail
fun catchFail f d = £ () handle Fail => d

We assign the type
. L. € 0 eN—{Fail}

catchFail: (unit - o) » o ————
to this function. The type illustrates the dependencies between the exceptions carried by the function argu-
ment £ and the exceptions of catchFail. Given a function f : unit — o which may raise an exception from
the set €, we know that the expression £ () has type « and effect . The handle expression prevents the Fail
exception from escaping the body of catchFail. As a result, we know that evaluating catchFail can result
in any exceptions raised by the argument function, except Fail (written e N ={Fail}). Set expressions are
crucial for describing such types.

We are aware of two earlier approaches to uncaught exception detection for ML. In [GS94], Guzmén and
Sudrez describe an extended type system for ML similar to, but less powerful than, the one presented here.
They do not treat exceptions as first class values, and they ignore value-carrying exceptions. In [Yi94], Yi
describes a collecting interpretation for estimating uncaught exceptions in ML. His analysis is presented as
an abstract interpretation [CC77] and is much finer grained than [GS94] or the system described here, but
is also slow in practice.

3 Types and Domains

Section 2.2 outlined a mixed type language for expressing ML types with refined exception information. This
is a particular example of a class of analyses that is expressible in our framework. This section presents the
general case: We introduce the parameterized type language over which inclusion constraints are solved, show
the relationship between types and appropriate semantic domains, and define what constitutes a solution to
a system of inclusion constraints over types. Section 4 describes how to compute the solutions of constraints.

3.1 Type Language

We introduce two sorts of types, u-types and s-types, which are similar to term types and set types, except
that u-types and s-types can be embedded within one another. The type language and resolution rules for
inclusion constraints between u-types or s-types are parameterized by a set of constructor signatures Y. Let
S = {u, s}, then each signature is of the form:

Cill...lpy =S

and each ¢ is one of {u,1,s,s}. The overlined sorts mark contravariant arguments of ¢, the rest are covariant
arguments. Let V be an S-sorted set of type variables, i.e. V = (Vy, Vs). We use greek lowercase letters
a,B,¢€,... to denote type variables. Let ¥'* be the extension of X with the signatures

U:ss—s
N:ss—s
={c1,...,cn} s for any set of s-constructors ¢; € X
O:s
1:s

for the set-operations union, intersection, complement of constructors, and constants 0 and 1 for the least
s-type and the greatest s-type respectively. The language of type expressions is formed by the sorted term
algebra T x+ (V). We use letters 77,15, ... to refer to u-types and s-types.



To illustrate the type languages that can be formed, we give three example signature sets Y. Figure 1
gives the signatures of type constructors for ordinary Hindley-Milner types. All types are u-types in this
case and the set of type constructors includes, for example, nullary constructors such as int and unary
constructors such as 1ist : u — u. Figure 2 shows the signatures of type constructors corresponding to the
set types of [AW93]; all types are s-types. Finally, Figure 3 contains the signatures for the type language
given in Section 2.2 for our ML exception inference. There are constant type constructors of sort u for a set
of non-parameterized base types B, constructors of sort s for all exception constructors, some with argument
types of sort u. The type constructor exn simply embeds exception s-types as u-types. Finally the function
constructor - — - contains a contravariant U field for the domain, a covariant u field for the range, and a
covariant s field for the exceptions that the function may raise.

¢:ui...u, = u (for all n-ary ML type constructors)
-—-:uu—u (Function type)

Fig. 1. Signature ¥ for Hindley-Milner types.

c:s1...s, = s (for all n-ary data constructors)
-—-:Ss—s (Function type)

Fig. 2. Signature X for set types [AW93].

c:u (for all ¢ € B basetypes)
c:s (for all constant exception constructors c)
c:u—s (for all exception constructors ¢ with arguments)

exn:s—u
- — . :us u — u (Function type)

Fig. 3. Signature X for exception inference.

For completeness, we conclude this section with two technical comments. First, type constructors with
non-variant (neither co- nor contravariant) fields cannot be modeled directly in our formalism. An example
of such a type constructor is the ML datatype

datatype ’a identity = Id of (’a -> ’a)

However, we can represent this type constructor by doubling the non-variant field, one copy being contravari-
ant, the other covariant.
identity:uu—u

Any ML type T identity can then be represented as identity(7,T") with the desired non-variance in 7.
The second comment concerns strictness of constructors. We allow each constructor to be strict or non-strict
in any of its covariant fields (contravariant fields are always non-strict). To keep notation to a minimum
we omit strictness annotations from constructor signatures. Where necessary, constructor strictness will be
mentioned explicitly.

3.2 Semantics of Types

We give semantics to types using a variation on the standard ideal model [MPS84]. The semantic domain D
contains a least element L and is equipped with a complete partial order <, where 1 < ¢ for all ¢t € D. Types
are downward-closed subsets of D. A set X C D is downward-closed, iff V¢ € X — {L},#' <t = t' € X.



Similarly, a type X is upward-closed, iff Vt € X — {L},t <t = ' € X. We assume D is lifted (i.e.
Az.L # 1),

A suitable domain D is described in [AW93] where the authors use it to give meaning to set types. We
first review the semantics of set types and then describe the necessary generalizations for our framework.
Given a type assignment oy mapping type variables in V to types, the meaning function ¢ mapping set types
into the semantic domain D, is

Stn) [t € o(Ty)}U{L}
) = f(t) € o(T2)}U{L}
(Tl)ﬁa TQ)

U'(Tl)UU(Tz)

The function o interprets types ¢(T4, ... ,T},) as sets of tuples labeled by ¢. Function types cannot be modeled
as sets of tuples and are treated specially. Other standard type constructors, e.g. 1ist also need to be modeled
as special cases in such an interpretation. For example, the standard interpretation for a type list(T) is

o(list(T)) = X where X is defined by the equation
X ={nil, L} U{cons(t1,ts) | t1 € o(T),ts € X}

which is very different from a set of tuples labeled by list.

Having numerous special cases is impractical and interpreting all type constructors as labeled tuples
would severely limit the applicability of the formalism we are developing. Our solution is to parameterize the
semantics of types with mappings ¢. : (2P)* — 2P for each n-ary constructor ¢ in a given signature set .
Each ¢, gives meaning to type expressions with head constructor ¢ by mapping argument types (downward-
closed sets) to types. Given a type assignment 6y, we now define the meaning 6 of type expressions by

0(c) = Oy(a)

)
6(0) = {l}
(1) =
0(c(Ty, ..., T, ))=¢(( 1), ,0(T5))
8(T, N T) = 6(T1) N 6(Ts)
(T1 U Tg) = H(Tl) U H(TQ)
) =

0(~{c1,-.. ,en}) = (D = U;(¢ei(D, ..., D)) U{L}

We have added a case for set-complement with the intuitive meaning. The notation ¢.(D, ... ,D) denotes
the largest type with head constructor c. Since ¢ can be contravariant in certain fields, we use D to denote
D if it occurs in a covariant field, and {L} if it occurs in a contravariant field.

The meaning functions ¢. must satisfy certain properties for the interpretation to be sensible and to
guarantee the soundness of constraint resolution (see Section 4.2). These properties are summarized by the
axioms below:

1. ¢c: (2P)" = 2P if ¢ € X is of arity n.
2. The variance and strictness of ¢. agrees with the declared variance and strictness of c.
(For covariant fields, X CY = ¢.(A1,... , 4y, X, B1,...,Bn) Coc(A1,... ,4,,Y,By1,... ,Bp).)
X D {L}if the ith field is strict
3. ¢e(X1,...,Xpn) D{L} forall Xy,..., X, ,st. {Xi S {L} otherwise
4. ¢.(D,... ,D)N¢4(D,...,D) = {1} for all ¢ # d. (i.e. constructor meanings are disjoint)

5. | U (D, ... ) cD
ceX
6. pc(X1,..., Xp)Ne(Y1,...,Y,) =¢(X101Y1,..., X, 0, Y0)
for any upward-closed type ¢.(Y1,...,Y,,)
where or — { N if the ith field is covariant
! U if the ith field is contravariant



Axioms 1 and 2 require that the meaning function and the declared constructors agree in arity and variance.
Axiom 3 requires that for all arguments each constructor ¢ has at least one value besides bottom in its
interpretation, as long as the arguments avoid the strictness of ¢. Axiom 4 says that distinct constructors
map to disjoint meanings (besides bottom). Axiom 5 states that the domain D is larger than the union of
all the constructor meanings. This axiom guarantees that no finite union is D and no complement is { L}!, a
fact that simplifies the resolution of constraints involving set-complement. Finally, Axiom 6 is a distributive
law required to simplify intersections syntactically.

To illustrate that standard interpretations satisfy these axioms, consider the function type constructor
- — -:8s — s with the usual interpretation

¢ (X,Y)={flteX = f(t)eY}U{L}

The interpretation agrees with the signature in arity and variance: As Y grows, more functions satisfy the
implication, and as X grows, fewer functions satisfy the implication (Axioms 1 and 2). Axiom 3 is satisfied
since even for the smallest function type X = D, and Y = { L} the interpretation contains the least function
Az. L, which is different from 1. Axiom 4 implies that no other constructors d € X map to function values,
since { L} — D contains every function. Axiom 5 is not relevant for a single constructor. Finally, Axiom 6 is
satisfied since the only upward-closed function type is ¢_, ({L}, D) (all functions):

(b_)(X,Y) n ¢—>({J-}7D) = ¢—>(Xa Y)
=¢_,(Xu{l},YNnD)

Before we define the solutions to systems of constraints in Section 3.3, we need the notion of a contour.
Contours capture semantically the property that u-types have a single head constructor. A semantic notion
of a single head constructor is needed to define the solutions for u-variables. Intuitively, contours correspond
to the largest u-types in the domain D.

Definition 1 (Contour). A set X C D is a contour, iff ¢ : ¢1...¢, — u € X such that
X =¢.(11,...,Y)

and forall k=1...n,
a contour if 1y =uor iy, =1
Yk= D ifl,k:S
{J_} ifl,k =5

Note that by Axiom 3 above, contours are strictly larger than {1 }. Given a contour assignment ©y,, mapping
u-variables to contours, we define an alternative interpretation of u-types as contours:

Oaw) = Oy, (o)
O(c(Th, ... ,Ty)) = ¢ (Y1,...,Y,) wherec:u;...1, —» uand
OTy)if tp =uory =1
Yk = D if L, = 8
{J_} ifip, =58

3.3 Constraints and Admissible Solutions

Constraints are formed between pairs of u-types or pairs of s-types, written 77 C, > and 77 Cg T
respectively. Consider again the example constraint exn(Match) C « from Section 2.1. Given the semantics
of ML, we want to rule out solutions such as o = int U exn(Match). The only solutions we are interested in
are of the form a = exn(f), where Match C 3, i.e. @ has a single head constructor in all solutions. We can
achieve exactly this effect using C,, constraints. The meaning of Cg and C, constraints is given below.

Definition 2 (Solution). A pair (fy, 0y, ) consisting of a type assignment 6y and a contour assignment
Oy, is a solution to a system of constraints S if and only if

! Different from [AW93].



— 0(T1) C 0(T>) for every constraint 73 C, T € S.
(t=uorit=s)

— O(Ty) = O(T3) for every constraint T} C,, T € S.
(The contours of u-constrained types must be equal.)

— Oy(«a) C Oy, («) for every u-variable « in S.
(The solution for « agrees with the contour assigned to «.)

We illustrate Definition 2 with a few examples. Consider the signatures X' of strict constructors

c:s—u
d:s—u

and the constraint c(0) C, d(1). Since c is strict, c¢(0) = 0, so 8(c(0)) C §(d(1)) is satisfied for any 6. For an
inclusion Cg this would be enough. However, the contours ©@(c(0)) and ©(d(1)) are strictly larger than {1}
(Axiom 3) and thus cannot be equal by Axiom 4. Therefore, this constraint is unsatisfiable.

Next consider the constraint a C,, d(1). This constraint is satisfied by any assignment for « of the form
d(8). To see why a must be of this form, note that the contour ©@(a)) must be equal to ©(d(1)) in all solutions.
Since any solution for @ must agree with this contour, no solutions are lost by equating a = d(8) (5 fresh).
These equations make it possible to solve parts of the constraints using unification. By the same reasoning,
one can show that the constraints a Cy, ¢(1) A a Cy d(1) have no solution.

4 Computing Solutions

This section describes how to compute the solutions of a system of u and s-constraints. Section 4.1 de-
scribes why adapting the resolution of [AW93] to our type language is difficult due to our parameterized
interpretation of types and how this problem can be solved, and Section 4.2 describes the resolution rules.

The following terminology is used in the next sections. Type expressions on the left of constraints are said
to occur in positive positions, and type expressions on the right of constraints occur in negative positions. Type
sub-expressions occur in the same position (positive or negative) as their immediately enclosing expression,
unless the sub-expression is a contravariant field of a constructor, in which case its position is inverse w.r.t. the
enclosing expression. For example, assuming the signature for a function type constructor is - — - :8s — s,
then in the constraint 77 — T> Cg 15 — T}, the sub-expressions 77 and 7} occur negatively and 75 and 713
occur positively.

4.1 Upward-closed Monotypes and Type Complement

We first review the theory developed in [AW93] to solve inclusion constraints and then adapt it to our new
formalism. The simple part is to extend the resolution rules to solve u-constraints (Section 4.2). Here, we
deal with the more serious problem, namely adapting the resolution to our parameterized interpretations ¢,
of type constructors.

The resolution rules given by Aiken and Wimmers require the ability to compute two type expressions
T and =T for any type expression 7. The type expression T is both ground (has no variables) and has
the property that it denotes the smallest upward-closed set s.t. o(7') D o(T) for all assignments o. For
example T} — Ty = 0 — 1 (the set of all functions) for any 7} and 7. The type expression =7 denotes
(D —o(T))U{L}, which is the type complement of T'. (To see this, note that T U-T =1 and TN -1 = 0.)

The algorithms for computing 7' and —7T given in [AW93] are syntax-directed and depend crucially on
the fixed interpretation of constructors described in Section 3.2. Since we parameterize the interpretation of
constructors, we have no hope of giving an algorithm that computes upward-closed types and complement
syntactically.

Before we outline our solution to this problem, we need to delve deeper into the reasons why upward-
closure and type complement are needed for constraint resolution. Constraint resolution involves system-
atically rewriting constraints into simpler forms. There are two forms of constraints that are difficult to
decompose during resolution: 71 N7y Cg T35 and 17 Cg 15 UT5. In pure set theory, the constraint 77 C 1o U153
is equivalent to 77 N —T» C T5. However, we interpret set expressions as types (downward-closed sets of



values [MPS84]) and the complement of a type is not necessarily a downward-closed set, and thus not a type.
For example, the complement of the function type 1 — 0 contains every function except the least function
Az.L. Only the complements of upward-closed types are themselves types.

Aiken and Wimmers show how to solve these problematic constraints under the following restrictions

— Unions 77 U T5 in negative positions must be disjoint, i.e. 71 N 7% = 0 in all solutions.
— Intersections in positive positions must be of the form TN M, where M denotes an upward-closed
monotype (ground type). (In the rest of the paper, M stands for upward-closed monotypes.)

The problematic constraints are then simplified using the following two rules:

T §T2UT3<:>T1F|—|E§T3 A Tlﬂ_!ngTQ

T'NMCTy, & T g(TgﬁM)U_'M
The resolution rules are to be read as left-to-right rewrite rules. Observe that the right-hand sides of the
rules introduce upward-closed types and complement types not present on the left.

These resolution rules are unusable in our framework since we cannot form the upward-closure and
complement of types during resolution. Fortunately, inspection of the rewrite rules shows that the set of
upward-closed monotypes required during resolution is fixed by the initial constraints. Therefore, we can
circumvent the problem by putting the constraints in a form that makes all required upward-closed monotypes

explicit in the initial system of constraints. To make the necessary upward-closed monotypes explicit in the
constraints, we define an abbreviation Pat as follows.? Let M be an upward-closed monotype. Define

Pat(T, M) = (I N M) U-~M

With Pat we can reformulate the resolution rules for intersections in positive positions as follows
'NnMCT, =T C Pat(Tg,M)

Note that the right-side of the equivalence uses only type expressions present on the left. Representing
arbitrary disjoint unions in negative positions is more complex. Let 77 and T3 be disjoint types. Observe
that

Pat(Ty,T1) N Pat(Tz, T») N Pat(0, ~(T} UTy))

=(TinThu-"T)N(TyNTyU-Ty)N (T, UTy) def. of Pat

=(Ty U-T1) N (TyU—Ty) N (Ty UTy) TNT=T

=TinTenTy UThinTenNT, U TyNn-TonNTy UTin-TonT, U  distribute
“TiNnTonTy U "LNTenT, U -T1Nn-"TeNTy U Ty N-ToNTy

=T'nN-T,NT, U -"TINT,NT, TN-T=0,1T1NT,=0
=T\N-Ty, U 11 NTH TNnT=T
=Ty U T, TlnTZZO

To represent Ty UT; in negative positions, we need the upward-closures T}, T%, and the complement — (77, UTy).
Below, we show the resolution of a constraint involving 77 U Ts:

T g Tl U T2 =T g Pat(Tl,Tl) n Pat(Tz,Tz) N Pat(O, _I(Tl U Tz))
& T C Pat(T1,T7) A T CPat(T,Ts) A T C Pat(0, ~(T1 UTS))
@TﬁTlQTl A TﬂngTz A Tﬂﬂ(TlUTg)QO

% Pat stands for pattern, since it is used most frequently in constraints generated for pattern matching.



Su{0C.T}=S (

Su{Tc 1} =8 (

Su{c(Tr,... ,Tp) C, c(T1,..., TNy =SU{Th C,, T1,..., T, C,,, Tn} wherec:t1...tn —1¢ (
SU{Tl UTs gsT}ESU{Tl G T, T QST} (

SU{TC TN} =Su{T ST, T Cs Tn} )
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Fig. 4. Resolution rules for constraints.

Instead of using unions in negative positions, constraints need to be written as intersections of Pat. Only
unions of upward-closed monotypes remain, and these can only appear in second positions of Pat, where
they never need to be decomposed.

To summarize, we replace the two rules of [AW93] for simplifying intersections in positive positions
and unions in negative positions with a single rule, along with an abbreviation Pat containing an implicit
complement. The new resolution rule uses only sub-expressions of the original constraints, and does not
require the formation of upward-closed and complement types during resolution. Because an implementation
of our system cannot know the intended interpretation of constructors, our approach effectively requires the
analysis designer to provide the necessary upward-closed and complement types explicitly to the system.

4.2 Constraint Resolution

Having dealt with the necessary changes to accommodate the parameterized semantics of constructors, we
can now focus on the resolution of constraints between u-types. Figure 4 shows the resolution rules. Due
to the sorted algebra of types the resolution rules preserve sorts, i.e. given constraints between types of the
same sort, the resolution rules only produce constraints between equal sorts. The rules should be read as
left-to-right rewrite rules. Rules 1-7 are from [AW93]. Below the line are the new rules. Rules 8 and 9 are
discussed above. Note the side condition on Rule 8, which, along with intersection simplification (Figure 5),
avoids a cycle in the rewrite rules. Rules 10 and 11 deal with complement types. Rules 12 and 13 flip the
inclusion for constraints arising from contravariant fields. Rules 14 and 15 instantiate u-variables to satisfy
contour equalities (similar to the approach of [HM97, Mos96]); these rules introduce fresh variables.
We must ensure that the resolution process terminates. The simple constraint

a Cy c(a)
produces the sequence of constraints @ = ¢(ay), a1 Cy @, a1 Cy ¢(ay), ete. ad infinitum. The problem is

essentially the same as in unification and can be solved with an occurs check that ensures the instantiated
variable o does not appear in the instantiation.
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Fig. 5. Simplifying intersections 7'M M where M is an upward-closed monotype.

Constraints are solved by applying the resolution rules until no rule applies.? The resulting system is
either inconsistent (meaning it has a constraint listed in Figure 6 or fails an occurs check), in which case
it has no solutions, or the the constraints are all on variables and the solutions can be characterized in the
same way as described in [AW93]%

We briefly discuss the soundness of the resolution rules. Rules 1, 2 and 6 are obviously sound. Rule 3
follows from the variance of constructors (Axiom 2), Rules 4 and 5 from standard set theory. Rules 7-9 follow
from set theory, disjointness (Axiom 4), and Axiom 6. Rules 10 and 11 are sound by Axioms 4 and 5.

While the resolution rules are sound, they may be incomplete. If the ¢. are not injective (e.g. con-
sider strict constructors), the resolution of constructors may impose stronger constraints on arguments than
necessary, and more system may be rejected as inconsistent.

As mentioned above, intersections in positive positions must be simplified to guarantee that rule 9 need
only be applied to a left-hand side of the form «a N M. We briefly discuss the intersection simplification in
Figure 5. Intersections can in principle only be formed between s-types. However, it is convenient to express
N-simplification using intersections between u-types that are always eliminated as part of the simplification
process. We use the operators Ng and N, to distinguish between intersections on s-types and u-types respec-
tively. The notation Nz and Ng is used for unions that appear due to contravariant fields. Since contravariant
fields in upward-closed monotypes must be 0, the only forms involving Nz and Ng are T'Ns 0 = T and
T Ng 0 = T'. Intersections involving u-variables a N ¢(...) are simplified by instantiating o = ¢(aq, ... , ay).
The variable @ must be of this form in order for the intersection to have a contour (see Section 3.2). Fur-
thermore, note that in upward-closed monotypes appearing in intersections we allow the type 1 in covariant
(resp. 0 in contravariant) fields of sort u. Symmetric cases are omitted from Figure 5.

Our motivation for the presented framework was to use unification to solve constraints between u-types
in nearly linear time. Due to the generation of fresh variables during resolution of C,, constraints, solving
may actually require exponential time in the size of the constraints. The reason is that the constraints can

3 Note that we have omitted the rules for transitive constraints, which are standard.
4 Additionally, the meaning functions ¢. must satisfy ¢c(X1,...,Xn) CD; = Xi...X, C D;_1, where D; are
elements of the increasing sequence of approximations Dy C D1 C D> ..., that make up the domain D.
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Fig. 6. Inconsistent constraint systems.

describe types of exponential tree size and that fresh copies of such types may be formed. In unification
based type inference, types can also be of exponential size, but their shared graph representation is always
linear in the original constraints and never copied. In practice, the complexity of our approach depends on
the application. As long as the inferred types are relatively small (as e.g. in the case of ML [HM97]), the
practical complexity appears to be close to linear.

5 Exception Inference for ML

We now instantiate the developed framework to our motivating example from Section 2.2. The signatures of
type constructors appear in Figure 3 and have already been described in Section 3.1.

We cast the type and exception inference for ML as an effect inference system [LG88]. In this model,
every expression has a type and an effect. The type of an expression describes the set of possible unexcep-
tional values of the expression, whereas the effect describes the set of exceptions that may be raised during
evaluation. Note that exception inference never fails for well-typed ML programs.

Figure 7 shows the type rules for exception inference. Types for constants, exceptions and primitive
operators are assumed to be defined in an initial type environment. Judgments have the form A+ e: 7 !0,
meaning that under the type assumptions A, expression e has type 7 and may raise the exceptions o. There
are also judgments for exception patterns Fp p : (0,¢,7, A) meaning that pattern p matches exception o
and binds variables z in the domain of A to the type A(x). Furthermore, the judgment infers the exception
constructor ¢ and upward-closed monotype @ of the pattern. Observe that the rule for handle expressions
makes use of the full expressive power of set types. It uses intersection and complement to form the set of
exceptions that pass through the handler, and union is used to combine the exceptions of all the handlers.
The constraint o9 Cs Pat(o;,7;,) intuitively separates og into those values that match the pattern (o;) and
those that do not (—7;) (see definition Section 4.1).

Some remarks about extending the described exception inference to core SML are in order.

— Let-polymorphism is handled as described in [AW93].

— Exception declarations in SML produce new exceptions at every evaluation. Exception declarations
within let expressions can therefore give rise to an unbounded number of distinct exceptions, all sharing
the same name. Consequently, only exceptions declared at toplevel can safely be filtered by name in
handle expressions. In practice, we find that the vast majority of exceptions are declared at toplevel.
This problem does not arise in the CAML dialect of ML.

— Datatypes hide the internal structure of values. We must ensure that exceptions do not “disappear” into
datatypes. To this end, we extend datatypes containing exception values (directly or through functions)
with a single extra type parameter to capture these exceptions.

— ML has mutable references. We treat these as special cases in our implementation.
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Fig. 7. Type and exception inference rules for Mini-ML.

We have implemented the ML exception inference using an untuned prototype implementation of the general
constraint framework. The largest program we have tested so far is the lexer generator ml-lex (1200 lines
of ML). The analysis time for ml-lex is 2.8sec on a 200MHz Pentium with 64MB of main memory. This
compares well to the 0.9sec the SML/NJ compiler requires to type-check the same program. The analysis
infers the following type for the main function lexGen:

lexGen : string -(Match \/ eof \/ error \/ lex_error \/ Subscript)-> unit

The five uncaught exceptions correspond exactly to the results reported by Yi [Yi94].

6 Related Work

Work on set-based program analysis [Hei92, FF97] and inclusion constraint-based type inference [AWL94,
Pot96, FA96, TS96, MW97] has mostly focused on how to simplify constraints to achieve scalability. The
developed techniques and heuristics are orthogonal to our approach of restricting the interesting solutions of
constraints. We deem constraint simplification still necessary on the regular inclusion constraints that arise
in our approach.

In [MNP97] the authors describe INES, a system for solving inclusion constraints over non-empty sets
of trees. They give an algorithm for computing the largest solution of the constraints and show that equal-



ity constraints between set expressions can be solved using unification. Their constraint language is less
expressive than ours and they only compute a particular solution of the constraints.

In type disciplines based on primitive subtyping [Mit84, FM88], the base types form a partial order. This
order induces a partial order on types by structural extension over function type constructors, tuples, etc.
Subtype constraints can be solved structurally until only atomic constraints (between atoms) remain. There is
a strong parallel to our approach in that we can solve inclusion constraints between u-types structurally until
we are left with inclusion constraints between s-types. Our approach differs however in that the constraints
between s-types may induce new constraints between u-types, whereas atomic subtyping constraints can
never induce new structural constraints.

Effect systems [Luc87] naturally contain a mixture of Hindley-Milner types and sets for effects. In [LG88]
Lucassen and Gifford describe type and effect inference rules using a subset relation on types induced by the
subset relation of effect sets contained in the types. However, they do not show how to solve such constraints
and, in fact, in a later paper drop the subset constraints for equality constraints which they solve with
generalized unification [JG91]. Similarly, Tofte and Talpin [TT94] use a mixture of types and sets in an effect
system to infer allocation and deallocation points of memory regions at compile-time. But their inference
rules are based on equality constraints which they solve using a generalized unification procedure.

Henglein’s work on efficient binding time analysis [Hen91] and tag inference [Hen92] also combines sub-
typing and equality constraints. His algorithms runs in nearly linear time. They can unfortunately not be
directly expressed in our framework.

In [SH97] the authors study points-to analysis w.r.t. the precision—efficiency tradeoff. They contrast an
algorithm based on inclusion constraints [And94] with the equality based algorithm of [Ste96], and then
describe a spectrum of algorithms in between. We are currently using the same analyses to tune and validate
our framework.

7 Conclusion

We described a parameterized constraint formalism that combines inclusion constraints over terms and sets.
The formalism covers an entire spectrum of program analyses with varying degrees of precision and efficiency,
ranging from Hindley-Milner type inference to complete inclusion based analysis.

We instantiated the framework with an example analysis for inferring types and exceptions for a subset
of ML. Preliminary timing measurements are very encouraging. The running time of our type inference with
exceptions is roughly within a factor of three of standard type inference on medium-size programs.
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