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least type- and constraint-based ideas). To this end, in addition to providingconstraint speci�cation and resolution components, the BANE distribution alsoprovides parsers and interfaces for popular languages (currently C and ML) aswell as test suites of programs ranging in size from a few hundred to tens ofthousands of lines of code.BANE has been used to implement several realistic program analyses, in-cluding an uncaught exception inference system for ML programs [FA97,FFA98],points-to analyses for C [FFA97,FFSA98], and a race condition analysis for afactory control language [AFS98]. Each of these analyses also scales to largeprograms|respectively at least 20,000 lines of ML, 100,000 lines of C, and pro-duction factory control programs. These are the largest programs we have avail-able (the peculiar syntax of the control language precludes counting lines ofcode).2 System ArchitectureConstraint-based analysis is appealing because elaborate analyses can be ex-pressed with a concise and simple set of constraint generation rules. Theserules separate analysis speci�cation (constraint generation) from implementa-tion (constraint resolution). Implementing an analysis using BANE involves onlywriting code to (1) generate the appropriate constraints from the program textand (2) interpret the solutions of the constraints. Part (1) is usually a simplerecursive walk of the abstract-syntax tree, and part (2) is usually testing forstraightforward properties of the constraint solutions. The system takes careof constraint representation, resolution, and transformation. Thus, BANE freesthe analysis designer from writing a constraint solver, usually the most di�cultportion of a constraint-based analysis to design and engineer.In designing a program analysis toolkit one soon realizes that no single for-malism covers both a large fraction of interesting analyses and provides uniformlygood performance in an implementation. BANE provides a number of di�erentconstraint sorts: constraint languages and associated resolution engines that canbe reused as appropriate for di�erent applications. Each sort is characterized bya language of expressions, a constraint relation, a solution space, and an imple-mentation strategy. In some cases BANE provides multiple implementations ofthe same constraint language as distinct sorts because the di�erent implementa-tions provide di�erent engineering trade-o�s to the user. Extending BANE withnew sorts is straightforward.An innovation in BANE is support for mixed constraints: the use of multiplesorts of constraints in a single application [FA97]. In addition to supportingnaturally multi-sorted applications, we believe the ability to change constraintlanguages allows analysis designers to explore �ne-grain engineering decisions,targeting subproblems of an analysis with the constraint system that gives thebest e�ciency/precision properties for the task at hand. Section 3 provides anexample of successively re�ning an analysis through mixed constraints.



[ : Set Set! Set\ : Set Set! Set:fc1; : : : ; cng : Set for any set of Set-constructors ci 2 �Set0 : Set1 : SetFig. 1. Operations in the sort Set.Mixed constraint systems are formalized using a many-sorted algebra of ex-pressions. Each sort s includes a set of variables Vs, a set of constructors �s,and possibly some other operations. Each sort has a constraint relation �s. Con-straints and resolution rules observe sorts; that is, a constraint X �s Y impliesX and Y are s-expressions.The user selects the appropriate mixture of constraints by providing con-structor signatures. If S is the set of sorts, each n-ary constructor c is given asignature c : �1 : : : �n ! Swhere �i is s or s for some s 2 S. Overlined sorts mark contravariant argumentsof c; the rest are covariant arguments. For example, let sort Term be a set ofconstructors �Term and variables VTerm with no additional operations. Pure termsover �Term and VTerm are de�ned by giving constructor signaturesc : Term : : : Term| {z }arity(c) ! Term c 2 �TermAs another example, let Set be a sort with the set operators in Figure 1 (the setoperations plus least and greatest sets). Pure set expressions are de�ned by thesignatures c : Set : : : Set| {z }arity(c) ! Set c 2 �SetThere are many examples of program analyses based on equations betweenTerms (e.g., [DM82,Hen92,Ste96]) and based on inclusion constraints betweenSet expressions (e.g., [And94,AWL94,EST95,FFK+96,Hei94]). The literaturealso has natural examples of mixed constraint systems, although they have notbeen recognized previously as a distinct category. For example, many e�ect sys-tems [GJSO92] use a function space constructor� �! � : Term Set Term! Termwhere the Set expressions are used only to carry the set of latent e�ects of thefunction.These three examples|terms, set expressions, and a mixed language with setand term components|illustrate that by altering the signatures of constructors



a range of analysis domains can be realized. For example, a 
ow-based analy-sis using set expressions can be coarsened to a uni�cation-based analysis usingterms. Similarly, a term-based analysis can be re�ned to an e�ect analysis byadding a Set component to the ! constructor.2.1 The FrameworkFrom the user's point of view, our framework consists of a number of sorts ofexpressions together with resolution rules for constraints over those expressions.In addition, the user must provide constructor signatures specifying how thedi�erent sorts are combined. In this section we focus on the three sorts Term,FlowTerm, and Set. The distributed implementation also supports a Row sort[R�em89] for modeling records.Besides constructors and variables a sort may have arbitrary operations pe-culiar to that sort; for example, sort Set includes set operations. Each sorts has a constraint relation �s and resolution rules. Constraints and resolu-tion rules preserve sorts, so that X �s Y implies X and Y are s-expressions.For example, for the Term sort, the constraint relation �Term is equality, andthe resolution rules implement term uni�cation for constructors with signaturesTerm : : : Term! Term. For clarity we write the constraint relation of term uni�-cation as \=t" instead of �Term.The resolution rules in Figure 2 are read as left-to-right rewrite rules. The left-and right-hand sides of rules are conjunctions of constraints. Sort FlowTerm hasthe expressions of sort Term but a di�erent set of resolution rules (see Figure 2b).FlowTerm uses inclusion instead of equality constraints. The inclusion constraintsare more precise, but also more expensive to resolve, requiring exponential timein the worst case. For certain applications, however, FlowTerm is very e�cient[HM97]. We write �ft for the FlowTerm constraint relation.The constructor rules connect constraints of di�erent sorts. For example, insort FlowTerm the ruleS ^ c(T1; : : : ; Tn) �ft c(T 01; : : : ; T 0n) � S ^ T1 ��1 T 01 ^ � � � ^ Tn ��n T 0nif c : �1 � � � �n ! FlowTermsays constraints propagate structurally to constructor arguments; this is whereFlowTerm has a precision advantage over Term (see below). Note this rule pre-serves sorts. The rule for constructors of sort Term (Figure 2a) is slightly di�erentbecause �Term is equality, a symmetric relation. Thus, constraints on constructorarguments are also symmetric:S ^ f(T1; : : : ; Tn) =t f(T 01; : : : ; T 0n) � S ^ T1 ��1 T 01 ^ T 01 ��1 T1 ^ � � � ^Tn ��n T 0n ^ T 0n ��n Tnif f : �1 � � � �n ! TermFigure 2c shows the rules for the Set sort. In addition to the standard rules[AW93], Set includes special rules for set complement, which is problematic inthe presence of contravariant constructors. We deal with set complement using



S ^ f(T1; : : : ; Tn) =t f(T 01; : : : ; T 0n) � S ^ T1 ��1 T 01 ^ T 01 ��1 T1 ^ � � � ^Tn ��n T 0n ^ T 0n ��n Tn if f : �1 � � � �n ! TermS ^ f(: : : ) =t g(: : : ) � inconsistent if f 6= g(a) Resolution rules for sort Term.S ^ c(T1; : : : ; Tn) �ft c(T 01; : : : ; T 0n) � S ^ T1 ��1 T 01 ^ � � � ^ Tn ��n T 0nif c : �1 � � � �n ! FlowTermS ^ c(: : : ) �ft d(: : : ) � inconsistent if c 6= dS ^ � �ft c(T1; : : : ; Tn) � S ^ � = c(�1; : : : ; �n) ^ �i ��i Ti�i fresh, c : �1 � � � �n ! FlowTermS ^ c(T1; : : : ; Tn) �ft � � S ^ � = c(�1; : : : ; �n) ^ Ti ��i �i�i fresh, c : �1 � � � �n ! FlowTerm(b) Resolution rules for sort FlowTerm.S ^ 0 �s T � SS ^ T �s 1 � SS ^ c(T1; : : : ; Tn) �s c(T 01; : : : ; T 0n) � S ^ T1 ��1 T 01 ^ � � � ^ Tn ��n T 0nif c : �1 � � � �n ! SetS ^ c(: : : ) �s d(: : : ) � inconsistent if c 6= dS ^ T1 [ T2 �s T � S ^ T1 �s T ^ T2 �s TS ^ T �s T1 \ T2 � S ^ T �s T1 ^ T �s T2S ^ � �s � � SS ^ � \ T �s � � SS ^ T1 �s Pat(T2; T3) � S ^ T1 \ T3 �s T2S ^ � \ T1 �s T2 � S ^ � �s Pat(T2; T1)S ^ :fc1; : : : ; cng �s :fd1; : : : ; dmg � S if fd1; : : : ; dmg � fc1; : : : ; cngS ^ c(: : : ) �s :fd1; : : : ; dmg � S if c 62 fd1; : : : ; dmg(c) Resolution rules for sort Set.S ^X �� � ^ � �� Y � S ^X �� � ^ � �� Y ^X �� YS ^ T1 �� T2 � S ^ T2 �� T1(d) General rules.Fig. 2. Resolution rules for constraints.



two mechanisms. First, explicit complements have the form :fc1; : : : ; cng, whichhas all values of sort Set except those with head constructor c1, : : : ,cn. Second,more general complements are represented implicitly. De�ne :R to be the setsuch that R \ :R = 0 and R [ :R = 1 (in all solutions). Now de�nePat(T;R) = (T \ R) [ :RThe operator Pat 2 encapsulates a disjoint union involving a complement. Patis equivalent to in power to disjoint union, but constraint resolution involvingPat does not require computing complements. Of course, wherever Pat(T;R) isused the set :R must exist; this is an obligation of the analysis designer (see[FA97] for details). Given the de�nitions of Pat and :fc1; : : : ; cng, basic settheory shows the rules in Figure 2c are sound.Our speci�cation of sort Set is incomplete. We have omitted some rulesfor simplifying intersections and some restrictions on the form of solvable con-straints. The details may be found in [AW93,FA97].Figure 2d gives two general rules that apply to all sorts. The �rst rule ex-presses that �� is transitive. The second 
ips constraints that arise from con-travariant constructor arguments.We now present a small example of a mixed constraint system. Consider ane�ect system where each function type carries a set of atomic e�ects (e.g., theset of globally visible variables that may be modi�ed by invoking the function).Let the constructors have signatures� �! � : FlowTerm Set FlowTerm! FlowTermint : FlowTerma1; : : : ; an : Set (the atomic e�ects)The following constraint � a1[a2�! � �ft int 
! intis resolved as follows: � a1[a2�! � �ft int 
! int) � �tf int ^ a1 [ a2 �s 
 ^ � �ft int) int �tf � ^ a1 [ a2 �s 
 ^ � �ft int) � = int ^ a1 [ a2 �s 
 ^ � = intThus in all solutions � and � are both int and 
 is a superset of a1 [ a2.2.2 ScalabilityThe main technical challenge in BANE is to develop methods for scaling constraint-based analyses to large programs. Designing for scalability has led to a system2 Pat stands for \pattern," because it is used most often to express pattern matching.



with a signi�cantly di�erent organization than other program analysis systems[Hei94,AWL94].To handle very large programs it is essential that the implementation bestructured so that independent program components can be analyzed separately�rst and the results combined later. Consider the following generic inferencerule where expressions are assigned types under some set of assumptions A andconstraints C A;C ` e1 : �1 A;C ` e2 : �2A;C ` E[e1; e2] : �where E[e1; e2] is a compound expression with subexpressions e1 and e2. Inall other implementations we know of, such inference systems are realized byaccumulating a set of global constraints C. In BANE one can write rules asabove, but the following alternative is also provided:A;C1 ` e1 : �1 A;C2 ` e2 : �2A;C1 ^ C2 ` E[e1; e2] : �C1 contains only the constraints required to type e1 (similarly for C2 and e2).This structure has advantages. First, separate analysis of program componentsis trivial by design rather than added as an afterthought. Second, the runningtime of algorithms that examine the constraints (e.g., constraint simpli�cation,which replaces constraint systems by equivalent, and smaller, systems) is guar-anteed to be a function only of the expression being analyzed; in particular,the running time is independent of the rest of the program. Note that this de-sign changes the primitive operation for accumulating constraints from addingindividual constraints to a global system to combining independent constraintsystems. Because this latter operation is more expensive, BANE applicationstend to use a mixture of the two forms of rules to obtain good overall perfor-mance and scalability.Many other aspects of the BANE architecture have been engineered pri-marily for scalability [FA96]. The emphasis on scalability, plus the overhead ofsupporting general user-speci�ed constructor signatures, has a cost in runtimeperformance, but this cost appears to be small. For example, a BANE imple-mentation of the type inference system for core Standard ML performs within afactor of two of the hand-written implementation in the SML/NJ compiler.In other cases a well-engineered constraint library can substantially out-perform hand-written implementations. BANE implementations of a class ofcubic-time 
ow analyses can be orders of magnitude faster than special-purposesystems because of optimizations implemented in the solver for BANE's set con-straint sort [FFSA98].3 The BANE Interface by ExampleThis section presents a simple analysis written in BANE. We show by examplehow an analysis can be successively re�ned using mixed constraints. BANE is



a library written in Standard ML of New Jersey [MTH90]. Writing a programanalysis using BANE requires ML code to traverse abstract syntax while gen-erating constraints and ML code to extract the desired information from thesolutions of the constraints.For reasons of e�ciency, BANE's implementation is stateful. BANE providesthe notion of a current constraint system (CCS) into which all constraints areadded. Functionality to create new constraint systems and to change the CCSare provided, so one is not limited to a single global constraint system. Forsimplicity, the examples in this section use only a single constraint system.3.1 A Trivial Example: Simple Type Inference for a LambdaCalculusThis example infers types for a lambda calculus with the following abstractsyntax:datatype ast =Var of string| Int of int| Fn of {formal:string, body:ast}| App of {function:ast, argument:ast}The syntax includes identi�ers (strings), primitive integers, abstraction, andapplication. The language of types consists of the primitive type int, a functiontype !, as well as type variables v.� ::= v j int j � ! �The �rst choice is the sort of expressions and constraints to use for the typeinference problem. All that is needed in this case are terms and term equality;the appropriate sort is Term (structure Bane.Term). To make the code morereadable, we rebind this structure as structure TypeSort.structure TypeSort = Bane.TermBANE uses distinct ML types for expressions of distinct sort. In this case, typeexpressions have ML typetype ty = TypeSort.T Bane.exprNext, we need the type constructors for integers and functions. The inte-ger type constructor can be formed using a constant signature, and a standardfunction type constructor is prede�ned.val int_tycon = Cons.new {name="int", signa=TypeSort.constSig}val fun_tycon = TypeSort.funConThe constant integer type is created by applying the integer constructor to anempty list of arguments. We also de�ne a function to apply the function type con-structor to the domain and range, using the generic function Bane.Common.cons: 'a constructor * genE list -> 'a expr that applies a constructor of sort



A ` x : A[x] [VAR] A ` i : int [INT]� freshA[x 7! �] ` e : �A ` �x:e : �! � [ABS] A ` e1 : �1A ` e2 : �2� fresh�1 = �2 ! �A ` e1 e2 : � [APP]Fig. 3. Type inference rules for example lambda calculus'a to a list of arguments. In general, constructor arguments can have a varietyof distinct sorts with distinct ML types. Since ML only allows homogeneouslytyped lists, BANE uses an ML type genE for expressions of any sort. The lackof subtyping in ML forces us to use conversion functions TypeSort.toGenE toconvert the domain and range from TypeSort.T Bane.expr to Bane.genE.val intTy = Bane.Common.cons (int_tycon, [])fun funTy (domain,range) = Common.cons (fun_tycon,[TypeSort.toGenE domain,TypeSort.toGenE range])Finally, we de�ne a function for creating fresh type variables by specializingthe generic function Bane.Var.freshVar : 'a Bane.sort -> 'a Bane.expr.We also bind operator == to the equality constraint of TypeSort.fun freshTyVar () = Bane.Var.freshVar TypeSort.sortinfix ==val op == = TypeSort.unifyWith these auxiliary bindings, the standard type inference rules in Figure 3are translated directly into a case analysis on the abstract syntax. Type envi-ronments are provided by a module with the following signature:signature ENV =sig type name = stringtype 'a envval empty : 'a envval insert : 'a env * name * 'a -> 'a envval find : 'a env * name -> 'a optionendThe type of identi�ers is simply looked up in the environment. If the environmentcontains no assumption for an identi�er, an error is reported.fun elaborate env ast =case ast of



Var x => (case Env.find (env, x) ofSOME ty => ty| NONE => <report error: free variable>)The integer case is even simpler:| Int i => intTyAbstractions are typed by creating a fresh unconstrained type variable forthe lambda bound formal, extending the environment with a binding for theformal, and typing the body in the extended environment.| Fn {formal,body} =>let val v = freshTyVar ()val env' = Env.insert (env,formal,v)val body_ty = elaborate env' bodyin funTy (v, body_ty)endFor applications we obtain the function type ty1 and the argument typety2 via recursive calls. A fresh type variable result stands for the result of theapplication. Type ty1 must be equal to a function type with domain ty2 andrange result. The handler around the equality constraint catches inconsistentconstraints in the case where ty1 is not a function, or the domain and argumentdon't agree.| App {function,argument} =>let val ty1 = elaborate env functionval ty2 = elaborate env argumentval result = freshTyVar ()val fty = funTy (ty2, result)in (ty1 == fty) handle exn =><report type error>;resultendWe haven't speci�ed whether our type language for lambda terms includesrecursive types. The Term sort allows recursive solutions by default. If only non-recursive solutions are desired, an occurs check can be enabled via a BANEoption:Bane.Flags.set (SOME TypeSort.sort) "occursCheck";As an example, consider the Y combinatorY = �f:(�x:f (x x))(�x:f (x x))Its inferred type is (�! �)! �where the type variable � is unconstrained. With the occurs check enabled, typeinference for Y fails.



3.2 Type Inference with Flow InformationThe simple type inference described above yields type information for eachlambda term or fails if the equality constraints have no solution. Suppose wewant to augment type inference to gather information about the set of lambdaabstractions to which each lambda expression may evaluate. We assume theabstract syntax is modi�ed so that lambda abstractions are labeled:| Fn of {formal:string, body:ast, label:string}Our goal is to re�ne function types to include a label-set, so that the type of alambda term not only describes the domain and the range, but also an approxi-mation of the set of syntactic abstractions to which it may evaluate. The functiontype constructor thus becomes a ternary constructor fun(dom ; rng ; labels). Theresulting analysis is similar to the 
ow analysis described in [Mos96]. The naturalchoice of constraint language for label-sets is obviously set constraints, and webind the structure LabelSet to one particular implementation of set constraints:structure LabelSet = Bane.SetIFWe de�ne the new function type constructor containing an extra �eld for thelabel-set by building a signature with three argument sorts, the �rst two beingType sorts and the last being a LabelSet sort. Note how the variance of eachconstructor argument is speci�ed in the signature through the use of functionsTypeSort.ctv arg (contravariance) and TypeSort.cov arg (covariance). Res-olution of equality constraints itself does not require variance annotations, butother aspects of BANE do.val funSig = TypeSort.newSig {args=[TypeSort.ctv_arg TypeSort.genSort,TypeSort.cov_arg TypeSort.genSort,TypeSort.cov_arg LabelSet.genSort],attributes=[]}val fun_tycon = Bane.Cons.new {name="fun", signa=funSig}We are now using a mixed constraint language: types are terms with embed-ded label-sets. Constraints between types are still equality constraints, and as aresult, induced constraints between label sets are also equalities.The type rules for abstraction and application are easily modi�ed to includelabel information.� freshA[x 7! �] ` e : �flg � � � freshA ` �lx:e : fun(�; �; �) [ABS] A ` e1 : �1A ` e2 : �2�; � fresh�1 = fun(�2; �; �)A ` e1 e2 : � [APP]Because Term constraints generate equality constraints on the embedded Sets,the label-sets of distinct abstractions may be equated during type inference.As a result, the [ABS] rule introduces a fresh label-set variable � along with aconstraint flg � � to correctly model that the lambda abstraction evaluates to



itself. (Note that this inclusion constraint is between Set expressions.) Using aconstrained variable rather than a constant set flg allows the label-set to bemerged with other sets through equality constraints. The handling of arrow-e�ects in region inference is similar [TT94].The label-set variable � introduced by each use of the [APP] rule stands forthe set of abstractions potentially 
owing to that application site.The code changes required to accommodate the new rules are minimal. Forabstractions, the label is converted into a constant set constructor with thesame name through Cons.new. A constant set expression is then built from theconstructor and used to constrain the fresh label-set variable labelvar. Finally,the label-set variable is used along with the domain and range to build thefunction type of the abstraction.| Fn {formal,body,label} =>let val v = freshTyVar ()val env' = Env.insert (env,formal,v)val body_ty = elaborate env' body(* create a new constant constructor *)val c = Cons.new {name=label, signa=LabelSet.constSig}val lab = Common.cons (c,[])val labelvar = freshLabelVar ()in (lab <= labelvar);funTy (v, body_ty, labelvar)endThe changes to the implementation of [APP] are even simpler, requiring only theintroduction of a fresh label-set variable. The label-set variable may be storedin a map for later inspection of the set of abstractions 
owing to particularapplication sites.| App {function,argument} =>let val ty1 = elaborate env functionval ty2 = elaborate env argumentval result = freshTyVar ()val labels = freshLabelVar ()val fty = funTy (ty2, result, labels)in (ty1 == fty) handle exn =><report type error>;resultendWe now provide a number of examples showing the information gathered bythe 
ow analysis. Consider the standard lambda encodings for values true, false,



nil, and cons, and their inferred types.true = �truex:�true1y:x � �1�! � �2�! � n true � �1 ^ true1 � �2false = �falsex:�false1y:y � �1�! � �2�! � n false � �1 ^ false1 � �2nil = �nilx:�nil1y:x � �1�! � �2�! � n nil � �1 ^ nil1 � �2cons = �conshd :�c1 tl :�c2x:�c3y:y hd tl � �1�! � �2�! 
 �3�! (� �4�! � �5�! �) �6�! � ncons � �1 ^ c1 � �2 ^c2 � �3 ^ c3 � �6The analysis yields constrained types � n C, where the constraints C describethe label-set variables embedded in type � . (To improve the readability of types,function types are written using the standard in�x form with label-sets on thearrow.) For example, the type of nil� �1�! � �2�! � n nil � �1 ^ nil1 � �2has the label-set �1 on the �rst arrow, and associated constraint nil � �1. Thelabel-set is extracted from the �nal type using the following BANE code frag-ment:val ty = elaborate error baseEnv eval labels = case Common.deCons (fun_tycon, ty) ofSOME [dom,rng,lab] =>LabelSet.tlb (LabelSet.fromGenE lab)| NONE => []The function Common.deCons is used to decompose constructed expressions.In this case we match the �nal type expression against the pattern fun(dom ; rng ; lab).If the match succeeds, deCons returns the list of arguments to the constructor. Inthis case we are interested in the least solution of the label component lab. Weobtain this information via the function LabelSet.tlb, which returns the tran-sitive lower-bound (TLB) of a given expression. The TLB is a list of constructedexpressions c(: : : ), in our case a list of constants corresponding to abstractionlabels.A slightly more complex example using the lambda expressions de�ned aboveis head = �headl:l nil (�head1x:�head2y:x) ((� �1�! �1 �2�! �) �3�!(� �4�! �2 �5�! �) �6�! 
)�7�! 
 nhead � �7^nil � �1^nil1 � �2^head1 � �4^head2 � �5head (cons true nil) : � �1�! � �2�! � n true � �1 ^ true1 � �2The expression head (cons true nil) takes the head of the list containing true.Even though the function head is de�ned to return nil if the argument is theempty list, the 
ow analysis correctly infers that the result in this case is true.



The use of equality constraints may cause undesired approximations in the
ow information. Consider an example taken from Section 3.1 of Mossin's the-sis [Mos96] select = �selectx:�sel1y:�sel2f:if x then f x else f yThe select function takes three arguments, x, y, and z, and depending on thetruth value of x, returns the result of applying f to either x or y. The ab-breviation if p then e1 else e2 stands for the application p e1 e2. The typeconstraints for the two applications of f cause the 
ow information of x and yto be merged. As a result, the applicationselect true false (�z:z)does not resolve the condition of the if-then-else to true. To observe the approx-imation directly in the result type, we modify the example slightly:select' = �selectx:�sel1y:�sel2f:if x then f x x else f y xNow f is applied to two arguments, the �rst being either x or y, the secondbeing x in both cases. We modify the example use of select such that f nowignores its �rst argument and simply returns the second, i.e. x. The expressionthus evaluates to true. select' true false (�z:�w:w)The inferred type for this application is� n � = � �1�! � �2�! �true [ false � �1true1 [ false1 � �2where the label-set of the function type indicates that the result can be eithertrue or false. This approximation can be overcome through the use of subtyping.3.3 Type Inference with Flow Information and SubtypingThe inclusion relation on label-sets embedded within types can be lifted to anatural subtyping relation on structural types. This idea has been described inthe context of control-
ow analysis in [HM97], for a more general 
ow analysisin [Mos96], and for more general set expressions in [FA97]. A subtype-basedanalysis where sets are embedded within terms can be realized in BANE throughthe use of the FlowTerm sort. The FlowTerm sort provides inclusion constraintsinstead of equality for the same language and solution space as the Term sort.To take advantage of the extra precision of subtype inference in our example,we �rst change the TypeSort structure to use the FlowTerm sort.structure TypeSort = Bane.FlowTerm



The de�nition of the function type constructor with labels remains the same,although the domain and range are now of sort FlowTerm.val funSig = TypeSort.newSig {args=[TypeSort.ctv_arg TypeSort.genSort,TypeSort.cov_arg TypeSort.genSort,TypeSort.cov_arg LabelSet.genSort],attributes=[]}val fun_tycon = Bane.Cons.new {name="fun", signa=funSig}The inference rules for abstraction and application change slightly. In the[ABS] rule, it is no longer necessary to introduce a fresh label-set variable, sincelabel sets are no longer merged in the subtype approach. Instead the singletonset can be directly embedded within the function type. In the [APP] rule, wesimply replace the equality constraint with an inclusion.A[x 7! �] ` e : �A ` �lx:e : fun(�; �; flg) [ABS] A ` e1 : �1A ` e2 : �2�1 � fun(�2; �; �)A ` e1 e2 : � [APP]Note that the inclusion constraint in the [APP] rule allows subsumption not onlyon the label-set of the function, but also on the domain and the range, sincefun(dom ; range; labels) � fun(�2; �; �), �2 � dom ^range � � ^labels � �We return to the example of the previous section where 
ow information wasmerged: select' true false (�z:�w:w)Using subtype inference, the type of this expression is� n � = � �1�! � �2�! �true � �1true1 � �2The 
ow information now precisely models the fact that only true is passed asthe second argument to �z:�w:w.4 Analysis FrameworksWe conclude by comparing BANE with other program analysis frameworks.There have been many such frameworks in the past; see for example[ATGL96,AM95,Ass96,CDG96,DC96,HMCCR93,TH92,Ven89,YH93]. Most frame-works are based on standard data
ow analysis, as �rst proposed by Cocke[Coc70] and developed by Kildall [Kil73] and Kam and Ullman [KU76], whileothers are based on more general forms of abstract interpretation [Ven89,YH93].



In previous frameworks the user speci�es a lattice and a set of transfer func-tions, either in a specialized language [AM95], in a Yacc-like system [TH92], or asa module conforming to a certain interface [ATGL96,CDG96,DC96,HMCCR93].The framework traverses a program representation (usually a control 
ow graph)either forwards or backwards, calling user-de�ned transfer functions until theanalysis reaches a �xed point.A fundamental distinction between BANE and these frameworks is the in-terface with a client analysis. In BANE, the interface is a system of constraints,which is an explicit data structure that the framework understands and caninspect and transform for best e�ect. In other frameworks the interface is thetransfer and lattice functions, all of which are de�ned by the client. These func-tions are opaque|their e�ect is unknown to the framework|which in generalmeans that the data
ow frameworks have less structure that can be exploitedby the implementation. For example, reasoning about termination of the frame-work is impossible without knowledge of the client. Additionally, using transferfunctions implies that information can 
ow conveniently only in one direction,which gives rise to the restriction in data
ow frameworks that analyses are eitherforwards or backwards. An analysis that is neither forwards nor backwards (e.g.,most forms of type inference) is at best awkward to code in this model.On the other hand, data
ow frameworks provide more support for the taskof implementing traditional data
ow analyses than BANE, since they typicallymanage the control 
ow graph and its traversal as well as the computationof abstract values. With BANE the user must write any needed traversal ofthe program structure, although this is usually a simple recursive walk of theabstract syntax tree. Since BANE has no knowledge of the program from whichconstraints are generated, BANE cannot directly exploit any special propertiesof program structure that might make constraint solving more e�cient.While there is very little experimental evidence on which to base any conclu-sion, it is our impression that an analysis implemented using the more generalframeworks with user-de�ned transfer functions su�ers a signi�cant performancepenalty (perhaps an order of magnitude) compared with a special-purpose im-plementation of the same analysis. Note that the data
ow frameworks target adi�erent class of applications than BANE, and we do not claim that BANE isparticularly useful for traditional data
ow problems. However, as discussed inSection 2.2, we do believe for problems with a natural type or constraint formu-lation that BANE provides users with signi�cant bene�ts in development timetogether with good scalability and good to excellent performance compared withhand-written implementations of the same analyses.5 ConclusionsBANE is a toolkit for constructing type- and constraint-based program analyses.An explicit goal of the project is to make realistic experimentation with programanalysis ideas much easier than is now the case. We hope that other researchers
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