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Abstract. BANE (the Berkeley Analysis Engine) is a publicly available
toolkit for constructing type- and constraint-based program analyses.
We describe the goals of the project, the rationale for BANE’s overall
design, some examples coded in BANE, and briefly compare BANE with
other program analysis frameworks.

1 Introduction

Automatic program analysis is central to contemporary compilers and software
engineering tools. Program analyses are also arguably the most difficult compo-
nents of such systems to develop, as significant theoretical and practical issues
must be addressed in even relatively straightforward analyses.

Program analysis poses difficult semantic problems, and considerable effort
has been devoted to understanding what it means for an analysis to be correct
[CCT77]. However, designing a theoretically well-founded analysis is necessary but
not sufficient for obtaining a useful analysis. Demonstrating utility requires im-
plementation and experimentation, preferably with large programs. Many plau-
sible analyses are not beneficial in practice, and others require substantial mod-
ification and tuning before producing useful information at reasonable cost.

It is important to prototype and realistically test analysis ideas, usually in
several variations, to judge the cost/performance trade-offs of multiple design
points. We know of no practical analytical method for showing utility, because
the set of programs that occur in practice is a very special, and not easily mod-
eled, subset of all programs. Unfortunately, experiments are relatively rare be-
cause of the substantial effort involved.

BANE (for the Berkeley ANalysis Engine) is a toolkit for constructing type-
and constraint-based program analyses. A goal of the project is to dramati-
cally lower the barriers to experimentation and to make it relatively easy for
researchers to realistically prototype and test new program analysis ideas (at
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least type- and constraint-based ideas). To this end, in addition to providing
constraint specification and resolution components, the BANE distribution also
provides parsers and interfaces for popular languages (currently C and ML) as
well as test suites of programs ranging in size from a few hundred to tens of
thousands of lines of code.

BANE has been used to implement several realistic program analyses, in-
cluding an uncaught exception inference system for ML programs [FA97,FFA98],
points-to analyses for C [FFA97,FFSA98], and a race condition analysis for a
factory control language [AFS98]. Each of these analyses also scales to large
programs—respectively at least 20,000 lines of ML, 100,000 lines of C, and pro-
duction factory control programs. These are the largest programs we have avail-
able (the peculiar syntax of the control language precludes counting lines of
code).

2 System Architecture

Constraint-based analysis is appealing because elaborate analyses can be ex-
pressed with a concise and simple set of constraint generation rules. These
rules separate analysis specification (constraint generation) from implementa-
tion (constraint resolution). Implementing an analysis using BANE involves only
writing code to (1) generate the appropriate constraints from the program text
and (2) interpret the solutions of the constraints. Part (1) is usually a simple
recursive walk of the abstract-syntax tree, and part (2) is usually testing for
straightforward properties of the constraint solutions. The system takes care
of constraint representation, resolution, and transformation. Thus, BANE frees
the analysis designer from writing a constraint solver, usually the most difficult
portion of a constraint-based analysis to design and engineer.

In designing a program analysis toolkit one soon realizes that no single for-
malism covers both a large fraction of interesting analyses and provides uniformly
good performance in an implementation. BANE provides a number of different
constraint sorts: constraint languages and associated resolution engines that can
be reused as appropriate for different applications. Each sort is characterized by
a language of expressions, a constraint relation, a solution space, and an imple-
mentation strategy. In some cases BANE provides multiple implementations of
the same constraint language as distinct sorts because the different implementa-
tions provide different engineering trade-offs to the user. Extending BANE with
new sorts is straightforward.

An innovation in BANE is support for mized constraints: the use of multiple
sorts of constraints in a single application [FA97]. In addition to supporting
naturally multi-sorted applications, we believe the ability to change constraint
languages allows analysis designers to explore fine-grain engineering decisions,
targeting subproblems of an analysis with the constraint system that gives the
best efficiency /precision properties for the task at hand. Section 3 provides an
example of successively refining an analysis through mixed constraints.



U : Set Set — Set
N : Set Set — Set
—{c1,...,cn} : Set for any set of Set-constructors ¢; € Yget
0: Set
1: Set

Fig. 1. Operations in the sort Set.

Mixed constraint systems are formalized using a many-sorted algebra of ex-
pressions. Each sort s includes a set of variables Vj, a set of constructors X,
and possibly some other operations. Each sort has a constraint relation Cg. Con-
straints and resolution rules observe sorts; that is, a constraint X C; Y implies
X and Y are s-expressions.

The user selects the appropriate mixture of constraints by providing con-
structor signatures. If S is the set of sorts, each n-ary constructor c¢ is given a
signature

Cily...lypy =S

where ¢; is s or 5 for some s € S. Overlined sorts mark contravariant arguments
of ¢; the rest are covariant arguments. For example, let sort Term be a set of
constructors Xyer, and variables Viern with no additional operations. Pure terms
over Xrern and Vier, are defined by giving constructor signatures

c:Term...Term — Term ¢ € Yrerm
—_

arity(c)

As another example, let Set be a sort with the set operators in Figure 1 (the set
operations plus least and greatest sets). Pure set expressions are defined by the
signatures

c:S8et...Set = Set ¢ € Yget
—_——

arity(c)

There are many examples of program analyses based on equations between
Terms (e.g., [DM82,Hen92,Ste96]) and based on inclusion constraints between
Set expressions (e.g., [And94,AWL94,EST95 FFK'96,Hei%4]). The literature
also has natural examples of mixed constraint systems, although they have not
been recognized previously as a distinct category. For example, many effect sys-
tems [GISO92] use a function space constructor

-— .: Term Set Term — Term

where the Set expressions are used only to carry the set of latent effects of the
function.

These three examples—terms, set expressions, and a mixed language with set
and term components—illustrate that by altering the signatures of constructors



a range of analysis domains can be realized. For example, a flow-based analy-
sis using set expressions can be coarsened to a unification-based analysis using
terms. Similarly, a term-based analysis can be refined to an effect analysis by
adding a Set component to the — constructor.

2.1 The Framework

From the user’s point of view, our framework consists of a number of sorts of
expressions together with resolution rules for constraints over those expressions.
In addition, the user must provide constructor signatures specifying how the
different sorts are combined. In this section we focus on the three sorts Term,
FlowTerm, and Set. The distributed implementation also supports a Row sort
[Rém89] for modeling records.

Besides constructors and variables a sort may have arbitrary operations pe-
culiar to that sort; for example, sort Set includes set operations. Each sort
s has a constraint relation Cy; and resolution rules. Constraints and resolu-
tion rules preserve sorts, so that X C; Y implies X and Y are s-expressions.
For example, for the Term sort, the constraint relation Crern is equality, and
the resolution rules implement term unification for constructors with signatures
Term...Term — Term. For clarity we write the constraint relation of term unifi-
cation as “=.” instead of Crerq.

The resolution rules in Figure 2 are read as left-to-right rewrite rules. The left-
and right-hand sides of rules are conjunctions of constraints. Sort FlowTerm has
the expressions of sort Term but a different set of resolution rules (see Figure 2b).
FlowTerm uses inclusion instead of equality constraints. The inclusion constraints
are more precise, but also more expensive to resolve, requiring exponential time
in the worst case. For certain applications, however, FlowTerm is very efficient
[HM97]. We write Cg for the FlowTerm constraint relation.

The constructor rules connect constraints of different sorts. For example, in
sort FlowTerm the rule

SAe(Th,...,Tn) Cee c(TY,... , T)Y=SANTLVC,, T{N---NT,, C,, T}
ifc:eg -1, = FlowTerm

says constraints propagate structurally to constructor arguments; this is where
FlowTerm has a precision advantage over Term (see below). Note this rule pre-
serves sorts. The rule for constructors of sort Term (Figure 2a) is slightly different
because Crern is equality, a symmetric relation. Thus, constraints on constructor
arguments are also syminetric:

SAf(Th, ..., Tn) = f(T{,...  T))=SANTY C,, T/ NT{ C,, A A -+ A
T, C., T, AT, G, T
it fie:--1p — Term

Figure 2c shows the rules for the Set sort. In addition to the standard rules
[AWO3], Set includes special rules for set complement, which is problematic in
the presence of contravariant constructors. We deal with set complement using



SAF(Ty, ..., To)=c f(T},... , T)=SATL C,, TIANT, Coy Ty A+ A
Tn Cu, Ty ATy, Cop T

if f:e1-+-tnp = Term
SA f(...) =¢ g(...) = inconsistent

itf#g

(a) Resolution rules for sort Term.

SAc(Ti,... ,Ty) Ces c(T,... , T))=SANTL C,, T/ AN---ANT, C,,, T/,

SAc(...) Ced.
S/\O[ th C(Tl,..

ifc:e1-+tp, = FlowTerm
..) = inconsistent if ¢ #d

STh)=SANa=clar,...,an) ANa; C; T

«; fresh,

SAce(Th,...,Th) Ces a= S ANa=c(a,.

c:ty- -ty — FlowTerm
. 7an) /\Tl gbi (673

«; fresh, c:t1-+-tp, = FlowTerm

(b) Resolution rules for sort FlowTerm.

SANOC, T=S
SANTC1=8

SAc(T,...,Tn) Cse(Ty,... TW)=SATL C,, T{N---ANT, C,, T\

ifc:et1---t, = Set
SAc(...)Csd(...) =inconsistent if ¢ #d
SANTYUT, CoT=SANT CsT AT, C T
S/\TgsTlﬂTQES/\TQSTl/\TgsTQ
SANaCia=S

SANanNnT Csa=8
S/\Tl Qs Pat(TQ,Tg) ES/\Tl ﬂT3 gs Tz
SANanT Cs 1o =SA« Cs Pat(Tz,Tl)
S/\‘!{Cl,... ,Cn} gs —|{d1,... ,dm}ES if{dl,... ,dm}g{cl,... ,Cn}
SAc(...) Co={dr,... ,dm} =58 if @ {dy,... dm}

(c) Resolution rules for sort Set.

SAXC,aNaCl, Y =SAXC aNnal, YAXCY
S/\Tl ngzES/\TQ ngl

(d) General rules.

Fig. 2. Resolution rules for constraints.



two mechanisms. First, explicit complements have the form —{c, ... , ¢y}, which
has all values of sort Set except those with head constructor ¢y, ... ,c,. Second,
more general complements are represented implicitly. Define =R to be the set
such that RN—-R =0 and RU-R =1 (in all solutions). Now define

Pat(T,R) = (TN R)U-R

The operator Pat? encapsulates a disjoint union involving a complement. Pat
is equivalent to in power to disjoint union, but constraint resolution involving
Pat does not require computing complements. Of course, wherever Pat(T, R) is
used the set =R must exist; this is an obligation of the analysis designer (see
[FA97] for details). Given the definitions of Pat and —{ci,...,c,}, basic set
theory shows the rules in Figure 2c are sound.

Our specification of sort Set is incomplete. We have omitted some rules
for simplifying intersections and some restrictions on the form of solvable con-
straints. The details may be found in [AW93,FA97].

Figure 2d gives two general rules that apply to all sorts. The first rule ex-
presses that C, is transitive. The second flips constraints that arise from con-
travariant constructor arguments.

We now present a small example of a mixed constraint system. Consider an
effect system where each function type carries a set of atomic effects (e.g., the
set of globally visible variables that may be modified by invoking the function).
Let the constructors have signatures

. - . :FlowTerm Set FlowTerm — FlowTerm
int : FlowTerm
as,...,ap: Set (the atomic effects)

The following constraint
o ¥ 3 Cyy int > int
is resolved as follows:
o 2% B Cs, int - int
= a G int AagUay & YA B Cyy int
= int CyraAagUay Cs v A B Cey int

= a=1intAa;Uay C; YA [ =int

Thus in all solutions « and 3 are both int and 7 is a superset of a; U a,.

2.2 Scalability

The main technical challenge in BANE is to develop methods for scaling constraint-
based analyses to large programs. Designing for scalability has led to a system

2 Pat stands for “pattern,” because it is used most often to express pattern matching.



with a significantly different organization than other program analysis systems
[Hei94,AWLY4].

To handle very large programs it is essential that the implementation be
structured so that independent program components can be analyzed separately
first and the results combined later. Consider the following generic inference
rule where expressions are assigned types under some set of assumptions A and
constraints C

ACFer:mm AClkey:n
A,C"E[el,ez]ZT

where Ele;,es] is a compound expression with subexpressions e; and es. In
all other implementations we know of, such inference systems are realized by
accumulating a set of global constraints C'. In BANE one can write rules as
above, but the following alternative is also provided:

A,Cl "61 T A,Cz"@g D
A,Cl/\C2 I-E[el,ez]:r

C; contains only the constraints required to type e; (similarly for Cy and es).
This structure has advantages. First, separate analysis of program components
is trivial by design rather than added as an afterthought. Second, the running
time of algorithms that examine the constraints (e.g., constraint simplification,
which replaces constraint systems by equivalent, and smaller, systems) is guar-
anteed to be a function only of the expression being analyzed; in particular,
the running time is independent of the rest of the program. Note that this de-
sign changes the primitive operation for accumulating constraints from adding
individual constraints to a global system to combining independent constraint
systems. Because this latter operation is more expensive, BANE applications
tend to use a mixture of the two forms of rules to obtain good overall perfor-
mance and scalability.

Many other aspects of the BANE architecture have been engineered pri-
marily for scalability [FA96]. The emphasis on scalability, plus the overhead of
supporting general user-specified constructor signatures, has a cost in runtime
performance, but this cost appears to be small. For example, a BANE imple-
mentation of the type inference system for core Standard ML performs within a
factor of two of the hand-written implementation in the SML/NJ compiler.

In other cases a well-engineered constraint library can substantially out-
perform hand-written implementations. BANE implementations of a class of
cubic-time flow analyses can be orders of magnitude faster than special-purpose
systems because of optimizations implemented in the solver for BANE’s set con-
straint sort [FFSA98].

3 The BANE Interface by Example

This section presents a simple analysis written in BANE. We show by example
how an analysis can be successively refined using mixed constraints. BANE is



a library written in Standard ML of New Jersey [MTH90]. Writing a program
analysis using BANE requires ML code to traverse abstract syntax while gen-
erating constraints and ML code to extract the desired information from the
solutions of the constraints.

For reasons of efficiency, BANE’s implementation is stateful. BANE provides
the notion of a current constraint systern (CCS) into which all constraints are
added. Functionality to create new constraint systems and to change the CCS
are provided, so one is not limited to a single global constraint system. For
simplicity, the examples in this section use only a single constraint system.

3.1 A Trivial Example: Simple Type Inference for a Lambda
Calculus

This example infers types for a lambda calculus with the following abstract
syntax:

datatype ast =
Var of string
| Int of int
| Fn of {formal:string, body:ast}
| App of {function:ast, argument:ast}

The syntax includes identifiers (strings), primitive integers, abstraction, and
application. The language of types consists of the primitive type int, a function
type —, as well as type variables v.

Tu=vlint | T =T

The first choice is the sort of expressions and constraints to use for the type
inference problem. All that is needed in this case are terms and term equality;
the appropriate sort is Term (structure Bane.Term). To make the code more
readable, we rebind this structure as structure TypeSort.

structure TypeSort = Bane.Term

BANE uses distinct ML types for expressions of distinct sort. In this case, type
expressions have ML type

type ty = TypeSort.T Bane.expr

Next, we need the type constructors for integers and functions. The inte-
ger type constructor can be formed using a constant signature, and a standard
function type constructor is predefined.

val int_tycon = Cons.new {name="int", signa=TypeSort.constSig}
val fun_tycon = TypeSort.funCon

The constant integer type is created by applying the integer constructor to an
empty list of arguments. We also define a function to apply the function type con-
structor to the domain and range, using the generic function Bane . Common. cons

’a constructor * genE list -> ’a expr that applies a constructor of sort



R Er———— VAR _ INT
Al z: Alx] [ ] Al i:int [INT]
AlFer:n
A [ €2 I T2
« fresh « fresh
Alx — a]Fe: =Ty =
[erofFe:r [ABS] n=zn7a [APP]

AFXre:a—T1 AlFeler:a

Fig. 3. Type inference rules for example lambda calculus

’a to a list of arguments. In general, constructor arguments can have a variety
of distinct sorts with distinct ML types. Since ML only allows homogeneously
typed lists, BANE uses an ML type genE for expressions of any sort. The lack
of subtyping in ML forces us to use conversion functions TypeSort.toGenE to
convert the domain and range from TypeSort.T Bane.expr to Bane.genE.

val intTy = Bane.Common.cons (int_tycon, [1)

fun funTy (domain,range) = Common.cons (fun_tycon,
[TypeSort.toGenE domain,
TypeSort.toGenE rangel)

Finally, we define a function for creating fresh type variables by specializing
the generic function Bane.Var.freshVar : ’a Bane.sort -> ’a Bane.expr.
We also bind operator == to the equality constraint of TypeSort.

fun freshTyVar () = Bane.Var.freshVar TypeSort.sort
infix ==
val op == = TypeSort.unify

With these auxiliary bindings, the standard type inference rules in Figure 3
are translated directly into a case analysis on the abstract syntax. Type envi-
ronments are provided by a module with the following signature:

signature ENV =
sig

type name = string

type ’a env

val empty : ’a env

val insert : ’a env * name * ’a -> ’a env

val find : ’a env * name -> ’a option
end

The type of identifiers is simply looked up in the environment. If the environment
contains no assumption for an identifier, an error is reported.

fun elaborate env ast =
case ast of



Var x => (case Env.find (env, x) of
SOME ty => ty
| NONE => <report error: free variable>)

The integer case is even simpler:
| Int i => intTy

Abstractions are typed by creating a fresh unconstrained type variable for
the lambda bound formal, extending the environment with a binding for the
formal, and typing the body in the extended environment.

| Fn {formal,body} =>
let val v = freshTyVar ()
val env’ = Env.insert (env,formal,v)
val body_ty = elaborate env’ body
in
funTy (v, body_ty)
end

For applications we obtain the function type tyl and the argument type
ty2 via recursive calls. A fresh type variable result stands for the result of the
application. Type tyl must be equal to a function type with domain ty2 and
range result. The handler around the equality constraint catches inconsistent
constraints in the case where ty1 is not a function, or the domain and argument
don’t agree.

| App {function,argument} =>
let val tyl = elaborate env function
val ty2 = elaborate env argument

val result = freshTyVar ()
val fty = funTy (ty2, result)
in
(tyl == fty) handle exn =>
<report type error>;
result
end

We haven’t specified whether our type language for lambda terms includes
recursive types. The Term sort allows recursive solutions by default. If only non-
recursive solutions are desired, an occurs check can be enabled via a BANE
option:

Bane.Flags.set (SOME TypeSort.sort) "occursCheck";

As an example, consider the Y combinator

Y =A.(Az.f (z z))M\x.f (z z))

Its inferred type is
(a = a) >«

where the type variable « is unconstrained. With the occurs check enabled, type
inference for Y fails.



3.2 Type Inference with Flow Information

The simple type inference described above yields type information for each
lambda term or fails if the equality constraints have no solution. Suppose we
want to augment type inference to gather information about the set of lambda
abstractions to which each lambda expression may evaluate. We assume the
abstract syntax is modified so that lambda abstractions are labeled:

| Fn of {formal:string, body:ast, label:string}

Our goal is to refine function types to include a label-set, so that the type of a
lambda term not only describes the domain and the range, but also an approxi-
mation of the set of syntactic abstractions to which it may evaluate. The function
type constructor thus becomes a ternary constructor fun(dom, rng, labels). The
resulting analysis is similar to the flow analysis described in [Mos96]. The natural
choice of constraint language for label-sets is obviously set constraints, and we
bind the structure LabelSet to one particular implementation of set constraints:

structure LabelSet = Bane.SetIF

We define the new function type constructor containing an extra field for the
label-set by building a signature with three argument sorts, the first two being
Type sorts and the last being a LabelSet sort. Note how the variance of each
constructor argument is specified in the signature through the use of functions
TypeSort.ctv.arg (contravariance) and TypeSort.cov_arg (covariance). Res-
olution of equality constraints itself does not require variance annotations, but
other aspects of BANE do.

val funSig = TypeSort.newSig {args=[TypeSort.ctv_arg TypeSort.genSort,
TypeSort.cov_arg TypeSort.genSort,
TypeSort.cov_arg LabelSet.genSort],

attributes=[1}

val fun_tycon = Bane.Cons.new {name="fun", signa=funSig}

We are now using a mixed constraint language: types are terms with embed-
ded label-sets. Constraints between types are still equality constraints, and as a
result, induced constraints between label sets are also equalities.

The type rules for abstraction and application are easily modified to include
label information.

Aler:m
«a fresh AlFes:m
Alx—»alke:T a, € fresh
{lI} Ce e fresh 71 = fun(m, a,€)

[ABS] [APP]

AF MNz.e: fun(a,T,€) AlFerer:a
Because Term constraints generate equality constraints on the embedded Sets,
the label-sets of distinct abstractions may be equated during type inference.
As a result, the [ABS] rule introduces a fresh label-set variable e along with a
constraint {I} C € to correctly model that the lambda abstraction evaluates to



itself. (Note that this inclusion constraint is between Set expressions.) Using a
constrained variable rather than a constant set {lI} allows the label-set to be
merged with other sets through equality constraints. The handling of arrow-
effects in region inference is similar [TT94].

The label-set variable € introduced by each use of the [APP] rule stands for
the set of abstractions potentially flowing to that application site.

The code changes required to accommodate the new rules are minimal. For
abstractions, the label is converted into a constant set constructor with the
same name through Cons.new. A constant set expression is then built from the
constructor and used to constrain the fresh label-set variable labelvar. Finally,
the label-set variable is used along with the domain and range to build the
function type of the abstraction.

| Fn {formal,body,label} =>

let val v = freshTyVar ()
val env’ = Env.insert (env,formal,v)
val body_ty = elaborate env’ body
(* create a new constant constructor *)
val ¢ = Cons.new {name=label, signa=LabelSet.constSig}
val lab = Common.cons (c,[])
val labelvar = freshLabelVar ()

in
(lab <= labelvar);
funTy (v, body_ty, labelvar)

end

The changes to the implementation of [APP] are even simpler, requiring only the
introduction of a fresh label-set variable. The label-set variable may be stored
in a map for later inspection of the set of abstractions flowing to particular
application sites.

| App {function,argument} =>
let val tyl = elaborate env function
val ty2 = elaborate env argument

val result = freshTyVar ()

val labels = freshLabelVar ()

val fty = funTy (ty2, result, labels)
in

(tyl == fty) handle exn =>

<report type error>;

result

end

We now provide a number of examples showing the information gathered by
the flow analysis. Consider the standard lambda encodings for values true, false,



nil, and cons, and their inferred types.

true = Afrueg \trueiy o a5 B3 o\ true C e Atrue; C ey
false = \falseg pfalsery, o a5 B2 3\ false C e Afalse; C ey
nil = A"z Anhy o a5 B2 a\nlCe Anil; Ce

cons = XCShd AN A2z Sy y hd 1 a5 6 -2y B (@B 326 56\
cons Ce; Acp Cex A
2 CesNe3 Cep

The analysis yields constrained types 7 \ C, where the constraints C' describe
the label-set variables embedded in type 7. (To improve the readability of types,
function types are written using the standard infix form with label-sets on the
arrow.) For example, the type of nil

ai)ﬂﬂ)a\nilgel/\nillgez

has the label-set €; on the first arrow, and associated constraint nil C €;. The
label-set is extracted from the final type using the following BANE code frag-
ment:

val ty = elaborate error baseEnv e
val labels = case Common.deCons (fun_tycon, ty) of
SOME [dom,rng,lab] =>
LabelSet.tlb (LabelSet.fromGenE lab)
| NONE => []

The function Common.deCons is used to decompose constructed expressions.
In this case we match the final type expression against the pattern fun(dom, rng, lab).
If the match succeeds, deCons returns the list of arguments to the constructor. In
this case we are interested in the least solution of the label component 1lab. We
obtain this information via the function LabelSet.t1b, which returns the tran-
sitive lower-bound (TLB) of a given expression. The TLB is a list of constructed
expressions ¢(...), in our case a list of constants corresponding to abstraction
labels.
A slightly more complex example using the lambda expressions defined above
is
head = APad] [ nil (Aheadig \headzy o) (a5 Za) >
(B2 12 =3 8) =)
=7\
head C e7A
nil C ;A
ni|1 g €N
head; C e4A
headz g €5
head (cons true nil) : @ =% B8 3 a \ true C €; Atrue; C e
The expression head (cons true nil) takes the head of the list containing true.

Even though the function head is defined to return nil if the argument is the
empty list, the flow analysis correctly infers that the result in this case is true.



The use of equality constraints may cause undesired approximations in the
flow information. Consider an example taken from Section 3.1 of Mossin’s the-
sis [Mos96]

select = Xty X®hiy A¥2 £ if & then fa else fy

The select function takes three arguments, x, y, and z, and depending on the
truth value of z, returns the result of applying f to either = or y. The ab-
breviation if p then e; else es stands for the application p e; es. The type
constraints for the two applications of f cause the flow information of x and y
to be merged. As a result, the application

select true false (Az.2)

does not resolve the condition of the if-then-else to true. To observe the approx-
imation directly in the result type, we modify the example slightly:

select’ = Xtz \®iy A2 fif 2 then fzx else fyx

Now f is applied to two arguments, the first being either x or y, the second
being = in both cases. We modify the example use of select such that f now
ignores its first argument and simply returns the second, i.e. z. The expression
thus evaluates to true.

select’ true false (Az. A\w.w)
The inferred type for this application is

€1 €2

T\ T=T—>7T->T
true U false C ¢;
true; U false; C ey

where the label-set of the function type indicates that the result can be either
true or false. This approximation can be overcome through the use of subtyping.

3.3 Type Inference with Flow Information and Subtyping

The inclusion relation on label-sets embedded within types can be lifted to a
natural subtyping relation on structural types. This idea has been described in
the context of control-flow analysis in [HM97], for a more general flow analysis
in [Mos96], and for more general set expressions in [FA97]. A subtype-based
analysis where sets are embedded within terms can be realized in BANE through
the use of the FlowTerm sort. The FlowTerm sort provides inclusion constraints
instead of equality for the same language and solution space as the Term sort.
To take advantage of the extra precision of subtype inference in our example,
we first change the TypeSort structure to use the FlowTerm sort.

structure TypeSort = Bane.FlowTerm



The definition of the function type constructor with labels remains the same,
although the domain and range are now of sort FlowTerm.

val funSig = TypeSort.newSig {args=[TypeSort.ctv_arg TypeSort.genSort,
TypeSort.cov_arg TypeSort.genSort,
TypeSort.cov_arg LabelSet.genSort],

attributes=[1}

val fun_tycon = Bane.Cons.new {name="fun", signa=funSig}

The inference rules for abstraction and application change slightly. In the
[ABS] rule, it is no longer necessary to introduce a fresh label-set variable, since
label sets are no longer merged in the subtype approach. Instead the singleton
set can be directly embedded within the function type. In the [APP] rule, we
simply replace the equality constraint with an inclusion.

Al—el - T1
A|_6217'2
Alz = aoke:T 71 C fun(m, o, ¢)

AF MNag.e: fun(a, T, {1})

[ABS] [APP]

AFeler:a

Note that the inclusion constraint in the [APP] rule allows subsumption not only
on the label-set of the function, but also on the domain and the range, since

fun(dom, range, labels) C fun(m, a,€) & 12 C dom A
range C a A
labels C €

We return to the example of the previous section where flow information was
merged:
select’ true false (Az. A\w.w)

Using subtype inference, the type of this expression is

T\T:TE)TE)T
true C ¢;
true1§62

The flow information now precisely models the fact that only true is passed as
the second argument to Az.Aw.w.

4 Analysis Frameworks

We conclude by comparing BANE with other program analysis frameworks.
There have been many such frameworks in the past; see for example
[ATGL96,AM95,A5596,CDG96,DC96, HMCCR93,TH92,Ven89,YH9I3]. Most frame-
works are based on standard dataflow analysis, as first proposed by Cocke
[Coc70] and developed by Kildall [Kil73] and Kam and Ullman [KU76], while
others are based on more general forms of abstract interpretation [Ven89,YH93].



In previous frameworks the user specifies a lattice and a set of transfer func-
tions, either in a specialized language [AM95], in a Yacc-like system [TH92], or as
a module conforming to a certain interface [ATGL96,CDG96,DC96, HMCCR93].
The framework traverses a program representation (usually a control flow graph)
either forwards or backwards, calling user-defined transfer functions until the
analysis reaches a fixed point.

A fundamental distinction between BANE and these frameworks is the in-
terface with a client analysis. In BANE, the interface is a system of constraints,
which is an explicit data structure that the framework understands and can
inspect and transform for best effect. In other frameworks the interface is the
transfer and lattice functions, all of which are defined by the client. These func-
tions are opaque—their effect is unknown to the framework—which in general
means that the dataflow frameworks have less structure that can be exploited
by the implementation. For example, reasoning about termination of the frame-
work is impossible without knowledge of the client. Additionally, using transfer
functions implies that information can flow conveniently only in one direction,
which gives rise to the restriction in dataflow frameworks that analyses are either
forwards or backwards. An analysis that is neither forwards nor backwards (e.g.,
most forms of type inference) is at best awkward to code in this model.

On the other hand, dataflow frameworks provide more support for the task
of implementing traditional dataflow analyses than BANE, since they typically
manage the control flow graph and its traversal as well as the computation
of abstract values. With BANE the user must write any needed traversal of
the program structure, although this is usually a simple recursive walk of the
abstract syntax tree. Since BANE has no knowledge of the program from which
constraints are generated, BANE cannot directly exploit any special properties
of program structure that might make constraint solving more efficient.

While there is very little experimental evidence on which to base any conclu-
sion, it is our impression that an analysis implemented using the more general
frameworks with user-defined transfer functions suffers a significant performance
penalty (perhaps an order of magnitude) compared with a special-purpose im-
plementation of the same analysis. Note that the dataflow frameworks target a
different class of applications than BANE, and we do not claim that BANE is
particularly useful for traditional dataflow problems. However, as discussed in
Section 2.2, we do believe for problems with a natural type or constraint formu-
lation that BANE provides users with significant benefits in development time
together with good scalability and good to excellent performance compared with
hand-written implementations of the same analyses.

5 Conclusions

BANE is a toolkit for constructing type- and constraint-based program analyses.
An explicit goal of the project is to make realistic experimentation with program
analysis ideas much easier than is now the case. We hope that other researchers



find BANE useful in this way. The BANE distribution is available on the World
Wide Web from http://bane.cs.berkeley.edu.
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