Model-Based Motion Estimation for Synthetic Animations

Maneesh Agrawala®

* Computer Science Department

Stanford University

ABSTRACT

One approach to performing motion estimation on syn-
thetic animations i1s to treat them as video sequences
and use standard image-based motion estimation meth-
ods. Alternatively, we can take advantage of informa-
tion used in rendering the animation to guide the motion
estimation algorithm. This information includes the 3D
movements of the objects in the scene and the projec-
tion transformations from 3D world space into screen
space. In this paper we examine how to use this high
level object motion information to perform fast, accu-
rate block-based motion estimation for synthetic anima-
tions.

The optical flow field is a 2D vector field describ-
ing the translational motion of each pixel from frame
to frame. Our motion estimation algorithm first com-
putes the optical flow field, based on the object motion
information. We then combine the per-pixel motion in-
formation for a block of pixels to create a single 2D
projective matrix that best encodes the motion of all
the pixels in the block. The entries of the 2D matrix are
determined using a least squares formulation. Our algo-
rithms are more accurate and much faster in algorithmic
complexity than many image-based motion estimation
algorithms.

1 INTRODUCTION

A problem with synthetic animations is that, like video
sequences, they contain a large amount of data. At a
resolution of 352 by 240 pixels, five minutes of NTSC
video requires about a gigabyte of data storage. To
send such an animation across a 10 Mbit/sec network
(e.g. Ethernet) would require approximately 15 min-
utes, assuming a sustained transfer rate of 10 Mbit /sec.
In order to store long sequences or send them across a
network, the data must be compressed.

Motion compensation is the first step in many video
compression algorithms including MPEG [7], because it
allows the compression algorithm to take advantage of
frame to frame image coherency. The motion estimation

Authors’ Address: Center for Integrated Systems
Stanford University,
Stanford, CA 94305-4070
E-mail: maneesh@cs.stanford.edu, beers@cs.stanford.edu,
navin@sleep.stanford.edu
World Wide Web: http://www—graphics.stanford.edu/

Andrew C. Beers*

Navin Chaddhat

tComputer Systems Laboratory
Stanford University

Frame N World Space Frame N+1
A A
-1
Tobj

Figure 1: Backprojecting a pixel from frame N + 1 into
frame N is done by multiplying the frame N + 1 pixel
position through three matrixes. The inverse projection
matrix P;_ll_l transforms the pixel into frame N+1 world
space. The matrix To_b]1 transforms it back to frame N
world space and the projection matrix Py transforms it
into the frame N screen space.

algorithm and the associated motion model must be fast
and accurate for this type of motion compensation to be
practical.

One approach to performing motion estimation on
synthetic animations is to treat them as video sequences
and use standard image-based motion estimation algo-
rithms such as those used in MPEG[7]. Alternatively,
we can take advantage of information used in render-
ing the animation to guide the motion estimation algo-
rithm. Such information includes the 3D world space
movements of the objects in the scene and the projec-
tion transformations from world space into screen space.
In this paper we examine how to use this motion infor-
mation to perform fast, accurate block-based motion
estimation.

Many motion estimation schemes attempt to approxi-
mate the optical flow field between frames of a sequence.
The optical flow field is a 2D vector field describing the
motion of each pixel from frame to frame.

For synthetic animations there is a straightforward
method for computing the optical flow field. When ren-
dering a synthetic animation, we know the transforma-
tions from world space to screen space Py and Py 41 for
frames N and N 41, the transformations T5; that each
object undergoes between the frames, and the object
that is visible in each pixel. Given this information, we

can backproject each pixel in frame N 4+ 1 to its corre-
sponding position in frame NV, as shown in figure 1. This
method for computing the optical flow field is used in
the view interpolation schemes presented in [2]. It has
also been used in previous work on motion compensa-
tion for synthetic animations and it is the basis for the
model-based algorithms we present.

Guenter et al. [5] describe a lossless motion compen-
sated compression algorithm for synthetic animations.
In their scheme all the information necessary to com-
pute the optical flow vector for each pixel is sent to
the decoder. Thus, the encoder first sends the set of
world space object transform matrices and the projec-
tive transform matrices to the decoder. It then encodes
the (z,y,2) and an object 1D for each pixel. Based on
this information, the decoder can reconstruct the frame
by backprojecting each pixel into the previous frame as
described above. Because the decoder has access to the
exact motion of each pixel, it can compensate for many
types of motions, including translations, scalings, and
rotations. However, compared to image-based motion
estimation schemes, this approach incurs a large over-
head in sending the z and object ID information for each
pixel.

In general, the transmission overhead required to
send motion information (such as optical flow vectors)
for every pixel is large and can outweigh the advantage
of motion compensation. To overcome this problem,
motion compensation is often performed on blocks of
pixels rather than individual pixels. Block based mo-
tion estimation proceeds as follows. For each square
block of pixels in the current frame, a block that is sim-
ilar to it (in terms of mean-squared or mean-absolute
error) in the previous frame is found. The encoder de-
termines the translational offset between two blocks and
sends this translational vector to the decoder. The same
translational vector is used for every pixel in the block.

In [9], Wallach et al. describe two methods for
quickly calculating the optical flow and the per-block
motion vectors of a synthetic animation using either
the Gouraud interpolation or the texture mapping ca-
pabilities present in many modern hardware rendering
systems. Once Wallach et. al. determine the per-pixel
motion they calculate the mode vector (i.e. the most
frequently occuring vector) within each 16 x 16 block,
and use this vector to center a brute force search for the
best block match. Like block-based image motion esti-
mation schemes, this approach yields a 2D translational
vector per block. The main drawback of these schemes is
that they do not properly account for non-translational
motion such as rotations, scales, and perspective warps
of blocks.

Our model-based motion estimation schemes are
aimed at accounting for translational and non-
translational block motions. Like Guenter et al. and
Wallach et al., our first step is to compute the optical
flow field between frame N and frame N 4+ 1. We then
consider each B x B block of pixels in frame N + 1,
as well as their corresponding optical flow vectors, and
try to find a single 2D transformation matrix that best
preserves these vectors. By using a two-dimensional ma-
trix, we can encode more than just the translational mo-
tion of each block and thereby produce more accurate
motion information. However, this increased accuracy
comes at the cost of increasing the number of motion

parameters that must be sent per block. Our results
indicate that extra cost of sending more motion param-
eters is outweighed by the increase in motion accuracy.
Furthermore, our algorithms are much faster in algo-
rithmic complexity than many image-based methods.

This paper 1s organized as follows. Section 2 describes
the algorithms for model-based motion estimation. Sec-
tion 3 gives the computational complexity of different
motion estimation methods. Section 4 describes our
evaluation methodology. Section 5 gives the results. We
describe future directions for this project and conclude
in section 6.

2 ALGORITHM DESCRIPTION

While many techniques for block-based image motion
estimation have been proposed, the simplest approach
is to consider each B x B block in frame N + 1 and per-
form a brute force block search for the the best matching
block in frame N within a search window. The search
window may be specified by the pair [m,n], where m
and n represent the the smallest and largest offsets re-
spectively, to be checked along each axis. Given a block
in frame N+1 centered at location (z, y), the brute-force
algorithm (BRUTE) centers the search window at this
location in frame N and examines every block within
the search window to find the best match.

The strategy behind our motion estimation schemes
is to make use of the object motion information that
is available for synthetic animations. More specifically,
we use the object movement information to quickly and
accurately create a 2D transformation matrix per block
in frame N 4+ 1 that best encodes the frame to frame
motion of each pixel in the block. The basic algorithm
consists of a loop over two steps and can be described
as follows.

Loop over all the B x B blocks in frame N + 1

1. For each pixel in the block, compute the corre-
sponding pixel in frame N by backprojecting it into
frame N. This creates an optical flow field for the
pixels in this block.

2. Based on the optical flow field computed in step 1
use a least squares formulation, to compute a 2D
transformation matrix that best preserves the pixel
correspondences.

2.1 Computing Optical Flow

The first step in all our motion estimation algorithms is
to compute the optical flow field from frame to frame.
To do this we determine a correspondence between each
pixel location in frame N + 1 and locations in frame N
by backprojecting each pixel in frame N + 1 through a
backtransform matrix. In order to determine the back-
transform, we need to know for each pixel in frame N+1:

e which object is visible in the pixel,

o the z value of each pixel (immediately available
with z-buffered rendering systems),

e the world space transformation matrix Top; be-
tween frame N and N + 1 for each visible object,

o the projection matrices Py and Pyy1 from world
to screen space for each frame

We assume that objects move as rigid bodies, so the
motion of the entire object is described by a single ma-
trix Top;. As shown in figure 1, under these conditions
if ¢! is the (x,y, z) position of a pixel in frame N +1,
then its position ¢ in frame N is given by the equation

¢ = PyThPyia (1)
We can determine the (z,y,z) location of each pixel
in frame N 4+ 1 by looking at its screen position and
z-buffer value. By rendering an object 1D map where
the colors in the scene are replaced by object IDs, we
can determine to which object each pixel belongs by
looking at the corresponding location in the object 1D
map. Thus, each frame must be rendered twice, once
to create the object ID map and once to create the real
color rendering. On rendering systems that support four
color channels, however, we could render the color chan-
nels and the object ID at the same time. The matrix
Boy; = PNTo_b]l P;_ll_l is called the “backtransform ma-
trix”.

While this is the most straightforward method for
computing the optical flow field based on information
about world space object movements, other methods
have been developed. Wallach et al. [9] propose two
different schemes for computing the optical flow field
using graphics hardware, one using Gouraud interpola-
tion and the other using texture mapping. They back-
project each vertex of the object in frame N + 1, and
then interpolate the flow field across each polygon us-
ing the interpolation hardware. The complexity of our
backprojection method is dependent on the number of
pixels in a frame, while the complexity of Wallach et
al.’s methods are dependent on the number of polygons
in the scene. Thus, as the number of polygons in a scene
increases, the performance of Wallach et al.’s methods
degrades while the performance of the backprojection
scheme remains constant.

2.2 Issues with Backprojection

There i1s one case in which the backtransformation
scheme described in section 2.1 for generating the opti-
cal flow field does not work. Consider a pixel ¢V 1! on a
surface that is visible in frame /N + 1 and not visible in
frame N. This can occur, for example, when one object
occludes another object in frame N and moves so that
it no longer occludes that object in frame N 4 1. In this
case the frame N location ¢" generated by backtrans-
forming ¢t will not correctly represent the optical
flow. We reduce the severity of this problem by check-
ing the object ID of ¢ and making sure that it matches
the object 1D of ¢™*!. In performing the second step of
our algorithm we only consider optical flow vectors for
which the frame N+1 and frame N object IDs match. It
is also possible to reduce the severity of this problem by
estimating frame N 4+ 1 motion from both frame N and
frame N 4 2. Objects that are occluded in frame N may
be visible in frame N 4 2. Although such a scheme can
easily be fit into the model-based framework we present,
we do not discuss forward frame motion estimation, as
we assume that the decoder has no future information.

Frame N+1

‘Face5

risnot ”
wvisiblein:
‘Frame N :

Figure 2: While face 5 of this object is visible in frame
N +1, it is occluded by faces 1 and 2 in frame N. Back-
projecting pixels that fall in face 5 will yield invalid
optical flow vectors.

The object 1D checking scheme presented above does
not account for an object that occludes itself as it moves
from frame to frame. See figure 2. One technique
for finding these self occlusions is to make sure that
the backtransformed z-value of the frame N + 1 pixel
matches (or is within epsilon of) the z-value of the frame
N pixel. While this technique is limited by the precision
of the z-buffer, it works well for identifying self occlu-
sions. We have found in the animations we tested that
the model-based motion estimation algorithms perform
better if we include self occluded vectors in our calcula-
tions. This is because the surface colors of objects tend
to be similar over the entire object. Even if the vec-
tor does not represent the actual movement of the pixel
on the object surface, the color contained in the incor-
rect frame N location is often close to the correct color.
As we will show, the model-based motion estimation
schemes require at least three vectors to produce a rea-
sonable estimate. In cases where we have less than three
good optical flow vectors, using these self-occlusion vec-
tors allows our schemes to compute a reasonable motion
estimate.

Even when the backprojection scheme produces exact
pixel correspondences, the color of corresponding pixels
may be slightly different due to shading changes. How-
ever, the change should not be very large for relatively
small object movements and for white lights the color
change will only reflect a change in the luminance of the
pixel.

2.3 Building the Block Motion Matrix

Once we have computed the optical flow field we con-
sider a B x B block of pixels in frame N + 1 and their
optical flow vectors. In most cases this gives us a set of
B? optical flow vectors, although it is possible to have
fewer valid vectors per block. As described earlier, vec-
tors that project pixels of one object into another object
are considered invalid and are not included in our cal-
culations. We want to build a single 2D transformation
that best encodes all the valid optical flow vectors. If we

Least Squares Formulation

Consider a B x B block in frame N + 1 containing n valid optical flow vectors. These vectors give us a set of
n pixel locations ¢V = (va, yX, 1) in frame N which correspond to the locations gVt = (V! lN‘H, 1) in frame

7 - 7 ’

N + 1. We desire a six or nine parameter 2D transformation A that best preserves the correspondences between

points ¢Vt and ¢”. Using a six parameter transform results in the following equation:
AqN+1 _ qN
a b ¢ N+t =N
d e y = yi (2)
0o 0 1 1

To solve for the unknowns, we need to solve the following system of linear equations:

Mz=1 (3)
N+41 N+41
Ty Yo 1 0N+1 0N+1 0 “ N
0 0 0 Yo 1 b &
Yo
c .
a |~ : (4)
N
eNAL N g 0 0 © Tt
N+41 | N+41 f Yn—1
0 0 0 z, oy, 1

When using a nine parameter transform, the entries of the last row of the matrix in equation 2 would be replaced
by variables g, h, and . Similarly, equation 4 would be extended to solve for all nine unknowns.
We optimize the least squares method by exploting the structure of matrix M, allowing us to solve equation 4 in

linear time. Let @V be a vector of the z components of the points ¢, and #¥1! be a vector of the z components
of the points ¢V t!. Similarly, let 7~ be a vector of the y components of ¢~ and V1! a vector of the y components

of ¢V t1. We begin by splitting equation 4 into two parts:
Mz =5 M'Z2y = §a
a d
[V g 1]| | =] &Y] and [V g]| e | =]V]
!

where M’ is an B? x 3 matrix in the worst case. Note that if we were solving for a nine parameter matrix, we would
split equation 4 into three parts here.
We solve these systems using a standard least-squares approach:

o= (MTMY Mg, (5)
where
_ B2, .
[(N gh+t) g ot
i=0
B2-1
" 7 - . - N
MITM = | (@ g g Y e (6)
i=0
B?-1 B?-1

E xf\f+1 § yf\H—l B2
= 1=0 1=0

have more than three valid optical flow vectors within
a block we can set up an over-constrained linear system
and use a least squares minimization to solve for the
entries of this matrix. We can formulate the system as
shown in the box entitled “Least Squares Formulation”.

We have implemented two motion estimation
schemes, LSQ6 and LSQ9, based on the six and nine
parameter least squares formulations. With LSQ9 the
resulting matrix A is a general 2D transform, while with
LSQ6 it is an affine 2D transform.

In doing the least squares computation we can con-

sider either all the valid optical flow vectors in the block
(LSQ-ALL), or we can consider only the valid vectors of
the object containing the most pixels in the block (LSQ-
ONE). The first method tries to find the best fit across
object edges, while the second method only considers
vectors within one object.

2.4 Issues with Least Squares

Whenever a block contains less than three valid optical
flow vectors, the least squares solvers LSQ6 and LSQ9

do not have enough information to uniquely solve the
system in equation 4. Since they cannot determine a
reasonable block motion matrix, we use identity as the
motion matrix. Although it is unlikely that this pro-
duces a good block match, the least squares algorithms
do not have enough model-based information to pro-
duce a better match. In these cases, since the BRUTE
algorithm performs an image based search for the best
matching block, it tends to find a better match than the
least squares techniques.

Another case where brute force tends to do better
than the least squares approach occurs for blocks con-
taining object edges (i.e. when two or more objects ap-
pear in the same block). In these blocks, if the objects
are moving in different directions, the LSQ-ALL least
squares scheme tends not to preserve any of the motion
vectors well in attempting to find a “best fit” for all
of them. Although the LSQ-ONE scheme preserves the
motion vectors of pixels within the object covering the
largest percentage of the block, it does not perform well
for pixels in the block belonging to other objects.

In some applications that involve synthetic anima-
tions, a single object is being manipulated against a
solid color background. Whenever a frame N + 1 block
contains a majority of background color pixels we check
whether the error frame variance would be lower if the
entire block contained the background color, or if the
block was reconstructed using motion parameters com-
puted using a motion estimation technique. If a solid
background colored block gives us a lower variance, the
decoder is told to fill the block with background pixels,
and no motion parameters are sent.

2.5 Hybrid Approaches

Based on the observations presented in the previous
section, we have developed two hybrid motion estima-
tion schemes that combine the least squares approach
with the image-based brute force technique to obtain
more accurate motion estimates. The simplest scheme,
HYBRID-SMPL, performs the least squares estimation
as well as the brute force estimation on each block. It
then reconstructs the block using the motion informa-
tion produced by these two motion estimation schemes
and differences each reconstruction with the original
block. The method that produces the smallest variance
in the difference block is chosen as the motion estima-
tion method for the block. The other hybrid scheme,
HYBRID-EDGE, performs the basic least squares es-
timation on all the blocks and performs a brute force
search only on blocks containing object edges and blocks
which contain less than B? valid correspondences as
these are the blocks in which new information is being
introduced.

For comparison we have also implemented the predic-
tive brute force (P-BRUTE) motion estimation scheme
presented by Wallach et al. [9]. After generating the
optical flow field they find the mode of the pixel mo-
tion vectors in each B x B block and use that vector
to center a brute force search. They show that the P-
BRUTE algorithm converges on the best block match
with a smaller search window than standard BRUTE
and therefore is often faster than BRUTE. We have ex-
perimented with both P-BRUTE or BRUTE within our

Hybrid
/ \
HYBRID-EDGE HYBRID-SMPL
| |
Brute Force Brute Force

Least Squares Least Squares

Brute Force Least Squares
BRUTE P-BRUTE LSQ6 LSQ9

/ N\ / N\

LSQ LSQ LSQ LSQ
ALL ONE ALL ONE

Figure 3: Overview of all the algorithms. Each branch
in each tree represents a different motion estimation al-
gorithm.

hybrid techniques. Figure 3 shows how the various al-
gorithms we have presented fit together.

2.6 Block Reconstruction

Once we have generated a 2D transformation matrix for
each block in frame N + 1, we can reconstruct the frame
by applying the matrix to each pixel in the block and
using the color of the pixel at the transformed location
in frame N. In most cases, however, the transformed
location will not lie exactly at an integral pixel location.
We use bilinear interpolation on the four pixels adjacent
to the transformed location in order to determine the
color at the transformed location.

If the original renderings are anti-aliased it is espe-
cially important to perform this interpolation in order
to avoid introducing more sampling errors. By inter-
polating instead of point sampling, we obtain a better
approximation of the color at the transformed pixel lo-
cation.

2.7 Compressing the Motion Matrices

While most block based motion estimation algorithms
for image compression generate two motion parameters
Az and Ay per block, our algorithms can generate six or
nine parameters per block. Compressing these parame-
ters is therefore essential to maintaining a good overall
compression rate. In the model-based algorithms we
propose, lossless coding would require many bits for en-
coding the motion information because the parameters
generated using the least-square formulation have float-
ing point precision. For example, Lempel-Ziv coding on
a quantized version of the motion matrices resulted in
a compression of only 2:1. Thus, we propose an algo-
rithm for compressing this motion information based on
vector quantization of the motion matrices.

Vector Quantization (VQ)[4] is a lossy compression
technique. It is the extension of scalar quantization to
higher dimensional spaces. In VQ, a vector of samples
is quantized together to one of a number of predeter-
mined reproduction vectors, called codewords. In full
search vector quantization, the encoder consists of an

exhaustive search for the minimum distortion codeword
while the decoder consists of a table lookup. A major
drawback of full search VQ is its high encoding com-
plexity. Tree structured VQ[4] (TSVQ) is one scheme
to reduce the encoding complexity by replacing the full
search by a sequence of binary searches. Both full search
and TSVQ produce a fixed rate-code. A variable rate
code can be implemented with TSVQ by using an un-
balanced tree. The advantage of doing this would be
to allocate fewer bits to the commonly occuring motion
matrices and more bits to matrices which occur very
rarely. This is similar to the principle of Huffman cod-
ing.

To design an unbalanced tree we use a greedy grow-
ing algorithm[8]. In this method the tree is grown one
node at a time. The node with the largest ratio of de-
crease in distortion to increase in rate or entropy is split.
Hence, each split optimizes the rate-distortion tradeoff.
We further prune this unbalanced tree using the Gen-
eralized BFOS algorithm[3]. This algorithm trades off
the entropy of leaves for the average distortion. In this
algorithm the average entropy is minimized instead of
the average length.

Thus we obtain a TSVQ codebook using a greedy
growing algorithm followed by pruning using a general-
ized BFOS algorithm. We choose a large training set
representative of the different kinds of motion in syn-
thetic animations. The motion matrices are used as the
input vectors.

The encoder for compressing the motion matrices
uses the motion matrix for each block obtained from
the least squares algorithm as the input vector and out-
puts the index of the codeword (in the motion matrix
codebook) closest to the input vector. The decoder uses
the index to look up the codewords of motion matrices
and outputs a set of quantized motion matrices. These
quantized motion matrices are then used to reconstruct
the frame.

3 ALGORITHMIC COMPLEXITY

There are several performance measures we can use to
compare the model-based motion estimation algorithms
with image-based algorithms. These include the algo-
rithmic complexity of the methods, the quality of the
reconstructed frame (i.e. how close it is to the original),
and how well the error frame, that is the difference be-
tween the estimated and original frame, compresses. In
this section we will consider the first of these measures;
we will consider the other two in section 5.

Since all of the motion estimation algorithms we con-
sider are block based we will analyze the complexity of
performing each algorithm on a B x B block of pixels.
The complexity of all the model-based algorithms is de-
pendent on the number of valid optical flow vectors in a
block. For this analysis we will assume all B? vectors are
valid as this is the worst case. The complexity of the
final block reconstruction from the computed motion
parameters at the decoder is not included in the analy-
sis of the algorithms. Table 4 summarizes the analyses
discussed in this section.

3.1 Complexity of Brute Force

As described in [6], for a square, symmetric search win-
dow of size [-n,n] (that is, £n pixels in both horizontal
and vertical directions),the BRUTE algorithm requires
(2n+ 1)2 block compare operations. The block compare
operation, based on a mean absolute error criterion,
consists of summing the absolute differences between
pixels in frame N 4+ 1 and the corresponding pixels in
frame N on a block by block basis. For a B x B block,
2B? operations are required, since B? absolute differ-
ences, B? — 1 additions and 1 compare operation must
be performed. Thus, the total cost per block of the
BRUTE algorithm is (2n + 1) - 2B2. Although faster
image-based block motion estimation algorithms exist,
as described in [6], they are less accurate than BRUTE.
Thus, we compare our model-based schemes to BRUTE.

3.2 Complexity of Optical Flow

The first step in each of the model-based motion estima-
tion techniques is calculating the optical flow field for
each B x B block. As explained in section 2.1 we need
a backtransform matrix for each object in the anima-
tion and an object ID map to compute this flow field.
Since the cost of computing the backtransform matri-
ces 1s only dependent on the number of objects in the
animation, a constant factor must be added to the cost
of backprojecting each block of pixels. In many cases
however, the number of objects in the scene is much
less than the number of blocks in each frame and this
constant factor is negligible. As described in section 2.1
rendering the object ID map can be accelerated by us-
ing hardware rendering pipelines. We assume that such
acceleration will be used, and do not include the cost of
this rendering in our complexity analysis.

Once we have created the backtransformation ma-
trices and the object ID map, we must multiply the
(x,y,2) position of each pixel through the appropriate
backtransform matrix. The multiplication requires 16
multiplies, 12 adds and because we are using homoge-
neous coordinates we must perform 2 divisions to find
the (z,y) location of each pixel in frame N. Thus, for a
B x B block the backtransform requires a total of 3082
operations.

Based on the the cost of the optical flow field we can
calculate the cost of the P-BRUTE algorithm. The P-
BRUTE algorithm is similar to the BRUTE algorithm
except that there is an extra cost for computing the
optical flow field and then calculating the mode of the
flow field vectors in each B x B block. Determining the
mode of B? optical flow vectors requires approximately
2B? operations. Thus, the total cost per block for the
predictive brute force scheme is (2n + 1)2232 +30B% +
2B? operations. Note that this n is often smaller than

the one used for BRUTE.

3.3 Complexity of Least Squares

General approaches to solving a system via a least-
squares method require time proportional to 8m?, where
m is the largest dimension of the matrix. In our case,
m is the number of optical flow vectors in a block which
we assume is B2. For our problem, we can exploit the
simple structure of the matrix to solve the system in

with n = 16
Algorithm Operation Count and B =16
BRUTE 2(2n +1)°B? 557,568
Optical flow 308 7,680
LSQ6 5582 — 11 14,069
LSQ9 61B% — 14 15,602
P-BRUTE 2(2n +1)°B? + 3282 565,760
HYBRID-SMPL(LSQ6)
(with BRUTE) | 59B% 4+ 2(2n + 1)°B? + 2B + 10 572,714
(with P-BRUTE) | 61B* 4 2(2n + 1)°B* 4- 2B 4 10 573,226
HYBRID-EDGE(LSQ6)
(with BRUTE) | 55B% — 11 +0.2(2(2n + 1)?B? + 4B? + 8B + 12) | 125,816
(with P-BRUTE) | 55B% — 11 + 0.2(2(2n +1)*B? + 6B + 8B +12) | 125,918
Block Reconstruction
(translational) | 2B 32
(2D matrix, without interpolation) | 6B + 11 107
(2D matrix, with interpolation) | 47B% 4 6B + 11 12,139

Table 4: Summary of the algorithmic complexities. The search windows for the brute force algorithms is [-n,n], and

B x B is the block size.

asymptotically linear time, as shown in the box entitled
“Least Squares Formulation”.

The number of operations to compute matrix M’ is
2B% — 1 multiply/adds for each of the squared norms
and the inner products. This yields a total of 682 — 3
multiply/adds if we take advantage of the symmetry
of the matrix to avoid computing (#V+' gV+1) twice.
The summations over & and § each require B?> — 1 op-
erations. Again exploiting the symmetry of the matrix
and only computing each sum once, the total number of
operations to compute the above matrix is 8B% — 5.

This matrix is always 3 x 3, so it can be inverted
in constant time. Multiplication by M'T requires 582
multiply /adds, and multiplication by the g; vectors re-
quires 6 8% —3 multiply /adds each, for a total of 12B%—6
multiply/adds for the six parameter case and 1882 — 9
multiply /adds for the nine parameter case. Including
the 30B“ operations needed to compute the optical flow
field, the total number of operations required by LSQ6
is 5582 — 11, while LSQ9 requires a total of 618% — 14
operations.

3.4 Complexity of Block Reconstruction

Given a translational motion vector per block in frame
N 4+ 1, to reconstruct the block we add the transla-
tional vector to each pixel in the block and look up the
transformed pixel location in frame N. Thus, for the
brute force algorithm 2 additions per pixel are neces-
sary which is a total of 2B additions per block. How-
ever, if we take advantage of spatial coherence within
a pixel block 2 additions are only required for the first
(i.e. lower left) pixel in each block. For the next pixel
in this row the y coordinate does not change, so only 1
addition is required to transform its x coordinate. Sim-
ilarly for each pixel in the first row and column only
1 addition is required to find its transformed location.
For every other pixel in the block each coordinate has
already been transformed to compute the position of a
pixel in the first row or column, so we can simply look

up the transformed position in a cache containing the
transformed coordinates for the first row and column.
This yields a total of 2(B — 1) 4+ 2 = 2B additions per
block.

Given a 3x3 2D transformation matrix per block, re-
constructing the block requires that we multiply each
pixel through the matrix and then perform a projective
division on the x and y coordinates of the transformed
pixel. This entails a total of 15 multiply/adds and 2
divides per pixel. However, once again we can use block
coherence to only perform the matrix multiplies as nec-
essary along the first row and column of the block. With
this optimization a total of 68 + 11 operations are re-
quired per block.

If we are interpolating during the reconstruction as
described in section 2.6, we must add a constant cost of
2 floor operations per pixel, and 15 multiply/adds per
pixel per color channel to perform the bilinear interpo-
lation. Thus the total complexity of the interpolation
operation for a block is 47B? operations. Although in-
terpolation increases the cost of the reconstruction al-
gorithm, it considerably lowers the mean square error of
the reconstructed image versus the original, especially
for anti-aliased images.

3.5 Complexity of Hybrid Schemes
The HYBRID-SMPL algorithm performs both a least

squares search and a brute force search on each block.
Thus its complexity is the sum of the complexities for
each scheme individually plus the complexity of decid-
ing which method performs best. To perform this de-
cision, we reconstruct the block using each of the two
reconstruction methods described in the previous sec-
tion, at a total cost of 8 B + 11 operations. We do not
use interpolation with the least squares reconstruction.
Computing the variance of the two difference blocks
takes a total of 4B% operations. Finally we choose the
method producing the smaller variance, with 1 com-
pare operation. Thus, the decision process costs a total

Sequence # Frames | Description
BALLS 101 Two balls rolling on ramps
CUBE-SPIN 126 Four spinning cubes that overlap
FINDSPOT 196 Manipulating the the bunny to find a spot on it
ROTBUNNY 73 Bunny rotating about Y axis
SCALEBUNNY 100 Bunny scaling to different sizes
TOP-SPIN 126 A spinning top in a textured environment
TRANSBUNNY 133 Bunny translating in XY plane

Table 5: Summary of the animation sequences that comprise our animation database.

of 4B + 8B + 12 operations. The total cost of the
HYBRID-SMPL scheme is therefore the complexity of
least squares plus 2(2n + 1)2B2 +4B? + 8B + 12 opera-
tions. We assume that the cost of least squares includes
the cost of computing the optical flow in this formula-
tion.

The HYBRID-EDGE algorithm also performs a least
squares motion estimation on every block and performs
a brute force search only on blocks in which there are
edges or new information has been introduced. The
complexity of this algorithm is therefore dependent on
the number of blocks for which the brute force search is
performed and it varies between the complexity of only
performing the least squares technique and the complex-
ity of performing HYBRID-SMPL. With the synthetic
animations we examined, a brute force algorithm was
used on at most 20% of the blocks in each frame.

In each of these hybrid algorithms it is possible to re-
place the brute force search with any image-based block
motion algorithm. We use BRUTE because it tends to
be the most accurate image-based algorithm. Using a
faster image-based algorithm would reduce the complex-
ity of our hybrid algorithms. However it would reduce
the accuracy of our hybrid algorithms as well.

4 EVALUATION METHODOLOGY

This section is divided into two parts. The first section
describes the synthetic animation database on which the
motion estimation algorithms are tested. The second
section discusses the evaluation criterion for comparing
different motion estimation algorithms.

4.1 Synthetic Animation Database

An important feature of any motion estimation or com-
pression study is a database on which different al-
gorithms can be tested and compared. There is no
standard synthetic animation database available which
spans the different types of applications in which syn-
thetic animations are rendered. Furthermore, for most
prerendered animations we do not have access to the ob-
ject transformation matrices that were used during the
rendering. Similarly we cannot use the video databases
that are commonly used to test video compression al-
gorithms because there is no rendering information for
them.

Thus we have developed our own synthetic anima-
tion database containing several motion sequences cor-
responding to different kinds of motion commonly found

in computer graphics applications. Each animation is
stored as a script containing the transformations per-
formed on each object from frame to frame. Table 5 is
a list of each of the synthetic animations in the database
with a short summary description of it.

Several of the animations in our database represent
specific types of applications in which there are syn-
thetic animations. The simplest animations consist of
a single object moving on a black background. A set
of three animations ROTBUNNY, TRANSBUNNY and
SCALEBUNNY contain a single beige and brown bunny
object that is either rotating about the vertical screen
axis, translating in the plane of the screen or scaling
up and down in size respectively. Using these anima-
tions we can examine how the model-based algorithms
perform on each type of affine transformation (rotation,
translation and scaling) individually.

In the BALLS animation, two textured balls roll up
and down inclined ramps. One ball rolls in front of
the other, making correct motion estimation difficult in
blocks where the two balls overlap. During the anima-
tion, the camera also tracks toward the scene. This ani-
mation includes rotation, translation and scaling due to
camera movement. The CUBE-SPIN animation shows
four cubes spinning in various directions and at differ-
ent speeds. The cubes overlap near the center of the
frame, so new information is being introduced in each
frame as new parts of each cube rotate into view. The
FINDSPOT animation also contains the bunny, but one
of its 69,451 polygons has been colored red. The ani-
mation shows the bunny being manipulated (rotated,
translated and scaled) in order to find the spot. This
FINDSPOT animation represents how someone might
interact with an object to study its geometry or sur-
face characteristics. In the TOP-SPIN sequence, a top
is shown spinning in a simple environment. Both the
camera and the top object move from frame to frame.
In addition, all of the objects in the TOP-SPIN anima-
tion are texture mapped, to test how well reconstruction
with resampling performs.

4.2 Evaluation Criteria

We are interested in three main quantitative perfor-
mance measures for comparing the different motion es-
timation algorithms: algorithmic complexity, quality of
reconstructed sequences, and compression achieved. We
have already compared the complexity of the different
algorithms in section 3. For comparing the quality of
reconstructed sequences, we compare the Peak Signal-

to-Noise Ratio (PSNR) of the DCT compressed error

Algorithm Channel BALLS CUBES-SPIN FINDSPOT ROTBUNNY SCALEBUNNY TOP-SPIN TRANSBUNNY
LSQ6 (Lsq-oNE) Y 42.21 42.84 44.51 41.74 45.68 42.88 46.26
U 45.06 44.63 54.51 48.89 52.45 43.69 57.34
\4 46.70 45.06 53.80 48.04 51.70 45.48 56.67
LSQ6 (Lsq-aLL) Y 41.65 42.40 44.51 41.74 45.68 42.12 46.26
U 44.13 43.49 54.51 48.89 52.45 44.15 57.34
\4 45.78 43.91 53.80 48.04 51.70 46.12 56.67
LSQ9 (Lsq-onE) Y 42.21 42.84 44.51 41.74 45.68 42.88 46.26
U 45.06 44.63 54.51 48.89 52.45 43.69 57.34
\4 46.70 45.06 53.80 48.04 51.70 45.48 56.67
LSQ9 (Lsq-aLL) Y 41.65 42.40 44.51 41.74 45.68 42.12 46.26
U 44.13 43.49 54.51 48.89 52.45 44.15 57.34
\4 45.78 43.91 53.80 48.04 51.70 46.12 56.67

Table 6: Average PSNR per frame of the compressed error frame for each of the least squares algorithms. Lossless

coding of the motion parameters is assumed.

frames.

To compare the compressed bitrate achieved using
the different motion estimation schemes, we compress
two things: (1) the error frame, which is the difference
between a frame of the original animation and the recon-
struction of that frame by one of the motion estimation
algorithms; and (2) the motion information computed
by the motion estimation algorithm. As described in
the next two sections, we compress the error frame with
DCT-based compression to determine the bit-rate as-
sociated with the error frame, and we approximate the
bit-rate of the compressed motion information.

4.2.1 Compressing the Error Frame

The compression of the error frame is done in four
stages: a transformation stage, a lossy quantization
stage and two lossless coding stages. In the transfor-
mation stage, we use a two dimensional 8 x 8 DCT on
an 8 x 8 block of pixels like JPEG. In the quantization
stage the DCT coefficients are quantized to reduce their
magnitude and to increase the number of zero value co-
efficients. We use the uniform mid-step quantizer with
a different step size for each DCT coefficient. In the
lossless coding stage we rearrange the quantized DCT
coeflicients into a zig-zag pattern. The zig-zag pattern is
used to increase the run-length of zero coefficients found
in the block. The DC coefficients are coded by taking
the difference between the quantized DC coefficient of
the current block and the quantized DC coefficient of
the previous block. The quantized AC coefficients usu-
ally contain runs of consecutive zeroes. A coding advan-
tage is obtained by using a run-length technique. The
block codes from the DPCM and the run-length models
are further reduced using Huffman coding with custom
tables.

We work in the YUV space as we can decimate U
and V horizontally and vertically by a factor of 2 in
each dimension without much loss in visual quality. The
same compression algorithm is used for the Y, U and V
streams. The only difference is the quantization for Y
and U,V data differ. Thus the different algorithms are
compared for the bitrate and PSNR in the Y, U and V

error streams.

4.2.2 Compressing Motion Information

To compare methods such as BRUTE and LSQG6 fairly,
we also need to consider the overhead required to encode
the motion parameters required by each scheme. The
translational motion vectors in BRUTE and P-BRUTE

are compressed via Huffman coding.

For the least-squares and hybrid methods, we code
four different types of blocks: blocks containing back-
ground information, identity blocks (i.e. blocks that
have not moved from their position in the previous
frame), translational blocks with integral components,
and six-parameter or nine-parameter motion blocks. A
flag is used to distinguish between the four block types.
To reduce the number of bits required by these flags, we
Huffman code them.

The motion parameters for each of the four different
types of blocks can be coded via a different scheme. The
motion parameters for translational blocks can be coded
like the translational vectors of BRUTE, using lossless
Huffman coding. Six and nine parameter motion blocks
are coded via the VQ method described in section 2.7.
Background and identity blocks require no additional
bits beyond the flag.

5 RESULTS

In this section the performance of the model-based mo-
tion estimation algorithms is compared with image-
based brute force motion estimation in terms of error
frame PSNR (i.e. quality) and bitrate. Summary re-
sults for all the animations in the animation database
are presented in tables 6, 7, 8 9 and 10 In section
5.1 we show that LSQG(LSQ-ONE) is the best least
squares method. In sections 5.2 5.3 and 5.4 we com-
pare the P-BRUTE, LSQ6(LSQ-ONE) and hybrid al-
gorithms to the BRUTE algorithm. Although there are
several image-based block motion estimation algorithms
that are faster than BRUTE, we do not compare the
accuracy of our model-based algorithms with the accu-
racy of those algorithms because most of them are less
accurate than BRUTE. All of the results described in
this section were collected for animations rendered at
400 x 400 pixels, with a block size of 16 x 16 pixels.

Algorithm BALLS CUBES-SPIN FINDSPOT ROTBUNNY SCALEBUNNY TOP-SPIN TRANSBUNNY
LSQ6 (Lsq-oNE) 24.375 18.772 13.788 27.080 13.137 20.629 11.201
LSQ6 (Lsq-aLL) 25.957 20.136 13.788 27.080 13.137 22.561 11.201
LSQ9 (Lsq-oNE) 24.378 18.782 13.788 27.080 13.137 20.629 11.201
LSQ9 (Lsq-aLL) 25.962 20.145 13.788 27.080 13.137 22.561 11.201

Table 7: Average bitrate per frame, measured in kilobits, for each of the least squares algorithms. lLossless coding
of the motion parameters is assumed, and the overhead required by the motion parameters is not included in these

numbers.

Algorlthm Channel BALLS CUBES-SPIN FINDSPOT ROTBUNNY SCALEBUNNY TOP-SPIN TRANSBUNNY

BRUTE Y 40.19 40.29 43.19 40.10 43.93 42.48 43.91

U 38.77 41.57 53.51 47.92 53.36 42.75 53.36

A% 41.01 41.83 52.50 46.80 52.33 43.85 52.33

P-BRUTE Y 40.35 40.30 43.22 40.20 44.10 42.50 44 .57

U 39.67 41.60 53.66 48.31 53.98 42.73 55.58

A% 42.52 41.86 52.50 47.20 53.08 43.82 54.51

LSQ6 (L=q-ONE) Y 42.20 42.79 44.51 41.71 45.63 42.85 46.14

U 45.03 44.59 54.51 48.89 52.45 43.67 57.34

A% 46.70 45.01 53.80 48.04 51.70 45.46 56.67

HYBRID-SMPL Y 42.45 42.99 44.95 42.10 46.17 43.75 46.52

(BRUTE) U 45.55 46.64 55.34 50.00 55.83 44.95 58.13

A% 47.45 47.06 54.50 49.05 55.12 46.09 57.34

HYBRID-SMPL Y 42.46 42.99 44.95 42.10 46.20 43.74 46.55

(P-BRUTE) U 45.60 46.67 55.34 50.00 55.83 44.95 58.13

A% 47.52 47.06 54.50 49.10 55.12 46.09 57.34

HYBRID-EDGE Y 42.25 42.91 44.89 42.11 45.96 43.51 46.52

(BRUTE) U 45.63 46.64 54.91 49.56 52.57 44.93 57.34

A% 47.38 47.06 54.10 48.64 51.90 46.14 56.67

HYBRID-EDGE Y 42.26 42.91 44.89 42.11 45.98 43.51 46.52

(P-BRUTE) U 45.65 46.64 54.91 49.56 52.69 44.93 57.34

A% 47.38 47.06 54.10 48.64 51.90 46.14 56.67

Table 8: Average PSNR for the YUV channels for each algorithm. These numbers include the effects of using lossilly

compressed motion parameters.

5.1 Choosing the Best LSQ Method

As shown in figure 3 there are several variations with
each of the model-based algorithms. We initially con-
sider the performance of each of the four least squares
algorithms to determine which one performs best. The
average PSNR and average bitrate for these schemes are
presented in tables 6 and 7. Both are calculated under
the assumption that the 2D motion matrices are coded
losslessly. Furthermore, these bitrates do not include
the overhead required by the motion matrices. However,
it is possible to determine which least squares technique
performs best based on these results.

Tables 6 and 7 show that across all the animations
LSQ-ALL performs worse than LSQ-ONE and that
LSQ6 and LSQ9 are roughly equivalent. Since LSQ6 re-
quires only six motion parameters rather than the nine
required by LSQ9, the overhead required by the motion
parameters is smaller for LSQ6 than LSQ9. Based on
these observations we choose LSQ6(LSQ-ONE) as the

least squares algorithm for the hybrid schemes.

5.2 Predictive Brute Force Results

The simplest model-based scheme is P-BRUTE. Like
the BRUTE scheme, it only accounts for translational

block motion. The search window size for all of the
BRUTE and P-BRUTE results presented in this sec-
tion is [-16,16]. As shown in table 8, the average PSNR
for the Y channel is slightly better for P-BRUTE than
BRUTE across all of the animations. The main advan-
tage of P-BRUTE is that for a fixed reconstruction qual-
ity it typically requires a smaller search window than
BRUTE. Given a large enough search window, BRUTE
and P-BRUTE will perform equivalently in terms of
quality. With smaller search windows the differences
between the two brute force schemes are more dramatic
as reported in [9].

In table 9, we consider the average bitrate per frame
required by P-BRUTE for each of the animations in
the database. The first row of the table lists the aver-
age motion parameter overhead per frame, and the sec-
ond row lists the total average bitrate per frame. The
third row shows the percentage of average total bits per
frame saved by using a model-based algorithm instead
of BRUTE. With P-BRUTE for example, this number
is computed by differencing the average total bits per
frame for P-BRUTE and BRUTE, and then dividing
the difference by the average total bits per frame for
BRUTE. The P-BRUTE algorithm requires fewer bits
than BRUTE for most of the animations. However, it
does slightly worse than BRUTE for the CUBES-SPIN

Algorithm

BALLS CUBES-SPIN FINDSPOT ROTBUNNY SCALEBUNNY TOP-SPIN TRANSBUNNY
BRUTE 2.718 2.741 2.365 3.117 2.410 1.720 1.672
38.291 32.913 20.511 40.030 20.225 26.273 19.667
P-BRUTE 2.974 3.300 2.373 3.208 2.451 1.724 1.663
36.257 33.428 20.450 38.444 19.487 26.402 17.036
5.31% -1.56% 2.97% 3.96% 3.65% -0.49% 13.38%
LSQ6 (Lsq-oNE) 3.670 4.295 5.472 4.760 4.955 2.879 4.322
28.085 23.312 19.347 31.953 18.173 23.623 15.758
26.65% 29.17% 5.68% 20.18% 10.15% 10.09% 19.88%
HYBRID-SMPL 3.539 4.226 5.180 4.660 4.785 2.583 4.176
(BRUTE) 25.729 20.869 18.255 29.434 16.536 21.240 15.185
32.82% 36.59% 11.00% 26.47% 18.24% 19.16% 22.79%
HYBRID-SMPL 3.569 4.268 5.183 4.664 4.786 2.602 4.163
(P-BRUTE) 25.759 20.903 18.264 29.416 16.512 21.320 15.135
32.73% 36.49% 10.96% 26.52% 18.36% 18.86% 23.04%
HYBRID-EDGE 3.761 4.321 5.298 4.703 4.879 2.766 4.243
(BRUTE) 26.286 21.004 18.593 29.784 17.770 21.782 15.366
31.35% 36.18% 9.35% 25.59% 12.14% 17.09% 21.87%
HYBRID-EDGE 3.767 4.329 5.300 4.709 4.875 2.767 4.234
(P-BRUTE) 26.296 21.002 18.598 28.768 17.715 21.781 15.323
31.33% 36.19% 9.33% 25.64% 12.41% 17.10% 22.09%

Table 9: Average bitrate per frame, measured in kilobits, resulting from the different algorithms. The first number in
each row is the average number of bits per frame required to code the motion parameters. The second number is the
total average bitrate per frame which is computed by adding the motion parameter overhead to the average bitrate
per frame required to code the compressed error frames. The third number is the difference between the average total
bitrate per frame BRUTE and that algorithm, as a percentage of the average total bitrate per frame for BRUTE.

and TOP-SPIN animations.

In picking the mode of the optical flow vectors for
centering a brute force search, the basic assumption
behind P-BRUTE is that many pixels in a block will
have similar optical flow vectors. If however, a block
contains many different optical flow vectors, the mode
vector may not be representative of the block motion.
Both the CUBE-SPIN and TOP-SPIN animations con-
tain rotating objects, and the optical flow vectors for
adjacent pixels within these rotating objects may have
very different optical flow vectors. Thus, the mode op-
tical flow vector is probably not a good predictor of the
motion for these blocks and P-BRUTE performs poorly
on these animations.

5.3 Six Parameter LSQ Results

The LSQG6(LSQ-ONE) algorithm performs much bet-
ter than BRUTE both in terms of average PSNR and
average total bitrate per frame. In particular, for the
BALLS animation using LSQ6(LSQ-ONE), the average
PSNR per frame in the Y channel is 2.1 dB higher
than the average PSNR with BRUTE on this anima-
tion. Similarly the average total bitrate per frame for
the BALLS animation is 26.65 percent less than the
average total bitrate per frame with the BRUTE algo-
rithm.

Although the LSQ6(LSQ-ONE) algorithm performs
better than BRUTE for all the animation sequences,
with the FINDSPOT, SCALEBUNNY, and TOP-SPIN
animations it only achieves a 5.68 to 10.15 percent
gain in average bitrate per frame over BRUTE. The
scaling motion in SCALEBUNNY occurs in small in-
crements and the object color varies slowly over the

surface of the bunny. Thus, the translational mo-
tions found by BRUTE work well on this sequence and
LSQ6(LSQ-ONE) does not have much of an advantage
over BRUTE. The FINDSPOT sequence similarly con-
tains a lot of incremental scaling on the bunny object
and the gains with LSQ6(LSQ-ONE) are small. In the
TOP-SPIN animation many blocks contain object edges
and LSQ6(LSQ-ONE) does not reconstruct these blocks
very well. Because all the surfaces in this animation are
texture mapped with textures containing high frequency
edges, small inaccuracies in the motion parameters can
cause the error frame to contain a large amount of in-
formation. The LSQG6(LSQ-ONE) algorithm does much
better than BRUTE with animations containing lots of
rotations such as CUBE-SPIN and BALLS.

5.4 Hybrid Algorithm Results

The hybrid algorithms are the most accurate of all the
model-based techniques we consider as shown in tables
8 and 9. The differences between the BRUTE and P-
BRUTE versions of the hybrid algorithms are minor,
mainly because the search window of [-16, 16] is rela-
tively large for both algorithms.

While HYBRID-SMPL performs slightly better than
HYBRID-EDGE both in terms of average PSNR
and average bitrate per frame, its algorithmic com-
plexity makes it less practical than HYBRID-EDGE.
Across all of the animations, the average PSNR
of HYBRID-EDGE(BRUTE) is within 0.24 dB of
HYBRID-SMPL (BRUTE) and the average total bi-
trate of HYBRID-EDGE(BRUTE) is within 2% of
HYBRID-SMPL(BRUTE).

As described in section 3 the complexity of HYBRID-
EDGE is dependent on the number of blocks that con-

Average Average

number edge | percentage edge

Animation or new blocks or new blocks
BALLS 116.65 18.66%
CUBES-SPIN 114.85 18.38%
FINDSPOT 92.29 14.77%
ROTBUNNY 97.08 15.53%
SCALEBUNNY 72.34 11.57%
TOP-SPIN 49.53 7.92%
TRANSBUNNY 96.69 15.47%

Table 10: The average number and percentage per
frame of blocks containing object edges or new infor-
mation. The percentages given in the third column are
based on scenes rendered at 400 x 400 pixels with 16 x 16
blocks for a total of 625 blocks per frame.

tain edges and new information in each frame. Table 10
presents the average number of blocks per frame con-
taining edges or new information for each for the ani-
mations in the database.

Compared to BRUTE, the HYBRID-
EDGE(BRUTE) scheme performs significantly better.
As shown in table 8, HYBRID-EDGE (BRUTE)
produces a PSNR that is between 1.03 dB and 2.63
dB higher than BRUTE across all the animations.
The HYBRID-EDGE(BRUTE) algorithm also gives
between 9.35 and 36.18 percent smaller average total

bitrates per frame than BRUTE.

6 CONCLUSIONS

One approach to performing motion estimation on syn-
thetic animations i1s to treat them as video sequences
and use standard image-based block motion estimation
methods. In this paper we have shown how one can
take advantage of information used in rendering the an-
imation to perform fast, accurate block-based motion
estimation. We have found that our model-based algo-
rithms perform better than the image based BRUTE
method in terms of complexity, quality of compressed
error frames and bit rate.

Both our LSQ6 and HYBRID-EDGE algorithms gen-
erate six parameters per block. We use vector quantiza-
tion for compressing this motion information. A slightly
different approach for compressing this motion infor-
mation would be to first factor each 2D transformation
matrix into the simple transformations that comprise it:
translations in and y, a rotation in the zy plane, scal-
ings in z and y, shears, and perspective warps. This
decomposition is described in [1]. This factorization
should decorrelate some of the motion parameters and
thereby allow us to quantize the parameters more effec-
tively.

Another model-based approach for doing motion
compensation would be to run the least square algo-
rithm on larger blocks like 64 x 64 to compensate for
rotations etc. and then use brute force motion estima-
tion on compensated 16 x 16 subblocks. This would have
the advantage of sending less motion information, while
allowing us to exploit the model-based motion informa-
tion to account for non-translational block motion.

In the motion estimation system we have described,
the estimation is being done open loop. That is, the en-
coder determines the motion parameters using original
frames only. We are working on a closed-loop system, in
which the encoder performs the motion estimation using
a reconstructed frame N and an original frame N. This
more closely models how the motion parameters will be
used by the decoder, since the decoder only has access
to a reconstructed frame N. This model-based motion
estimation system will be part of a complete end to end
compression system which we are currently designing.

7 ACKNOWLEDGMENTS

We would like to thank Marc Levoy and Anoop Gupta
for their fruitful discussions over the course of this
project.

References

[1] James Arvo, editor. Graphics Gems II. Academic
Press, Inc., 1991.

[2] Shenchang Eric Chen and Lance Williams. View in-
terpolation for image synthesis. In James T. Kajiya,
editor, Computer Graphics (SIGGRAPH ’93 Pro-
ceedings), volume 27, pages 279-288, August 1993.

[3] P. A. Chou, T. Lookabaugh, and R. M. Gray. Op-
timal pruning with applications to tree-structured
source coding and modelling. TFEE Transactions
on Information Theory, 35:299-315, 1989.

[4] A. Gersho and R. M. Gray. Vector Quantization and
Stgnal Compression. Kluwer Academic Publishers,
1991.

[5] Brian K. Guenter, Hee Cheol Yun, and Russell M.
Mersereau. Motion compensated compression of
computer animation frames. In James T. Kajiya,
editor, Computer Graphics (SIGGRAPH ’93 Pro-
ceedings), volume 27, pages 297-304, August 1993.

[6] A. C. Hung and T. H. Meng. Parallel array ar-
chitechures for motion estimation. In T. Valero,
M.; Lang, Sun-Yuan Kung, and J. Fortes, editors,
Proceedings of the International Conference on Ap-
plication Specific Array Processors, pages 214-235.
IEEE, September 1991.

[7] D. LeGall. MPEG: A video compression standard
for multimedia applications. Communications of the
ACM, 34(4):46-58, April 1991.

[8] E. A. Riskin and R. M. Gray. A greedy tree growing
algorithm for the design of variable rate quantizers.
IFEFE Transations on Signal Processing, 39:2500—
2507, 1991.

[9] Dan S. Wallach, Sharma Kunapalli, and Michael F.
Cohen. Accelerated MPEG compression of dynamic
polygonal scenes. In Andrew Glassner, editor, Pro-
ceedings of SIGGRAPH ’94 (Orlando, Florida, July
24-29, 1994), Computer Graphics Proceedings, An-
nual Conference Series, pages 193-197. ACM SIG-
GRAPH, ACM Press, July 1994. ISBN 0-89791-667-
0.

