
Detecting Races in Relay Ladder Logic ProgramsAlexander Aiken?, Manuel F�ahndrich?, and Zhendong Su?EECS DepartmentUniversity of California, Berkeley??Abstract. Relay Ladder Logic (RLL) [4] is a programming languagewidely used for complex embedded control applications such as manu-facturing and amusement park rides. The cost of bugs in RLL programsis extremely high, often measured in millions of dollars (for shuttingdown a factory) or human safety (for rides). In this paper, we describeour experience in applying constraint-based program analysis techniquesto analyze production RLL programs. Our approach is an interestingcombination of probabilistic testing and program analysis, and we showthat our system is able to detect bugs with high probability, up to theapproximations made by the conservative program analysis. We demon-strate that our analysis is useful in detecting some
aws in productionRLL programs that are di�cult to �nd by other techniques.1 IntroductionProgrammable logic controllers (PLC's) are used extensively for complex embed-ded control applications such as factory control in manufacturing industries andfor entertainment equipment in amusement parks. Relay Ladder Logic (RLL) isthe most widely used PLC programming language; approximately 50% of themanufacturing capacity in the United States is programmed in RLL [5].RLL has long been criticized for its low level design, which makes it di�cultto write correct programs [18]. Moreover, validation of RLL programs is ex-tremely expensive, often measured in millions of dollars (for factory down-time)or human safety (for rides). One solution is to replace RLL with a higher-level,safer programming language. An alternative is to provide better programmingsupport directly for RLL. Since there are many existing RLL applications, andmany more will be written in this language, we consider the latter approach inthis paper.We have designed and implemented a tool for analyzing RLL programs. Ouranalyzer automatically detects some common programming mistakes that are? Supported in part by the National Science Foundation, Grant No. CCR-9416973, byNSF Infrastructure Grant No. CDA-9401156, and a gift from Rockwell Corporation.The information presented here does not necessarily re
ect the position or the policyof the Government and no o�cial endorsement should be inferred.?? Authors' address: EECS Department, University of Califor-nia, Berkeley, 387 Soda Hall #1776, Berkeley, CA 94720-1776Email: faiken,manuel,zhendongg@cs.berkeley.edu

PR: 50

AR: xx

TB: 0.1 sec

XIO (C)

XIC (B)

OTE (B)

OTE (C)

EN

DN

XIC (A)

TON

Fig. 1. An example RLL program.extremely di�cult to detect through inspection or testing. The information in-ferred by the analyzer can be used by RLL programmers to identify and correctthese errors. Our most interesting result is an analysis to detect certain raceconditions in RLL programs. Tested on real RLL programs, the analysis foundseveral such races, including one known bug that originally costed approximately$750,000 in factory down-time [5].Our analysis is constraint-based, meaning that the information we wish toknow about a program is expressed as constraints [16, 2, 3]. The solutions of theseconstraints yield the desired information. Our analysis is built using a generalconstraint resolution engine, which allows us to implement the analysis directlyin the same natural form it is speci�ed. Constraint-based program analysis isdiscussed further in Section 2.Our system has two components: (a) a conservative data and control
owanalysis captures information about a program in an initial system of constraintsand (b) additional constraints binding program inputs to actual values are addedto the initial constraint system, which is then solved to obtain the desired in-formation. Part (a) is done only once, but part (b) is done many times forrandomly chosen inputs. Our underlying constraint resolution engine solves andsimpli�es the initial constraints generated by (a), thereby greatly improving theperformance of (b).Beyond the particular application to RLL programs, this system architecturehas properties that may be of independent interest. First, the use of constraintsgreatly simpli�es the engineering needed to factor out the information to becomputed once from that which must be reevaluated repeatedly|we simply addnew constraints to the initial system. Second, our system is (to the best of ourknowledge) a unique blend of conservative program analysis (part (a), whichapproximates certain aspects of computation) and software testing (part (b),which \executes" the abstraction for concrete inputs). Third, we are able toprove that classes of program errors are detected with high probability, up tothe approximations made by the conservative analysis.

We expect that the engineering advantages of using constraints will carry overto other static analysis tools. The latter two results apply directly only if theprogramming language has a �nite domain of values (RLL has only booleans).Thus, our approach is suitable for some other special-purpose languages (e.g.,other control languages) but not necessarily for general purpose languages.1.1 A More Detailed OverviewBy any standard RLL is a strange language, combining features of booleanlogic (combinatorial circuits), imperative programming (assignment, goto, pro-cedures, conditionals), and real-time computation (timers, counters) with anobscure syntax and complex semantics. Although widely used, RLL is not well-known in the research community. We give a brief overview of RLL togetherwith a more detailed, but still high level, description of our analysis system.RLL programs are represented as ladder diagrams, which are a stylized formof a circuit or data
ow diagram. A ladder diagram consists of a set of ladderrungs with each rung having a set of input instructions and output instructions.We explain this terminology in the context of the example RLL program inFigure 1. In the example, there are two vertical rails. The one on the left suppliespower to all crossing rungs of the ladder. The three horizontal lines are the ladderrungs of this program. This example has four kinds of RLL instructions: input(two kinds), outputs, and timer instructions. The small vertical parallel bars j jand j=j represent input instructions, which have a single bit associated with them.The bit is named in the instruction. For example, the j j instruction (an XIC for\Normally Closed Contact" instruction) in the upper-left corner of the diagramreads from the bit named A, and the j=j instruction (an XIO for \NormallyOpened Contact" instruction) in the lower-left corner of the diagram reads fromthe bit named C. The small circles represent output instructions that update thevalue of their labeled bits. The bits named in input and output instructions areclassi�ed into external bits, which are connected to inputs or outputs external tothe program, and internal bits, which are local to the program for temporarilystoring program states. External inputs are generally connected to sensors, whileexternal outputs are used to control actuators. The rectangular box represents atimer instruction (a TON for \Timer On-Delay" instruction), where PR (preset)is an integer representing a time interval in seconds, AR (accumulator) keeps theaccumulated value, and TB (time base) is the step of each increment of the AR.The timer instructions are used to turn an output on or o� after the timer hasbeen on for a preset time interval (the PR value).Instructions are connected by wires, the horizontal lines between instructions.We say a wire is true if power is supplied to the wire, and the wire is falseotherwise.An RLL program operates by �rst reading in all the values of the externalinput bits and executing the rungs in sequence from top to bottom and left toright. Program control instructions may cause portions of the program to beskipped or repeatedly executed. After the last rung is evaluated, all the realoutput devices connected to the external output bits are updated. Such a three

step execution (read inputs, evaluate rungs, update outputs) of the program iscalled a scan. Programs are executed scan after scan until interrupted. Betweenscans, the input bit values might be changed, either because the inputs weremodi�ed by the previous scan (bits can be inputs, outputs, or both) or becauseof state changes in external sensors attached to the inputs. Subsequent scans usethe new input values.RLL has many types of instructions: relay instructions, timer and counterinstructions, data transfer instructions, arithmetic operations, data comparisonoperations, and program control instructions. Examples of relay instructions areXIC, XIO, and OTE. We brie
y describe how these three instructions work forthe explanation of our analysis. Let w1 and w2 be the wires before and after aninstruction respectively. Further, let b be the bit referenced by an instruction.XIC: if w1 and b are true, w2 is true; otherwise, w2 is false.XIO: if w1 is true, and b is false, w2 is true; otherwise, w2 is false.OTE: the bit b is true if and only if w1 is true.In this paper, we describe the design and implementation of our RLL programanalyzer for detecting relay races. In RLL programs, it is desirable that the valuesof outputs depend solely on the values of inputs and the internal states of timersand counters. If under �xed inputs and timer and counter states, an output xchanges from scan to scan, then there is a relay race on x. For example, in theprogram in Figure 1, we will see later that the bit B changes value each scanregardless of its initial value. Relay races are particularly di�cult to detect bytraditional testing techniques, as races can depend on the timing of externalevents and the scan rate.Our analysis generalizes traditional data
ow analyses [1]. Instead of data
owequations, set constraints [16, 2, 3] are used. Set constraints are more expressivethan data
ow equations because the constraints can model not only data
owbut also control
ow of a program.Our analysis consists of two steps. In the �rst step, we generate constraintsthat describe the data and control
ow dependencies of an RLL program. Theconstraints are generated in a top-down traversal of the program's abstract syn-tax tree (AST). According to a set of constraint generation rules (see Section 3),appropriate constraints are generated for each AST node. These data and con-trol
ow constraints are solved to yield another system of simpli�ed constraints,the base system. The base system models where and how a value
ows in theprogram. The base system is a conservative approximation of the program: ifduring program execution, a wire or a bit can be true (false), then true (false)is in the set that denotes the values of the wire or the bit in the base system;however, false (true) may be a value in that set, too.The second step of the relay race analysis simulates multiple scans and looksfor racing outputs. We choose a random assignment of inputs and add the cor-responding constraints to the base system. The resulting system is solved; itsminimum solution describes the values of the outputs at the end of the scan.Since some output bits are also inputs, the input assignment of the next scanis updated using the outputs from the previous scan. Again, we add this input

assignment to the base system and solve to obtain the minimum solution of theoutputs after the second scan. If an output changes across scans, a relay raceis detected. For example, consider the example program in Figure 1. Since thebottom two rungs do not interfere with the �rst rung, consider these two rungsonly. Assume that B has initial value true. Then C also is true, and so in thelast rung, B becomes false. Thus, in the next scan, B is initially false. Thus, Cbecomes false, which makes B true at the end of this scan. Consequently, wehave detected a relay race on B: after the �rst scan B is false, and after thesecond scan B is true.The race analysis is conservative in the sense that it cannot detect all ofthe relay races in a program. However, any relay races the analyzer detects areindeed relay races, and we can prove that a large class of relay races is detectedwith high probability.We have implemented the race analysis in Standard ML of New Jersey (SML)[20]. Our analyzer is accurate and fast enough to be practical|production RLLprograms can be analyzed. The relay race analysis not only detected a knownbug in a program that took an RLL programmer four hours of factory down-time to uncover, it also detected many previously unknown relay races in ourbenchmark programs.The rest of the paper is structured as follows. First, we describe the constraintlanguage used for the analysis (Section 2). The rules for generating the basesystem come next (Section 3), followed by a description of the relay race analysis(Section 4). Finally, we present some experimental results (Section 5), followedby a discussion of related work (Section 6) and the conclusion (Section 7).2 ConstraintsIn this section, we describe the set constraint language we use for expressingour analysis. Our expression language consists of set variables, a least value ?,a greatest value >, constants T and F, intersections, unions, and conditionalexpressions. The syntax of the expression language isE ::= v j ? j > j c j E1 [E2 j E1 \E2j E1) E2;where c is a constant (either T or F) and v 2 V is a set variable.The abstract domain consists of four elements: ; (represented by ?), fTg(represented by T), fFg (represented by F), fT;Fg (represented by >) withset inclusion as the partial order on these elements. The domain is a �nite lat-tice with \ and [being the meet and join respectively. The semantics of theexpression language is given in Figure 2.Conditional expressions deserve some discussion. Conditional expressions areused for accurately modeling
ow-of-control (see e.g., [3]). In the context of RLL,they can be used to express boolean relations very directly. For example, we canexpress the boolean expression v1^ v2 with the following conditional expression:((v1 \T)) (v2 \T)) T) [((v1 \ F)) F) [((v2 \ F)) F)

�(?) = ;�(>) = fT;Fg�(T) = fTg�(F) = fFg�(E1 \E2) = �(E1) \ �(E2)�(E1 [E2) = �(E1) [�(E2)�(E1) E2) = ��(E2) if �(E1) 6= ;; otherwiseFig. 2. Semantics of set expressions.To see this expression does model the ^ operator, notice that if v1 = T andv2 = T, the above expression simpli�es to((T \T)) (T \T)) T) = ((T) T)) T) = T:One can easily check that the other three cases are also correct.We use set constraints to model RLL programs instead of boolean logic fortwo reasons. First, although the core of RLL is boolean logic, other instructions(e.g., control
ow instructions) are at best di�cult to express using boolean logic.Second, RLL programs are large and complex, so approximations are neededfor performance reasons. Set constraints give us the
exibility to model certaininstructions less accurately and less expensively than others, thus, making theanalysis of RLL programs more manageable.3 Constraint GenerationIn this section, we describe how we use inclusion constraints to model RLLprograms. Because of the scan evaluation model of RLL programs, it is naturalto express the meaning of a program in terms of the meaning of a single scan.The constraint generation rules model the meaning of a single scan of RLLprograms. In the rules set variables denote the values of bits and wires. Thus,a bit or wire may be assigned the abstract values ; (meaning no value), fTg(de�nitely true), fFg (de�nitely false) or fT;Fg (meaning either true or false,i.e., no information). Rules have the formE; I 7! E0; S; v1; v2where:{ E and E0 are mappings of bits to their corresponding set variables. The oper-ator + extends the mapping such that (E+ fb; vg)(b0) = � v; if b0 = bE(b0); otherwise{ I is the current instruction;{ S is the set of constraints generated for this instruction;

{ v1 and v2 are set variables associated with the wires before and after instruc-tion I and are used to link instructions together.In this section, w1 and w2 denote the wires preceding and following an in-struction respectively. Furthermore, b denotes the bit referenced by an instruc-tion unless speci�ed otherwise. Figure 3 gives some example inference rules forgenerating the constraints describing the data and control
ow of RLL programs.Below, we explain these rules in more detail.ContactsThe instruction XIC is called \Normally Closed Contact." If w1 is true, thenb is examined. If b is true, then w2 is true. Otherwise, w2 is false. In the rule[XIC], two fresh set variables v1 and v2 represent the two wires w1 and w2.The set variable vct represents the referenced bit b. The constraints expressthat w2 is true if and only if both w1 and b are true.The instruction XIO, called \Normally Opened Contact," is the dual of XIC.The wire w2 is true if and only if w1 is true and the referenced bit b is false.The rule for XIO is similar to the rule [XIC].Energise CoilThe instruction OTE is called \Energise Coil." It is programmed to controleither an output connected to the controller or an internal bit. If the wirew1 is true, then the referenced bit b is set to true. Otherwise, b is set tofalse. Rule [OTE] models this instruction. The set variables v1 and v2 arethe same as in the rule [XIC]. The set variable vct is fresh, representing anew instance1 of the referenced bit b. The new instance is recorded in themapping E0. Later references to b use this instance. The constraints expressthat b is true if and only if w1 is true.LatchesThe instructions OTL and OTU are similar to OTE. OTL is \Latch Coil,"and OTU is \Unlatch Coil." These two instructions appear in pairs. Oncean OTL instruction activates its bit b, then b remains true until it is clearedby an unlatch instruction OTU, independently of the wire w1 which acti-vated the latch. The unlatch coil (OTU) instruction is symmetric. In therule [OTL], the set variable v0ct represents the value of the b prior to theinstruction, while the variable vct denotes the new instance of b. The con-straint expresses that b is true if and only the wire w1 is true or b is truebefore evaluating this instruction. The rule for OTU is similar.TimersTimers (TON) are instructions that activate an output after an elapsedperiod of time. Three status bits are associated with a timer: the done bit(DN), the timing bit (TT), and the on bit (EN). The DN bit is true if thewire w1 has remained true for a preset period of time. The bit remains trueunless w1 becomes false. The TT bit is true if the wire w1 is true and the1 Due to the sequential evaluation of rungs, a particular bit can take on distinct valuesin di�erent parts of a program. An instance of a bit captures the state of a bit at aparticular program point.

v1 and v2 are fresh variablesvct = E(b)S = f((v1 \T)) (vct \T)) T) [((v1 \F)) F) [((vct \ F)) F) � v2gE;XIC(b) 7! E;S; v1; v2 [XIC]v1, v2, and vct are fresh variablesE0 = E + f(b; vct)gS = f((v1 \T)) T) [((v1 \F)) F) � vctgE;OTE(b) 7! E0; S; v1; v2 [OTE]v1, v2, and vct are fresh variablesv0ct = E(b)E0 = E + f(b; vct)gS = f((v0ct \T)) T) [((v1 \T)) T) [((v1 \F)) (v0ct \ F)) F) � vctgE;OTL(b) 7! E0; S; v1; v2 [OTL]v1, v2, vdn, ven, and vtt are fresh variablesE0 = E + f(DN;vdn); (EN; ven); (TT; vtt)gS =8<: ((v1 \T)) T [F) � vdn;((v1 \T)) (vdn \F)) T) [((v1 \ F)) F) [((vdn \T)) F) � vtt;((v1 \T)) T) [((v1 \F)) F) � ven9=;E;TON 7! E0; S; v1; v2 [TON]B = the set of bits in the programv1, v2, nvb (for all b 2 B) are fresh variablesRfname = the rungs in the �le fnameE;Rfname 7! E0; S0E00 = f(b; nvb) j b 2 BgS = ((v1 \T)) S0) [f(v1 \T)) E0(b) [(v1 \F)) E(b) � nvb j b 2 B gE; JSRfname 7! E00; S; v1; v2 [JSR]v is a fresh variableE;R1 7! E0; S0; v1; v2E0; R2 7! E00; S1; v01; v02S = f(v2 \T)) T [(v02 \T)) T [(v2 \F)) (v02 \F)) F � vgE;R1jjR2 7! E00; S [S0 [S1 [fv1 = v01g; v1; v [PAR]Fig. 3. Some rules for generating constraints.

DN bit is false. It is false otherwise, i.e., it is false if the wire w1 is false orthe DN bit is true. The EN bit is true if and only if the wire w1 is true.In the rule [TON], vdn; vtt and ven are fresh set variables representing newinstances of the corresponding bits. The constraint for the DN bit is((v1 \T)) T) [F � vdn:The constraint approximates timer operation while ignoring elapsed time.The DN bit can be false (the timer has not reached its preset period), or if thewire w1 is true, then the DN bit can be true (the timer may have reached itspreset period). The constraints for the TT and EN bits are straightforward.Remark 1. For the relay race analysis, we assume that the DN bit does notchange value across scans. This assumption is reasonable since the scan time,compared with the timer increments, is in�nitesimal. The DN bit essentiallybecomes an input bit in the race analysis, and the constraint is accordinglysimpli�ed to E(DN) � vdn.SubroutinesJSR is the subroutine call instruction. If the wire w1 evaluates to true, thesubroutine (a portion of ladder rungs with label fname as speci�ed in theJSR instruction) is evaluated up to a return instruction, after which ex-ecution continues with the rung after the JSR instruction. If w1 is false,execution continues immediately with the rung after the JSR instruction. Inthe rule [JSR], B denotes the set of all bits in a program. IF S is a set ofconstraints and � a set expression, then the notation �) S abbreviates theset of constraints f�) �0 � �1 j (�0 � �1) 2 SgThe fresh variables nv b represent new instances of all bits b 2 B. ConstraintsS0 are generated for the ladder rungs of the subroutine together with amodi�ed mapping E0. The constraintsf(v1 \T)) E0(b) [(v1 \ F)) E(b) � nvb j b 2 Bgmerge the two instances of every bit b from the two possible control
ows. Ifthe wire w1 (modeled by v1) is true, then E0(b) (the instance after evaluatingthe subroutine) should be the value of the current instance, otherwise, E(b)is the value of the current instance.Parallel WiresThe rule [PAR] describes the generation of constraints for parallel wires.Parallel wires behave the same as the disjunction of two boolean variables,i.e., the wire after the parallel wires is true if any one of the two input wiresis true. In the rule v1 = v01 is an abbreviation for the two constraints v1 � v01and v01 � v1. The fresh variable v is used to model the wire after the parallelwires. The constraint(v2 \T)) T [(v02 \T)) T [(v2 \ F)) (v02 \ F)) F � v

says that the wire after the parallel wires is true if one of the parallel wiresis true. There are other rules for linking instructions together. These rulesare similar to [PAR] and are also straightforward.All solutions of the generated constraints conservatively approximate theevaluation of RLL programs. However, the best approximation is the least so-lution (in terms of set sizes). We now present a theorem which states that theconstraints generated from an RLL program together with constraints for re-stricting the inputs have a least solution.Theorem 1 (Existence of Least Solution). For any RLL program P, let Sbe the constraint system generated by the rules given in Figure 3. Further letc be an input con�guration for P. The constraint system S together with thecorresponding constraints of c has a least solution, Solleast.Next, we state a soundness theorem of our model of RLL programs, namelythat our model is a safe approximation of RLL.Theorem 2 (Soundness). Let P be an RLL program and S be the constraintsystem generated by the rules given in Figure 3. Further let c be an input con-�guration for P. The least solution Solleast to the constraint system S togetherwith the constraints restricting the inputs safely approximates the values of thewires and bits in one scan, meaning that if an instance of a bit or a wire is true(false) in an actual scan, then true (false) is a value in the set representing thisinstance.Theorem 1 and Theorem 2 are proven in [21].4 Relay Race AnalysisIn this section, we describe our analysis for detecting relay races in RLL pro-grams. In RLL programs, it is desirable if the values of outputs depend solelyon the values of inputs and the internal states of timers and counters. If under�xed inputs and timer and counter states, an output b changes from scan toscan, then there is a relay race on b.Before describing our analysis, we give a more formal de�nition of the prob-lem. Consider an RLL program P . Let IN denote the set of inputs, and let OUTdenote the set of outputs2. Let C be the set of all possible input con�gurations.Further, let 	i : OUT ! fT;Fg be the mapping from the set of outputs totheir corresponding values at the end of the ith scan.De�nition 1. An RLL program P is race free if for any input con�gurationsc 2 C, by �xing c, it holds that for all i � 1; 	i = 	1. Otherwise, we say theprogram has a race.2 Note that IN = set of external inputs + internal bits, and OUT = set of externaloutputs + internal bits.

De�nition 1 states under what conditions a program exhibits a race. Notethat this de�nition assumes that outputs should stabilize after a single scan.De�nition 2. Let P be an RLL program. An approximation A of P is an ab-straction of P such that, for any con�guration c and bit b of P , at the end ofany scan, the following condition holds: Pc(b) (the value of b in the program P)is contained in Ac(b) (the value of b in the abstraction A), i.e., Pc(b) 2 Ac(b).Let A be an approximation of P . Let �i : OUT ! }(fT;Fg) be themapping from the set of outputs to their corresponding values at the end of theith scan in A, where }(fT;Fg) denotes the powerset of fT;Fg.De�nition 3. An approximation A of an RLL program P is race free if forany �xed initial input con�guration c 2 C, and the resulting in�nite sequenceof abstract scans S1; S2; S3; : : : , there exists 	� : OUT ! fT;Fg such that	�(b) 2 �i(b), for all b 2 OUT and i � 1.Lemma 1. Let P be an RLL program and A an approximation of P . If P israce free, then so is A. In other words, if A exhibits a race, so does P .Proof. Since P is race free, by De�nition 1, we have 	i = 	1 for all i � 1. SinceA is an approximation of P , by De�nition 2, 	i(b) 2 �i(b) for all i � 1. Thus,	1(b) 2 �i(b) for all i � 1, and by De�nition 3, the approximationA is also racefree.Lemma 1 states that if our analysis detects a race under some input c, thenthe program will exhibit a race under input c. We now deal with the problem ofdetecting races in our approximation of RLL programs.Theorem 3. For any approximation A of an RLL program P and input c 2 C,the approximation A races under c if and only if there exists b 2 OUT such thatTi�1�i(b) = ;.Proof. Let b 2 OUT be an output such that Ti�1�i(b) = ;. Since A is anapproximation of the program P , we have �i(b) 6= ;. Thus, there exist positiveintegers i 6= j such that �i(b) = fTg and �j(b) = fFg. Therefore, there doesnot exist a 	� : OUT ! fT;Fg such that 	�(b) 2 �i(b) for all b 2 OUT andfor all i � 1. Hence, A has a race under c.Conversely, suppose for all b 2 OUT, we have Ti�1 �i(b) 6= ;. Then, let�(b) = Ti�1�i(b) for all b 2 OUT. Clearly there exists a 	� : OUT ! fT;Fgsuch that 	�(b) 2 �(b) for all b 2 OUT. Therefore, A does not race under inputc. In principle, for any given input assignment, it is necessary to simulate scansuntil a repeating sequence of output con�gurations is detected, which may re-quire a number of scans exponential in the number of inputs. However, thefollowing lemma shows that two scans are su�cient to uncover the commoncase.

1 for every output b2 Bsum(b) := fT;Fg;3 Sinput := random assignment;4 for Scan := 1 to 25 Bcurrent := Solleast(Sbase [Sinput);6 Sinput := GetInput(Bcurrent);7 Bsum := Bsum \Bcurrent;8 if Bsum(b) = ; for some output b9 then output b is racing;Fig. 4. Algorithm for detecting races.Lemma 2. Let A be an approximation of a program P . If A has a race of bit bunder input con�guration c, such that �i(b)\�i+1(b) = ; for some scan i, thenthere exists another input con�guration c0 such that �1(b) \ �2(b) = ; under c0,i.e., it is su�cient to use two scans on every input con�guration to uncover therace on b.Proof. Let �ci (b) denote the value of b at the end of the ith scan starting withinput con�guration c. Without loss of generality, assume �ci (b) = fTg and�ci+1(b) = fFg. Consider the values of the inputs ci prior to scan i. Now chooseany con�guration c0, s.t. c0(b) � ci(b) for all b. Since our analysis is monotonein the input (Theorem 1), we have �c01 (b) = fTg and �c02 (b) = fFg. Hence, therace on bit b can be detected within two scans, starting from a con�guration c0.We have veri�ed experimentally that performing only two scans works well;an experiment in which we performed ten scans per initial input con�gurationdetected no additional races. Theorem 3 and Lemma 2 thus lead naturally tothe algorithm in Figure 4 for detecting relay races. The general strategy for theanalysis is:1. Generate the base system using the constraint generation rules presented inSection 3.2. Add constraints that assign random bits to the inputs.3. Check whether the program races under this input assignment.4. Repeat 2.We make the assumption that all input assignments are possible. In practice,there may be dependencies between inputs that make some input con�gurationsunrealizable. Our analysis can be made more accurate if information about thesedependencies is available.We use the example in Figure 1 to demonstrate how the race detection al-gorithm works. Consider the last two rungs in the example RLL program inisolation. The base system for these two rungs is given in the top of Figure 5.Assume the bit B is initially true. Adding the constraint T � bB0 to the basesystem and solving the resulting system, we obtain its least solution at the end

T � w0((T \ bB0)) T) [((F \ bB0)) F) � w1((T \w1)) T) [((F \w1)) F) � w2((T \w2)) T) [((F \w2)) F) � bCT � w3((T \ bC)) F) [((F \ bC)) T) � w4((T \w4)) T) [((F \w4)) F) � w5((T \w5)) T) [((F \w5)) F) � bB1bit or wire variable value after the �rst scan value after the second scanwire preceding XIC(B) w0 T Twire following XIC(B) w1 T Fwire preceding OTE(C) w2 T Fwire preceding XIO(C) w3 T Twire following XIO(C) w4 F Twire preceding OTE(B) w5 F T�rst instance of B bB0 T Flast instance of B bB1 F Tthe bit C bC T FFig. 5. Base system for the last two rungs of the example program in Figure 1 withthe least solutions at the end of the �rst and the second scans given in the table.of the �rst scan (column 3 in Figure 5). We see that at the end of the �rst scan,the bit B is false. In the second scan, we add the constraint F � bB0 to thebase system. The resulting system is solved, and its least solution is shown incolumn 4 of Figure 5. We intersect the values of the output bits, i.e., bits B (thelast instance) and C, in the least solutions from the �rst two scans. Since theintersections are empty, we have detected a race.If our analysis �nds a race, then the program does indeed exhibit a race.The absence of races cannot be proven by our analysis due to approximationsand due to the �nite subspace of input assignments we sample. However, we cananalyze the coverage of our random sampling approach using the well-knownCoupon Collector's Problem: Consider a hat containing n distinct coupons. In atrial a coupon is drawn at random from the hat, examined, and then placed backin the hat. We are interested in the expected number of trials needed to selectall n coupons at least once. One can show that the expected number of trialsis n lnn + O(n), and that the actual number of trials is sharply concentratedaround this expected value (for any constant c > 0, the probability that aftern(lnn+ c) trials there are still coupons not selected is approximately 1� e�e�c).Notice that 1� e�e�c � 0:05 when c = 3, and this probability is independent ofn.

Program Size #Vars. Secs/Scan Ext. Races Int. Races #Samples Time (s)Mini Factory 9,267 4,227 0.4 55 186 1000 844Big Bak 32,005 21,596 4 4 6 1000 7466Wdsd
t(1) 58,561 22,860 3 8 163 1000 7285Wdsd
t(2) 58,561 22,860 3 7 156 1000 7075Fig. 6. Benchmark programs for evaluating our analysis.Theorem 4. Using the Coupon Collector's problem, after approximately 2k(ln 2k+3) random samples, any race depending on a �xed set of k or fewer inputs hasbeen detected with high probability (95%), up to the approximations due to con-servative analysis and performing only two scans.Note that the expected number of trials depends only on the number of inputsparticipating in the race, not on the total number of inputs. For example, thenumber of trials required to �nd races involving 5 inputs with 95% probabilityis 200 whether there are 100, 1000, or 10,000 inputs to the program.5 Experimental ResultsWe have implemented our analysis using a general constraint solver [13]. Inputsto our analysis are abstract syntax tree (AST) representations of RLL programs.The ASTs are parsed into internal representations, and constraints are generatedusing the rules in Figure 3. The resulting constraints are solved and simpli�edto obtain the base system.5.1 BenchmarksFour large RLL programs were made available to us in AST form for evaluatingour analysis.{ Mini FactoryThis is an example program written and used by RLL programmers andresearchers working on tools for RLL programming.{ Big BakThis is a production RLL program.{ Wdsd
t(1)Another production application, this program has a known race.{ Wdsd
t(2)This program is a modi�ed version of Wdsd
t(1) with the known race elim-inated. The program is included for comparing its results with the resultsfrom the original program.Figure 6 gives a table showing the size of each program as number of linesin abstract syntax tree form, number of set variables in the base system, and

the time to analyze one scan. All measurements reported here were done on aSun Enterprise-5000 with 512MB of main memory (using only one of the eightprocessors).Our analysis discovered many relay races in these programs. The results arepresented in Figure 6. For each program, we show the number of external racingbits (bits connected to external outputs), the number of internal racing bits (bitsinternal to the program), the number of samples, and the total analysis time inseconds. By Theorem 4, 1000 trials are su�cient to uncover races involving 7 orfewer inputs.No relay races were known for the Mini Factory program. Our analysis de-tected 55 external races, some of which were subsequently veri�ed by runninga model factory under the corresponding inputs. Fewer races were found in BigBak, even though it is a much larger program. Two likely reasons for this sit-uation are that Big Bak uses arithmetic operations heavily (which our analysisapproximates rather coarsely) and that Big Bak is a production program andhas been more thoroughly debugged than Mini Factory. Our analysis discoveredthe known relay race in Wdsd
t(1) (�xed in Wdsd
t(2)) among 8 external and163 internal races. Note that some of the reported races may be unrealizable ifthey depend on input con�gurations that cannot occur in practice.6 Related WorkIn this section, we discuss the relationship of our work to work in data
owanalysis, model checking, and testing.Data Flow Analysis Data
ow analysis is used primarily in optimizingcompilers to collect variable usage information for optimizations such as deadcode elimination and register allocation [1]. It has also been applied for ensuringsoftware reliability [14,15]. Our approach di�ers from classical data
ow analysisin two points. First, we use conditional constraints [3], which are essential formodeling both the boolean instructions and control
ow instructions. Second,the use of constraints gives us the
exibility to analyze many input con�gurationsby adding constraints to a base system, instead of performing a global data
owanalysis repeatedly. Our approach is more e�cient because the base systemcan be solved and simpli�ed once and then used repeatedly on di�erent inputcon�gurations.Model Checking Model checking [9,10] is a branch of formal veri�cationthat can be fully automated. Model checking has been used successfully for ver-ifying �nite state systems such as hardware and communication protocols [6, 7,12,17, 11]. Model checkers exploit the �nite nature of these systems by perform-ing exhaustive state space searches. Because even these �nite state spaces maybe huge, model checking is usually applied to some abstract models of the actualsystem. These abstract systems are symbolically executed to obtain informationabout the actual systems. Our analysis for RLL programs is similar to modelchecking in that our abstract models are �nite, whereas RLL programs are ingeneral in�nite state systems. Similar to model checking, we make the tradeo�s

between modeling accuracy and e�ciency. Our abstraction approximates timers,counters, and arithmetic. It is through these approximations that we obtain asimpler analysis that is practical for production codes. On the other hand, dueto these approximations our analysis cannot guarantee the absence of errors.However, our approach di�ers from model checking in the way abstract modelsare obtained. In model checking, abstract models are often obtained manually,while our analysis automatically generates the model.Testing Testing is one of the most commonly used methods for assur-ing hardware and software quality. The I/O behaviors of the system on inputinstances are used to deduce whether the given system is faulty or not [19].Testing is non-exhaustive in most cases due to a large or in�nite number of testcases. One distinction of our approach from testing is that we work with anabstract model of the actual system. There are advantages and disadvantagesto using an abstract model. A disadvantage is that there is loss of informationdue to abstraction. As a result, the detection of an error may be impossible,whereas testing the actual system would show the incorrect I/O behavior. Ab-stract models have the advantage that a much larger space of possible inputscan be covered, which is important if the set of inputs exhibiting a problem isa tiny fraction of all possible inputs. An abstract model is also advantageouswhen it is very di�cult or very expensive to test the actual system. Both ofthese advantages of abstract modeling apply in the case of detecting relay racesin RLL programs. [8] discusses some other tradeo�s of using the actual systemand abstract models of the system for testing.7 ConclusionIn this paper, we have described a relay race analysis for RLL programs tohelp RLL programmers detect some common programming mistakes. We havedemonstrated that the analysis is useful in statically catching such programmingerrors. Our implementation of the analysis is accurate and fast enough to bepractical | production RLL programs can be analyzed. The relay race analysisnot only detected a known bug in a program that took an RLL programmerfour hours of factory down-time to uncover, it also detected many previouslyunknown relay races in our benchmark programs.AcknowledgmentsWe would like to thank Jim Martin for bringing RLL to our attention and formaking this work possible. We would also like to thank Anthony Barrett forinformation on RLL, providing us with abstract syntax trees of RLL programs,and running some experiments to validate our results. Finally, we thank theanonymous referees for the helpful comments.

References1. A.V. Aho, R. Sethi, and J.D. Ullman. Compilers, Principles, Techniques and Tools.Addison-Wesley, 1986.2. A. Aiken and E. Wimmers. Type inclusion constraints and type inference. InProceedings of the 1993 Conference on Functional Programming Languages andComputer Architecture, pages 31{41, Copenhagen, Denmark, June 1993.3. A. Aiken, E. Wimmers, and T.K. Lakshman. Soft typing with conditional types. InTwenty-First Annual ACM Symposium on Principles of Programming Languages,pages 163{173, Portland, Oregon, January 1994.4. Allen{Bradley, Rockwell Automation. SLC 500 and MicroLogix 1000 InstructionSet.5. A. Barrett. Private communication.6. M. Browne, E.M. Clarke, and D. Dill. Checking the correctness of sequentialcircuits. In Proc. IEEE Internat. Conf. on Computer Design, pages 545{548, 1985.7. M. Browne, E.M. Clarke, D. Dill, and B. Mishra. Automatic veri�cation of se-quential circuits using temporal logic. IEEE Trans. Comput., 35(12):1035{1044,1986.8. R.H. Carver and R. Durham. Integrating formal methods and testing for con-current programs. In Proceedings of the Tenth Annual Conference on ComputerAssurance, pages 25{33, New York, NY, USA, June 1995.9. E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletonsusing branching time temporal logic. In Proc. Workshop on Logics of Programs,volume 131, pages 52{71, Berlin, 1981. Springer.10. E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic veri�cation of �nite-state concurrent systems using temporal logic speci�cations. ACM Transactionson Programming Languages and Systems, 8(2):244{263, 1986.11. E.M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D.E. Long, K.L. McMillan, andL.A. Ness. Veri�cation of the futurebus+ cache coherence protocol. In L. Claesen,editor, Proceedings of the Eleventh International Symposium on Computer Hard-ware Description Languages and their Applications, North-Holland, April 1993.12. D. Dill and E.M. Clarke. Automatic veri�cation of asynchronous circuits usingtemporal logic. In Proceedings of the IEEE, volume 133, pages 276{282, 1986.13. M. Fahndrich and A. Aiken. Making set-constraint based program analyses scale.Technical Report UCB/CSD-96-917, University of California at Berkeley, 1996.14. L.D. Fosdick and L.J. Osterweil. Data
ow analysis in software reliability. ACMComputing Surveys, 8(3):305{330, September 1976.15. M.J. Harrold. Using data
ow analysis for testing. Technical Report 93-112,Department of Computer Science, Clemson University, 1993.16. N. Heintze. Set Based Program Analysis. PhD thesis, Carnegie Mellon University,1992.17. G. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall Inter-national Editions, 1991.18. A. Krigman. Relay ladder diagrams: we love them, we love them not. In Tech,pages 39{47, October 1985.19. D. Lee and M. Yannakakis. Principles and methods of testing �nite state machines-a survey. In Proceedings of the IEEE, pages 1090{1123, August 1996.20. R. Milner, M. Tofte, and R. Harper. The De�nition of Standard ML. MIT Press,1990.21. Z. Su. Automatic analysis of relay ladder logic programs. Technical ReportUCB/CSD-97-969, University of California at Berkeley, 1997.

