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ABSTRACT
We present an interactive method for cropping photographs
given minimal information about the location of important
content, provided by eye tracking. Cropping is formulated in
a general optimization framework that facilitates adding new
composition rules, as well as adapting the system to partic-
ular applications. Our system uses fixation data to identify
important content and compute the best crop for any given
aspect ratio or size, enabling applications such as automatic
snapshot recomposition, adaptive documents, and thumb-
nailing. We validate our approach with studies in which
users compare our crops to ones produced by hand and by
a completely automatic approach. Experiments show that
viewers prefer our gaze-based crops to uncropped images
and fully automatic crops.

Author Keywords
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ACM Classification Keywords
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faces.

INTRODUCTION
In art, there is a common saying: what you leave out is as im-
portant as what you put in. Cropping photographs is an art
that consists entirely of leaving out. Successful crops alter
the composition of an image to emphasize the most impor-
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tant image content by framing and enlarging it, while simul-
taneously removing distracting elements. As shown in Fig-
ure 1, an effective crop focuses the viewer’s attention on the
subject of the image, while a poor crop is distracting.

In standard photo-editing applications, a designer directly
draws a crop rectangle around the important content. Pro-
ducing a pleasing crop is not in itself very difficult. However,
even a professional designer usually needs a period of fo-
cused effort to generate a single crop. Hand-crafting attrac-
tive crops for large collections of images, or creating crops
with multiple aspect ratios—necessary for adaptive docu-
ments or different standard size prints—is time-consuming
and burdensome. As a result, many photographers do not
crop their photographs.

As an alternative, we present an implicit, attentive inter-
face [31] for cropping. Users simply look at each image for a
few seconds, while the system records their eye movements.
Our system uses these recordings to identify the important
image content and can then automatically generate crops of
any size or aspect ratio. Beyond cropping, accurate identi-
fication of relevant image content without explicit interac-
tion is an important problem. It can enable applications that
monitor or respond to user gaze in images like video and
image transmission, analysis and quantification of viewing
behavior over images, and region-of-interest (ROI) selection
in image editing.

Our approach builds on the work of Suh et al. [29] and Chen
et al. [5], who have developed fully automated salience-
based image-cropping techniques requiring no user input.
Both of these systems identify important image areas using a
bottom-up computational model of visual salience based on
low-level contrast measures [16], and an image-based face
detection system [20]. However, because these techniques
consider only low-level features and faces, they often miss
other important features in an image and can generate ex-
tremely awkward crops. In contrast, our system relies on
the empirical salience revealed by the eye movements of a
viewer. We can more reliably identify a photo’s subject, and
therefore generate more effective crops. Although our sys-
tem incurs the cost of requiring some user input, this cost is
minor if eye movements are recorded surreptitiously; users,
or viewers, of images need to look at the images almost by
definition. Once gaze data is collected, the system can gen-
erate families of crops at any desired size and aspect ratio.



(a) original (b) gaze-based (c) automatic

Figure 1. Cropping can drastically change the impact of a photo. Compared to the original snapshot, a good crop as produced by our gaze-based
system can improve an image. A poorly chosen crop, as produced by a fully automatic method [29], can be distracting. Automatic methods using
computational models of visual salience confuse prominent but unimportant features with relevant content. Here the yellow light in the upper left
background is visually prominent but does not contribute to the meaning of the image.

Our system treats cropping as an optimization problem. It
searches the space of possible crops to find one that respects
the interest of the viewer and abides by a few basic rules
of composition. Our goal is to create aesthetically pleasing
crops without explicit interaction. Accordingly, we validate
our approach with forced-choice experiments in which sub-
jects compare the aesthetics of crops made using gaze-based
interaction to automatic and handmade crops. Gaze-based
crops were judged superior to all but handmade crops.

The specific contributions of our work include:

• A novel general algorithm for quantifying the importance
of image content based on recorded eye movements.

• Identification and implementation of a set of composi-
tional rules that allow the quantitative evaluation of a crop.

• User studies validating the appropriateness and effective-
ness of our approach in comparison to previous tech-
niques.

We first review relevant background on composition and
identifying important image content. Then we describe and
evaluate our gaze-based cropping algorithm.

BACKGROUND AND RELATED WORK

Composition in psychology and photography
Psychology and art history suggest that good composi-
tion is an objective quality that is amenable to computa-
tional assessment. Art historians have proposed that pleasing
or dynamically balanced composition is a perceptual phe-
nomenon that arises spontaneously from the interaction of
“visual forces” across an image [1, 2]. This view has been
substantiated by experimental research [23, 24, 26] in cog-
nitive psychology. Eye movements may play an important
role in judgments about composition (see Locher [22] for
a review). A similar note is struck in critical discussions
of composition. Graham [13] for example describes how to
compose an image by placing objects that lead the viewer’s
eye on a pleasing path through the scene’s various centers of
interest. Unfortunately, these investigations are largely quali-
tative; no experimentally based model of composition exists.

A key aspect of practical composition, emphasized by pho-
tography manuals (e.g., [14,27]) is being aware of what is in
the viewfinder. Peterson [27] specifically suggests scanning
all four sides of the viewfinder to ensure that only relevant
content is included, and that no distracting fragments of out-
side objects intrude. He also suggests “filling the frame” so
the subject takes up most of the available space. Both tech-
niques are presented as solutions to the tendency of casual
photographers to create disorganized, cluttered images.

In addition to these rules, practical discussions of composi-
tion often mention placement of subject matter according to
geometrical criteria such as centering, the rule of thirds (or
fifths), and the golden ratio. All of these compositional for-
mulas postulate that a composition is pleasing when subject
matter is placed in specific locations. However, it is impor-
tant to recall that all of these “rules” are intended as rules
of thumb: not laws, but heuristics that are as often broken
as obeyed. Nevertheless, these rules are worth investigating
because of their long history of successful use.

Computational approaches to composition
Previous work in automated composition has focused on im-
plementing simple rules for subject placement. The rule of
thirds has been used to position automatically detected fea-
tures of interest in an automatic robot camera [4], and in
prototype on-camera composition assistance [3]. The same
kind of approach, using the rules of thirds and fifths, has
been used to place silhouette edges in automated view se-
lection of 3D models [12]. Another compositional heuristic,
that features should be balanced from left to right, has been
used to arrange images and text objects in a window [25].

Maximizing the area of an image devoted to subject matter
is an alternative standard of composition. Subjects that fill
the frame of a picture are usually considered to have greater
impact. In thumbnailing, tight crops also maximize the size
of important features. Tight thumbnails have been created
by cropping out nearly featureless areas of photographs us-
ing salience techniques [5,29]. The same goal has been pur-
sued by cutting out important scene elements (identified via
salience and face detection) and pasting them, more closely
packed, into an in-filled background [28]. Both of these tech-
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Figure 2. (a) PhotoI ; (b) Fine segmentationSfine; (c) Coarse segmentationScoarse; (d) Fixation locations

niques are concerned primarily with compact presentation,
not aesthetics or preserving the meaning of an image.

Minimal interaction for identifying important content
Interaction to identify important content can be avoided by
assuming that some easily extractable feature is the subject.
Important objects like faces are strong candidates, but face
detection is far from robust. Prominent low-level features
are an alternative. Vision scientists have had some success
modeling the low-level features that attract the eye [15, 16].
These models can be used to make predictions about impor-
tant content under the assumption that something distinctive
must therefore be important [28, 29]. Prominence, however,
is not consistently related to importance. As a result, this im-
portance estimate can produce awkward images when used
in tasks like cropping (see Figure 1).

Computational salience models predict where people look;
an alternative, interactive approach is to record where a
viewer actually looks. A person must interact with the sys-
tem, but the interaction is minimal. Viewers naturally exam-
ine important features based on the task at hand. In most situ-
ations the task-relevant elements are the important content or
subject matter of the image. A number of gaze-based appli-
cations and evaluation techniques use eye tracking to iden-
tify what the user thinks is important [9, 10, 30]. Although
collecting eye movement data requires special equipment,
for the user it is relatively quick and effortless. Our system
does not require conscious pointing with one’s eyes, which
presents difficulties [17]. Rather, fixation information is col-
lected surreptitiously as a measure of user attention. This
mode of interaction has been termed an implicit attentive in-
terface [31].

CROPPING
To define a good crop we first need a model that explicitly
represents important image content. We build such a rep-
resentation using segmentation and eye tracking. Next, our
system chooses the best crop from a large set of possible
crops. We have created an objective function that assigns a
score to each potential crop based on general rules for cre-
ating attractive crops. We minimize this objective function
over all possible crops to identify the best one.

Photo representation
To enable cropping we need to identify meaningful elements
in a photo. We begin by segmenting the photo at two scales:

one fine, and the other coarse. See Figure 2(b,c). A segmen-
tation represents the image as a collection of contiguous re-
gions of pixels that have similar color. It provides informa-
tion about image regions in a way that typically correlates
with the physical features in the visual scene.

The fine- and coarse-scale segmentations,Sfine andScoarse,
are produced by downsampling the photograph by a factor
of 4 and 8, respectively, and performing a segmentation us-
ing EDISON [6].1 In configuring EDISON we use a spa-
tial bandwidth of 7 pixels and a color bandwidth of 6.5 in
L∗u∗v∗ space forSfine; these parameters are 10 and 9, respec-
tively, for Scoarse.

Content identification
To identify important image content we identify segmen-
tation regions that correspond to highly examined parts of
the image. To measure how much each region is examined
we cannot simply count fixations that rest in each region.
Current segmentation techniques cannot perfectly capture
all scene boundaries, so regions may not represent complete
features. Furthermore, current eye tracking systems are not
very precise, so fixations may only be near, not on, their tar-
get. Accordingly, we make a soft assignment between fixa-
tions and nearby regions, to conservatively estimate where
the viewer looked.

Input to content identification is a set of fixation locationsxk
for k ∈ [1. . .N], and a corresponding set of durationstk. An
example set of fixations are displayed in Figure 2(d). Each
dot marks a fixation location; durations are not indicated. A
fixation in the vicinity of a region raises the importance of
that region, but only to the degree that the entire region was
examined. For example, we would not want to significantly
raise the importance of a large background area, such as the
sky, simply because an object of interest was located nearby.
To avoid this problem, we make the importance contributed
by a fixation fall off sharply with distance, and average the
contribution of all fixations over the entire region. We com-
pute the average distanceD between an input pointxk and a
regionR∈ Sfine over all the pixels in the region:

D(k,R) =
1
‖R‖∑

i∈R

‖xk− i‖ (1)

1EDISON is available at http://www.caip.rutgers.edu/riul.



Figure 3. Left is the initial labeling of foreground regions (white), back-
ground regions (black), and unlabeled regions (gray). Middle is the fi-
nal binary labeling of foreground and background regions. Right is the
final content mapM.

We then compute the total interest in this region using a
Gaussian-weighted sum of the corresponding fixation dura-
tionstk. This importance estimate gives the relative time the
viewer spent examining a particular regionR:

m(R) = ∑
k∈[1...N]

e
−D(k,R)2

2σ2 tk (2)

Whereσ controls the falloff of fixation influence, and in our
experiments is set to a degree of visual angle, or about 20
pixels. This approach spreads the interest represented by a
fixation but only to nearby regions of relatively small area.

Extracting complete objects
We want to extract entire examined areas even if these con-
sist of multiple segmentation regions. Thus we use our im-
portance estimate to guide the extraction of foreground ob-
jects using the “lazy snapping” [21] approach. This approach
takes an oversegmentation of the image, and a partial label-
ing of foreground and background regions (hand labeled in
the “lazy snapping” work). We useSfine as the base segmen-
tation, and assign foreground labels to the top 10th percentile
of regions based onm(R) scores. Regions in the bottom 50th
percentile are labeled as background. A graph-cut optimiza-
tion then assigns labels to the remaining regions. The content
map is formed by coloring these foreground regions by their
importance estimatem(R). Regions identified as background
remain black.

We assume that important content requires some space
around it: the top of a person’s head, for example, should
not be up against the edge of a crop. Therefore, we extend
each region’s importance beyond its segment borders by av-
eraging the importance image with a dilated version of itself.
The dilation is performed with a flattened hemispherical ker-
nel (radius 75 pixels). Finally, the result is scaled so that its
maximum value is one—this yields the content mapM, an
example of which is shown in Figure 3.

Measures of crop quality
Given the segmentations and the content map, we define
measures that evaluate the quality of potential crops. Our ob-
jective function is designed to consider three basic properties
of a good photograph:

• A photo should include an entire subject and some context
around it.

• Awkward intersections should be avoided between the
edge of the crop and objects. In other words, the crop

edges should pass through featureless areas when possi-
ble.

• The area of the photo covered by subject matter should be
maximized to increase clarity.

We will consider each of these criteria in turn.

Including the subject: A crop must contain the important
content. Thus, we define a termTsubj to be the percentage
of the “mass” of the content map that is omitted. More pre-
cisely, given an imageI and crop rectangleΩ, the content
term is defined as

Tsubj(Ω) = 1− ∑i∈Ω M(i)
∑i∈I M(i)

(3)

This term evaluates to 0 when the crop contains all of the
important content inM, and to 1 when it contains none of
it. Extreme violations of this rule—cutting out all the con-
tent, for example—are qualitatively worse than minor ones.
We also include the square of this term,T2

subj(Ω), in our op-
timization. This squared term has a strong influence only
when much of the content is lost, resulting in extremely poor
scores and preventing the important content from being com-
pletely cropped out.

Finally, to discourage cutting through parts of the subject, we
penalize crops that pass through regions identified as content
in M. The termTwhole is the average of all the pixels in the
content mapM through which the boundary of the crop rect-
angle passes:

Twhole(Ω) =
1

‖∂Ω‖ ∑
i∈∂Ω

M(i) (4)

where∂Ω is the set of pixels on the boundary of the rect-
angleΩ. This term encourages crops to cleanly include or
exclude examined regions.

Avoiding cuts through background objects:We want our
crop rectangle, when possible, to pass through homogeneous
regions. If the crop cuts through prominent background fea-
tures they can also appear awkward and draw attention.

Segmentation boundaries break the image into homoge-
neous areas. Therefore, we count the number of segmenta-
tion borders crossed by the edge of the crop rectangle∂Ω
in the coarse segmentationScoarse—we call thisB(∂Ω). We
count only crossings between regions with significantly dif-
ferent average colors (those more than a distance of 35 apart
in L∗u∗v∗ space [11]). The termTcut is:

Tcut(Ω) = B(∂Ω)
/
‖∂Ω‖ (5)

The number of crossings is normalized by the perimeter of
the crop rectangle, in order to compute the density of notice-
able region cuts along the crop border. Normalization makes
this measure independent of the size of the crop.

Maximizing content area: To fill the crop rectangle with
our content, we include the termTsize which penalizes the
size of the crop. It is computed as the percentage of the area
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Figure 4. Positioning content: (a) a photo; (b) default crop; (c) crop using thirds rule; (d) centered.

of the original image that the crop includes:

Tsize(Ω) = ‖Ω‖
/
‖I‖ (6)

where‖Ω‖ and‖I‖ are the areas of the crop and original
image respectively.

Placing content
We also create rules for placing content at particular loca-
tions in the crop. Our approach is to find the “center” of the
content, and then include an objective term that prefers crops
that place this center at a particular location.

We begin by thresholding the content mapM at 75% of its
maximum in order to extract the most prominent content.
We then calculate the centroids of each contiguous area of
content. Our goal is to frame the crop so that these cen-
ters rest in particular locations. For each connected compo-
nentCi of content we calculate the distanced(Ci) between
its centroid and the closest target location. The objective is
an area weighted average over the penalty for each compo-
nent. To center the content, for example, the target location
is the center of the crop rectangle(1

2, 1
2) in normalized co-

ordinates. For the rule of thirds, target locations are(1
3, 1

3),
(1

3, 2
3), (2

3, 1
3), and (2

3, 2
3). The content placement term is

then:

Tplacement(Ω) =
1

∑
i

A(Ci)
∑
i

A(Ci)
d(Ci)
dmax

(7)

wheredmax is the distance to the target location from the fur-
thest point in that crop andA(Ci) is the area of the connected
component. This formulation succeeds in positioning con-
tent (see Figure 4). Subjectively, however, we did not feel
that it improved the appearance of most crops. It was there-
fore not used in our evaluation study.

Building the objective function
To form the objective function, the terms described in the
previous sections are collected into a feature vectorT:

T(Ω) =
[

Tsubj(Ω) T2
subj(Ω) Twhole(Ω) Tcut(Ω) Tsize(Ω)

]>
(8)

The objective function we minimize is a weighted sum of
these terms:

T(Ω) ·w (9)

wherew controls the relative importance of each term in the
final objective function. The weights used to generate all our
crops werew = [1,1,0.75,0.3,0.15]>.

Performance and optimization
All times are reported for a 3GHz Pentium IV PC. Prepro-
cessing to segment the photo takes about 10 seconds. The
graph-cut resegmentation that identifies foreground features
takes about 30 seconds in a mixed MATLAB and native im-
plementation, dominated by MATLAB code that sets up the
problem. Graph-cut optimization is performed using code
from Andrew Goldberg’s Network Optimization library.2

Summed area tables [7] are used to speed up the calculation
of Tsubj(Ω).

The space of potential crops for an image is four dimen-
sional, consisting of the location, width and height of the
crop rectangle. One could search over this whole space
for an arbitrary crop, or specify a target aspect ratio or
size. For our results we fixed the aspect ratio, which leaves
a three dimensional search space. At a granularity of 25
pixels, searching this space takes about 30 seconds for a
1280 × 960 image in a MATLAB implementation. Finer
grained searches did not produce significantly different re-
sults. A uniform native implementation and coarse-to-fine
search (which evaluates the objective function at widely
sampled points in the parameter space and then refines
search only around minima) would run significantly faster.

RESULTS

Eye tracking procedure
Fifty images were viewed to collect eye tracking data. The
images were selected by the authors as photos that could
benefit from cropping. The photos included various images
of people, street scenes, and still life compositions, though
the majority of images were of people, as consumer snap-
shots usually are.

Images were broken into two groups, each of which were
viewed by four different viewers. Two of these eight view-
ers were secondary authors. Naive viewers knew that their
eye movements were going to be used to subsequently
crop the image. However, they were not told how the algo-
rithm worked in any detail. Viewers’ eye movements were
recorded for 10 seconds over each image with a Tobii x50

2available at http://www.avglab.com/andrew/soft.html



Figure 5. Fixations (marked as white circles) made (on the left) by
a viewer following instructions to “identify important content in the
photo,” and (on the right) by another viewer instructed to insert and
adjust the contrast of a photo. Fixated locations are similar.

dual eye tracker. The values for both eyes were averaged to
produce a single location, and fixations were identified.

In an actual application, eye tracking data could be collected
passively whenever a user views a photo. This viewing could
occur during a variety of tasks, browsing images, adjusting
image properties, selecting an image to illustrate some text,
or choosing images that require cropping. It was impracti-
cal however for us to record eye movements under realistic
conditions for the variety of tasks that might be of interest.
Our approach to validation observed that many tasks share
an element of implicit visual search for important content.
In typical photos there is overlap in what is “important” be-
tween most tasks. We chose to evaluate our approach using
this generic search task, recording eye movements of sub-
jects told to “find the important subject matter in the photo.”

Viewers were not told tolook at the important content,
merely to identify it. These instructions were important,
however; they resulted in a more focused pattern of view-
ing than sometimes occurred in initial tests when viewers
were instructed to simply “look at the image.” In general, a
task has a strong effect on eye movements, and without clear
instructions, viewers tend to make up their own differing in-
terpretations of the task. Even when clear instructions are
given, brief fixations in unimportant outlying regions some-
times occur. These fixations could be filtered out, but our
algorithm is sufficiently insensitive to them that we have not
found filtering necessary.

Eye movements during actual tasks
Given that our eye tracking data was not collected during a
real task, we present an informal experiment demonstrating
that fixations made during one real task are similar to those
found using the protocol described above. Our intuition is
that most real-world tasks involving images implicitly re-
quire a viewer to identify important content.

Three naive subjects and one author followed instructions to
insert an image into a word-processor document, and then
adjust the color and contrast of the image until it appeared
optimal. During this process, the subjects’ eye movements
were recorded. This procedure was repeated four times with
different images. An informal analysis indicates that fixa-
tions made during this task were always located near those
made by viewers in our initial data collection. An example
of data collected in our initial protocol and during an inser-

tion and adjustment task is shown in Figure 5. This exper-
iment is not a full evaluation of gaze-based interaction for
cropping under field conditions. However, it does suggest
that real tasks involving images are functionally similar to
our artificial task of identifying important content. We leave
deeper investigation of this issue as future work.

Discussion
A representative gallery of crop results is presented in Fig-
ure 6. Crops at two aspect ratios are illustrated: the first is
the aspect ratio of the original image, the second is the re-
ciprocal of that ratio (which is generally more challenging).
In some cases no clean crop of a particular ratio is possible,
which is reflected in a poor score for the best crop.

Occasional mistakes in identifying foreground regions can
result in awkward crops. The same problem is more severe in
automatic approaches where the main subject can be entirely
cut out if prominent content is not meaningful (see the sixth
row of results where the automatic technique cuts off the
girl’s head). Though not perfect, our approach rarely fails
dramatically because fixations provide a better measure of
important features than salience methods.

Adaptive documents
The adaptive document layout (ADL) system [18] is de-
signed to change the layout of a document in response to the
size of the display window. In the original ADL system, text
boxes could continuously adapt in aspect ratio, but images
had to jump discretely between a few hand-selected aspect
ratios.

By including our cropping system in the ADL pipeline, the
combined system can select the appropriate crop for any as-
pect ratio and thereby allow adaptive documents the free-
dom to continuously adjust the aspect ratio of their images.
We can crop images to different aspect ratios without ex-
plicit user intervention and switch between them as neces-
sary. Moreover, a desired aspect ratio that does not fit the
content can be identified by its poor objective function score,
and the closest ratio with an acceptable score can be used
instead. The objective term weights given above assume im-
ages that need cropping. In adapting well-composed pictures
to different ratios we remove the size term from the objec-
tive function as it is not necessary to crop the image if it will
fit in the target region. We tested our application’s ability to
crop well-composed images by cropping about 25 pictures
to several standard aspect ratios (see Figure 7 for some ex-
amples).

EXPERIMENTAL VALIDATION
We validated our results by comparing viewers’ assessment
of the aesthetic appeal of gaze-based and salience-based
crops. Four types of crops were included in our evaluation:

• Original: the uncropped photo.

• Salience: fully automatic crops [29].

• Gaze: crops generated via our system.

• Hand: crops made by a professional designer.



(a) (b) (c) (d) (e)

Figure 6. Results for a set of representative images. (a) Original image; (b) fully automatic crop [Suh et al. 2003]; (c) gaze-based content map;
(d,e) gaze-based crops to horizontal and vertical aspect ratios.



Figure 7. Original well-composed images (left), adapted to two different aspect ratios. An ADL document (right) using our crops. If eye movements
are collected passively during document construction, our approach allows adaptation of images to arbitrary aspect ratios with no explicit user effort.

All of these crops were constrained to have the same as-
pect ratio as the original photograph. The salience and gaze-
based methods were also separately compared using crops
made to the reciprocal of the original image’s aspect ratio.
We hypothesized that having an accurate representation of
the content of an image would be particularly critical when
making large changes in crop aspect ratio, and therefore our
approach would perform relatively well in this situation.

Task and stimuli
We compared cropping techniques using a forced-choice
paradigm. A subject is shown two crops, and decides which
one “looks better.” A forced-choice task is simple, and so re-
sults are more likely to be consistent (compared for example
to assigning numerical ratings to isolated images).

Fifty images in need of cropping were used in these ex-
periments. For each image, eye-tracking data from one of
the viewers was randomly selected and used to generate the
gaze-based crop; this same crop was used in all trials. All
pairs of cropping techniques were compared to each other
for each photo, 350 trials per subject. Each pair was dis-
played side by side on a 19-inch CRT. All images were
displayed downsampled to 600x400 pixels. Order and po-
sition (left or right) were randomized. Subjects were told to
pick the image they thought looked better even if both ap-
peared similar. A total of 8 subjects completed this exper-
iment, which took about 25 minutes on average. The ma-
jority of subjects were graduate students, about half had a
background in graphics. One subject (a secondary author)
was also an eye-tracked viewer; one other author also par-
ticipated in the experiment. Author responses did not differ
significantly from those of naive subjects.

Preferences and response times were collected for each sub-
ject. The overall mean response time was 3.9 seconds. Trials
with response times exceeding 10 seconds were discarded
as outliers. Rejected data represented about 10 percent of the
trials. Rejecting long trials did not have any qualitative effect
on statistical significances. It is worth noting that subjects in

Original Salience Gaze Hand
Original – .5109 .4393* .2659**
Salience .4891 – .4160** .3389**
Gaze .5607* .5840** – .3250**
Hand .7341** .6611** .6750** –

Figure 8. Preference results for each condition pair across all viewers.
Each entry gives the fraction of trials in which the condition in the row
was preferred over the condition in the column. Entries marked with
* differ significantly from chance at p <.05, those marked with ** are
significant at p <.005. Other entries are not significantly different.

Salience flipped Gaze flipped
Salience flipped – .4063**
Gaze flipped .5937** –

Figure 9. Preferences for flipped aspect ratio.

rejected trials tended to prefer the overall less popular con-
dition.

Results
Preferences were analyzed with pairwise sign tests for each
condition pair. Most condition pairs were significantly dif-
ferent; see Figures 8 and 9. Most importantly, our gaze-based
approach is preferred to salience-based cropping in 58.4% of
trials. Response times were broken down by condition pair
and by which condition of the pair was preferred. This data
was analyzed with a two-way ANOVA. There was a signif-
icant global effect of the condition pair (i.e., decisions were
harder for some pairs,p <.05) and an interaction between
condition pair and which element of the pair was preferred
(within some pairs judging a condition to be bad was easier
than judging it to be good,p <.001). Multi-comparisons re-
vealed response times were faster when flipped-aspect-ratio
gaze-based crops were preferred to corresponding salience-
based crops and when hand crops were preferred to salience-
based crops and originals (p <.05).
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Figure 10. Response times for each pair of conditions.

Kendall analysis
An alternate analysis of forced choice data presented by
Kendall [19] allows assessment of consistency internal to
and between subjects (see David [8] for a detailed explana-
tion). Analysis confirmed that subjects were internally con-
sistent and agreed with each other (p <.01). This analysis
also allows us to distill responses into a single measure of
the quality of each condition compared to all others (essen-
tially the number of occasions two subjects agreed about
the superiority of the condition). We can test if differences
in this value between two conditions are significant. Anal-
ysis shows that all conditions are significantly different at
p <.01. Salience-based crops were better than uncropped
images, gaze-based crops were better than salience-based,
and hand crops were best of all.

Discussion
Preference results demonstrate that our gaze-based approach
was significantly preferred to uncropped images and auto-
matic techniques, though the quality of our crops was still
short of handmade crops. The original photos in our exper-
iment were picked because they appeared to need cropping,
so we would expect any cropping to improve them. Fully au-
tomatic crops were, however, judged worse than originals,
though the difference is not significant. Kendall analysis in-
dicates fully automatic salience-based crops performed bet-
ter than uncropped images overall.

Response times are indicative of the difficulty of a choice.
Very obvious bad crops should be rejected with short re-
sponse times; long decisions are likely made on the basis
of subtler, harder-to-judge differences. For example, view-
ers can quickly notice when a crop removes a person’s head.

In our tests (Figure 10), response times reinforce our sub-
jective impression that salience-based crops often failed in
dramatic ways. Response times are fast in the common situ-
ation where flipped gaze-based crops are judged superior to
flipped salience-based crops, but they are longer in the rarer

cases where gaze-based crops are judged to be worse (see
Figure 10 column 7). Because flipping aspect ratio removes
more of the image, it highlights mistakes in content iden-
tification. Response times suggest that automatic salience
methods mistakenly crop out obviously important parts of
the image at altered aspect ratios. In contrast, our eye track-
ing approach, when it fails (which preference data shows it
does less frequently), does so in subtler ways that take longer
to assess.

CONCLUSION AND FUTURE WORK
Experimental results and the crops themselves suggest that
gaze-based cropping is successful. Our approach produces
crops that are judged more attractive and that remove im-
portant content less often than automatic crops. Fixations
provide sufficient information to robustly identify content in
most images. Gaze-based crops should be useful for mini-
mally interactive, high-volume cropping.

The success of our approach for identifying subject matter
suggests it should also be useful in other implicit gaze-based
interactions with photos where it is important to determine
accurate regions of interest without explicit interaction like
selective image enhancement, transmission, or editing. We
hope that this work will spur interest in the HCI community
regarding implicit interfaces for use with images.

Our work also serves as a jumping off point for better com-
putational models of composition and further studies of the
link between eye movements and composition. Given we
know what the subject is, can eye movements tell us some-
thing about how good the composition is, and perhaps how
to improve it? A reoccurring theme in qualitative art liter-
ature (in Graham [13] for example) is that cyclical or in-
ward spiral patterns of “eye movement” (to our knowledge,
these theories are based on intuition and never verified with
actual eye-movement recordings) are good, while composi-
tions that lead the viewer’s eye to the edge of an image are
displeasing and unbalanced. This hypothesized relationship
could be assessed experimentally, and may yield a diagnostic
measure of compositional quality specific to eye movements
that could guide photo cropping.

We implemented centering and the rule of thirds, but our
subjective assessment was that positioning features using
these rules did not consistently improve crops. However,
content placement is important. If Arnheim’s thesis [2] is
correct that a formally balanced composition is a purely per-
ceptual phenomenon based on balancing the visual “weight”
of objects, perceptual studies should allow us to model this
and assess balance computationally. Ultimately, low-level
or formal properties and high-level or subject matter issues
need to be combined to create a fuller model of composition.

Fairly little psychological research has been conducted that
would allow us to build such a complete computational
model of what it means for an image to be well com-
posed. However, further psychological investigation paired
with computational modeling may allow for much more flex-



ible and complete definitions of a well-composed image, and
accordingly better automatic cropping.
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