Understanding the Behavior of Database
Operations under Program Control

Juan M. Tamayo  Alex Aiken
Nathan Bronson

Stanford University
{jtamayo,aiken,nbronson}@cs.stanford.edu

Abstract

Applications that combine general program logic with per-
sistent databases (e.g., three-tier applications) often suffer
large performance penalties from poor use of the database.
We introduce a program analysis technique that combines in-
formation flow in the program with commutativity analysis
of its database operations to produce a unified dependency
graph for database statements, which provides programmers
with a high-level view of how costly database operations are
and how they are connected in the program. As an example
application of our analysis we describe three optimizations
that can be discovered by examining the structure of the de-
pendency graph; each helps remove communication latency
from the critical path of a multi-tier system. We implement
our technique in a tool for Java applications using JDBC and
experimentally validate it using the multi-tier component of
the Dacapo benchmark.

Categories and Subject Descriptors D.2.3 [Software En-
gineering]: Coding Tools and Techniques

1. Introduction

Database access tends to be a performance bottleneck for
three-tier applications. In production settings the middle-
tier software and the database are often physically separated
and roundtrip communication latency between the program
and the database can become the dominant factor governing
overall system performance. However, it is currently very
difficult for programmers to gain an understanding of the
bottlenecks in system performance. While profilers can give
information about where delays occur in the system (where
one component must wait on the results of another), this low-
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level information does not necessarily suggest what higher-
level reorganization will lead to improved performance.

We are interested in providing programmers with a high-
level picture of program behavior useful for understanding
the performance of a three-tier application. The problem is
difficult because the database operations in an application
can depend on each other in complex ways, both in how they
interact within the program (e.g., is the output of one query
potentially used as input to another query?) and in how they
interact through the database (e.g., does one database oper-
ation read tuples that another database operation writes?).
The relevant database statements might be far apart in the
source code, they may be connected by complicated control-
flow structures or layers of abstraction, or they might be
surrounded by many other database operations that make it
hard to reason about dependencies between them. Classical
database and compiler tools are not able to solve this prob-
lem, because each only sees at most half of the picture. Stan-
dard database performance optimizations, such as indexing
or query optimization, can give information about individual
database operations, but are not able to understand or exploit
properties of multiple queries run under program control. A
standard compiler has some sense of the data- and control-
flow properties of a program, but has no model of database
operations and the interactions they may have through the
persistent store.

Thus, any systematic approach to understanding and im-
proving database usage must involve analysis of the flow
of information both within the program and through the
database. We present a tool that dynamically collects de-
pendency information between database statements through
the middle tier (Section 3.1) and through the database (Sec-
tion 3.2). Our tool aggregates the data collected and presents
a dependency graph between database statements (Section 4)
like the ones shown in Figures 1 and 6.

As an example application, we show how the depen-
dency graph can be used to locate optimization opportu-
nities, as described in Sections 2 and 6. Because we are
focused on program understanding, our tool generates the
graphs automatically, but it does not automatically apply
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Figure 1. The dependency graph produced by our tool for
the database statements executed in the code of Figure 2.
Nodes are database statements, edges are dependencies be-
tween statements. There are four kinds of dependency: (1)
solid edges are dependencies of data flowing through the
middle-tier (the client program), (2) dashed edges repre-
sent read-after-write dependencies through the database,
(3) dash-dot edges represent the original sequence between
database writes. Write-after-read database dependencies do
not occur in this example.

optimizations. (Because we rely on dynamic analysis tech-
niques, our approach cannot prove that it is safe to per-
form the optimizations.) Instead, our method suggests to
programmers specific, likely places to look for opportuni-
ties to improve performance and which optimization to try.
We have identified three relatively simple optimizations that
can improve database usage: statement batching, in which
multiple database write statements are submitted as one;
asynchronous query execution, where the application avoids
blocking on database reads; and removing redundant state-
ments, where a second read of some database tuples is re-
placed by simply reusing the results of a previous query. We
show through a significant case study (Section 6) that the
cumulative effect of applying all three optimizations can be
substantial.
Our specific contributions are:

e We identify four different kinds of dependencies that are
important for programmers to understand in restructur-
ing applications that use a database, and give a dynamic
analysis method for capturing the different kinds of de-
pendencies.

e We present a novel method for summarizing the output
of the dynamic analysis, grouping database statements
and transactions together based on their calling context to
produce concise but context-sensitive graphs illustrating

the frequency, cost, and dependencies between database
statements within a transaction.

e We show that opportunities for three simple program
optimizations can be identified using our dependency
graphs: statement batching, asynchronous query execu-
tion, and removing redundant statements. Each of these
transformations improves system performance by avoid-
ing or hiding network latency; some also reduce the total
work performed.

e We present the results of a case study on a substantial
three-tier application, in which our analysis techniques
identify opportunities to apply all three optimizations,
resulting in an overall reduction of 8 database roundtrips
in the most important operation. Every multi-statement
transaction exercised by this benchmark contained an
optimization opportunity.

2. The Problem

Consider the code in Figure 2, which illustrates a “buy”
operation in a stock trading application. The operation (a
single method in this case) takes as arguments the stock to
buy, the quantity, and the buyer. It then queries the database
for details about the user and the stock, computes the total
purchase price, creates a new order, calculates the buyer’s
new account balance, and returns an Account object with
the buyer’s balance updated.

Our goal is to improve the performance of this example.
The method executes five database statements, each requir-
ing at least one roundtrip to the database. We can remove or
hide some of these delays by applying the following opti-
mizations:

o Statement batching: Instead of emitting one statement
at a time and waiting for its result, multiple statements
can be batched and sent together to the database en-
gine, saving one roundtrip per statement batched. For ex-
ample, the statements in createOrder [line 11] and
creditAccount [line 13] could be batched together,
saving one roundtrip.

® Asynchronous queries: By emitting queries without im-
mediately using their results it is possible to execute mul-
tiple queries simultaneously, thereby hiding the latency
of some. In our example, the statements in getAccount-
Data [line 4] and getStockData [line 6] could
be executed concurrently, reducing the total operation la-
tency by one roundtrip.

® Removing redundant queries: The best way to improve
performance is to do less work. In our example, the exe-
cution of getAccountData [line 15] is unnecessary,
since knowing the behavior of creditAccount [line
13] is enough to predict the new account balance. We
can remove this query, save one more roundtrip and also
reduce the load on the database.



1 Account buy(Connection con, String userID,
2 String symbol, int quantity) {
3 Account account =

4 getAccountData(userID) ;

5 Stock stock =

6 getStockData(symbol) ;

7 double total =

8 stock.getPrice() *quantity

9 + account.getOrderFee();

10

11 createOrder (account, stock,

12 quantity, total);

13 creditAccount (account, total);

14

15 return getAccountData(userID) ;

16

17

18 %

(A)

(B)

©

Account buy(Connection con, String userID,
String symbol, int quantity) {
Future<Account> account
getAccountData(userID) ;
Future<Stock> stock =
getStockData(symbol) ;
double total =
stock.get () .getPrice()*quantity
+ account.get() .getOrderFee();
Statement s con.createStatement () ;
s.addBatch(createOrder (account, stock,
quantity, total));
s.addBatch(creditAccount (account, total));
s.executeBatch(); s.close();
account.setBalance (account.getBalance ()
+ total);
return account;

}

Figure 2. Example code illustrating the optimizations described in this paper. (A) Independent statements can be executed
concurrently, hiding the latency for some of them. (B) Multiple write statements can be batched, sending them as one to the

database. (C) Unnecessary queries can be removed.

Applying these optimizations requires a high-level view
of all queries executed, combined with information about
the dependencies between them. Finding these dependencies
is not straightforward. In real applications operations are
more complex than the illustrative example shown here,
and there can be several layers of abstraction that hide the
specific queries executed. Manually finding all queries and
their dependencies is tedious at best. Furthermore, even a
complete understanding of all the dependencies within the
program is insufficient, because it is unclear what is going
on in the database. In particular, do the queries touch the
same or distinct tuples in the database?

To solve these problems, we propose a high-level view
of the dependencies between all database statements in a
transaction. Four kinds of dependencies are considered:

® Dataflow dependencies result when the output of one
database statement flows through the program (to part of)
the input of another database statement.

® Database write-write dependencies result when two
database statements write at least one common tuple
in the database. We conservatively assume any pair of
database operations that write the database have a write-
write dependency (see discussion in Section 3.2).

® Database write-after-read dependencies arise when one
database operation reads a tuple ¢ and some subsequent
database operation writes ¢.

® Database read-after-write dependencies arise when one
database operation writes a tuple ¢ and some subsequent
database operation reads t.

The dependency graph for the code in Figure 2 is given in
Figure 1. Note that this dependency graph with the multiple,
distinct kinds of edges, makes it easy to spot the possible
opportunities to apply the three optimizations:

e Batching opportunities appear as sequences of database
writes with nothing but database write-write dependen-
cies connecting them.

e Parallelizable reads appear as sets of independent nodes
(i.e., with no connecting paths of any kind of depen-
dency).

e Duplicate reads appear as multiple independent instances
of the same database statement or as database read-after-
write dependencies.

Finding these optimization opportunities is reasonably strai-
ghtforward in graphs like the ones presented in Section 6.
For larger graphs an automated tool could scan the graph
definition and automatically spot the improvement opportu-
nities.

3. Finding Dependencies

To generate graphs like the one in Figure 1 we require, for
every database statement executed, the set of statements on
which it depends. We use dynamic information flow tracking
(Section 3.1) to infer dependencies caused by data flowing
through the application code, and a commutativity analysis
(Section 3.2) to infer dependencies through data stored in the
database.



3.1 Dynamic Information Flow Tracking

We use dynamic taint analysis, a widely-used technique [21],
to find data dependencies in the application. In its original
form [18], dynamic taint analysis prevents security attacks
by labeling data coming from untrusted inputs as tainted,
keeping track of the propagation of tainted data as the pro-
gram executes, and detecting when tainted data is used in
dangerous ways.

More generally, a dynamic taint analysis algorithm spec-
ifies a domain of labels used to taint data, a join operator
for combining labels, and three policies: which data should
be tainted, how taint should be tracked through the program,
and where the taint of values should be checked. For finding
dependencies between database statements in a program we
use the following policies:

Taint injection: Each database statement execution is as-
signed a unique identifier ¢ (described further below) and
all data returned from that statement is tainted with the
set {i}.

Taint tracking: Taint propagates through all explicit data
flows in the program: roughly speaking, the label on the
outputs of an operation is the union of the labels of its
inputs. We do not, however, track implicit flows through
conditional branches (i.e., the taint of the predicate of an
if-statement is not propagated to the branches). We ob-
served that the majority of the conditionals in the pro-
gram tested for error conditions. While a strict interpre-
tation of the taint flow is that any information computed
following an error check encodes the fact that the compu-
tation did not fail, we found that this increased the com-
plexity of the resulting dependence graph without provid-
ing useful information to the user. In our benchmark this
analysis choice did not suggest any false optimizations.

Taint detection: Taint is detected at the execution of every
database statement: before a database statement s is exe-
cuted we record the set of labels used to build s.

Thus one component of a label is a set of database state-
ment identifiers, the join for which is set union. Two main
difficulties remain. First, because every execution instance
of a database statement has a unique identifier, we must
somehow deal with label sets of potentially unbounded size.
Second, in practice this approach can yield dependencies be-
tween any pair of database statement instances, and the over-
whelming majority of these dependencies are not interesting.

We take advantage of the following insight to deal with
both problems. The interesting relationships are all within
a single transaction; intuitively, database statements within
separate transactions are already likely to be concurrent—
that is exactly why they are wrapped in a transaction—
and therefore not the source of performance bottlenecks.
Thus, the dependencies that are useful are just those between
database statements within a transaction, which is a small
subset of all the dependencies in a program execution. We

exclude dependencies between transactions by refining the
taint labels and the join operation:

e [dentifiers Every transaction is assigned an integer trans-
actionId. Transaction ids monotonically increase in the
order in which transactions are started by the program.
Within a transaction, each database statement is assigned
a querylId. Thus, every database operation executed by
the program is associated with a (transactionId,que-
ryId) pair. Queries executed outside an explicit transac-
tion are assigned a singleton transactionId.

o Labels A label is a pair (¢, S) consisting of a transact-
ionId and a set of queryId’s.

e Join. The join of two labels (t1,S1) and (t2, So) is

<t1,S1 U SQ> ift; =to
<t2,S2> ift1 < tg
<t1,51> ift; > ta

(t1,S1) U (ta, Ss) =

If both labels have the same transactionId we re-
turn a label with same transactionId and the union
of the two sets, which is easily computed by taking the
bitwise or of the two labels. If the transactionId’s
are different, we return the label of the one with the
larger transactionId, discarding information for ear-
lier transactions.

This taint analysis captures the dataflow dependencies of
the code in Figure 2. For example, consider the dependency
between the query in getStockData [line 6] and the
query in creditAccount [line 13]. This dependency
arises because the total value used by creditAccount
[1ine 13] is computed from the price in the stock object,
which is populated from data queried in getStockData
[1ine 6]. By tainting the data queried in getStockData
[line 6] and propagating taint as the program executes,
we detect the dependency between getStockData [line
6] and the query in creditAccount [line 13]. The full
dependency chain is:

ResultSet (database driver, in
+ getStockData [line 6])
stock.price (object field)
4
total (local variable)
+
creditAccount (method parameter)
4
PreparedStatement (database driver, in

creditAccount [line 13])

3.2 Finding Database Dependencies

As discussed in Section 1, data flow through the client pro-
gram is insufficient to fully characterize the dependency
graph on database statements. Tuples modified by a database



-- Read 1 (r1)

SELECT *x FROM STOCKS
WHERE SYMBOL = 7;

-- Write 1 (wl)

INSERT INTO ORDERS (USERID, AMMOUNT)
VALUES (7, 7);

-- Read 2 (7r2)

SELECT *x FROM ACCOUNTS
WHERE USERID = 7;

-- Write 2 (w2)

UPDATE ACCOUNTS
SET BALANCE = BALANCE + 7
WHERE ACCOUNTID = 7;

Figure 3. Dependent database statements. Question marks
represent placeholders that are dynamically populated by the
Java application. There is a dependency between ro and wo
if the accounts identified by USERID (in r3) and ACCOUNTID
(in woy) are the same.

statement might be used by some other statement later in
the transaction, creating a dependency between the two.
Because this dependency arises through data stored in the
database, it is not possible to discover it without analyzing
the side effects of database statements.

For example, consider the database statements in Fig-
ure 3. Using the optimizations described in Section 2, there
are two possible improvements to this code:

Option 1: We could move 3 after wy and batch w; and ws.
This optimization saves one roundtrip to the database.
However, if the accounts identified by USERID (in 73)
and ACCOUNTID (in w2) were the same, this optimization
would be incorrect: since wo writes to a tuple read by rs,
executing 7o after we would change the result of 7.

Option 2: We could move ry before wy, execute r; and
ro concurrently, and batch w; and ws. This optimization
would save two roundtrips to the database.

While Option 2 is always preferable in this example, Option
1 illustrates a difficulty when finding dependencies between
database statements: the parameters to ro and we are not
known until runtime, and even then the dependencies arise
through the content of the database. Without more informa-
tion, a static analysis would have no choice but to conserva-
tively assume a dependency exists.

In our dynamic analysis we classify database statements
as either reads, which do not modify the database, or writes,
which do modify the database’s contents. Consequently,
there are three types of database dependencies: read-after-
write, write-after-read, and write-after-write. Two reads are
never dependent through the database, even though they
might be through the client application.

We conservatively assume there is always a depen-
dency between two consecutive writes. Little is lost, be-
cause neither of the optimizations involving write statements

(statement batching or redundant query elimination) require
changing the order of writes. Furthermore, finding write-
write dependencies via dynamic analysis is prohibitively
expensive, as it requires either knowing the set of tuples
modified by each write—which is impossible without either
access to the database implementation or effectively sim-
ulating it—or executing the writes in different orders and
comparing the entire state of the different databases that re-
sult to check whether they are the same. Both options are
infeasible in practice.

To find dependencies between database reads and writes,
we use the fact that if a write changes the result of a read
then the statements are dependent. Consider a single read in
a sequence of writes:

wp w2 ... w; o Wi41 ... Wn,

Since we assume that consecutive writes are dependent, the
sequence of writes is fixed. We are interested in two particu-
lar writes:

e The first write w after r that changes the result of 7. This
write indicates how far to the right we can move r without
altering the result of the program. There is a write-after-
read dependency between r and w.

¢ The last write w’ before r to change the result of . This
write limits how far to the left we can move . There is a
read-after-write dependency between w’ and .

These two dependencies per read, together with the assump-
tion that consecutive writes are dependent, characterize all
dependencies through the database.

In the example of Figure 3, the sequence of reads and
writes for ry is:

wy T2 W2

wo limits how far to the right we can move ro before ob-
taining the wrong result, so there is a write-after-read depen-
dency between wy and 75. In this case r, can move freely to
the left so there are no read-after-write dependencies.

We implement this database dependency analysis using
a proxy JDBC driver that logs all statements executed in a
database transaction. Before the transaction is committed,
the driver executes the following procedure:

1. Roll back the current transaction. 2. Separate the state-
ments executed into a list of reads and a list of writes.

3. Replay the transaction by executing all writes in order.
Before and after every write execute each read and compute
a fingerprint of the read’s result.

4. Commit the transaction.

For a transaction with w writes the above procedure gen-
erates w + 1 fingerprints per read. To determine whether a
write changes the result of a read, we compare the read’s
fingerprints before and after executing the write. If the fin-
gerprints differ, the write changed the result of the read.



4. Graph Construction

For each database statement, the dynamic analysis algo-
rithms of Section 3 output a runtime statement containing:

e the context in which the database statement was exe-
cuted, in the form of a stack trace,

e the transactionId of the transaction of which it is a
part, and

e the set of runtime statements it depends on.

All runtime statements are part of a transaction, which is the
set of runtime statements with the same transactionId.

The major difficulty in presenting the results of the dy-
namic analysis to a user is that the number of runtime state-
ments is normally overwhelming. Even for applications of
moderate complexity many thousands of runtime statements
are produced for realistic workloads. In this section we de-
scribe our techniques for summarizing this information in a
form that is both concise and useful.

A summary graph groups sets of runtime statements to-
gether. Specifically, the nodes of the summary graph are sets
of runtime statements with the same stack trace (i.e., a node
of the graph corresponds to a stack trace). There is an edge
between two nodes n1,ng if a runtime statement in no de-
pends on a runtime statement in n;. Nodes and edges also
have weight, which is just the number of runtime statements
in a node and the number of underlying dependencies be-
tween two nodes, respectively.

If the program contains a loop, a node may represent
more than one execution of a statement within a single trans-
action. This will be reflected by the node’s weight; if there
is a loop carried dependence this will result in a self-edge or
cycle.

For example, if the code of Figure 2 is executed 1000
times, a total of 1000 transactions are logged, with a total of
5000 runtime statements. These 5000 runtime statements are
represented by five nodes in a summary graph, identified by
the following five stack traces—each stack consists in this
example consists of just one functionc call:

. getAccountData [line 4]
. getStockData [line 6]

. createOrder [line 11]

. creditAccount [line 13]

hn A~ W NN =

. getAccountData [line 15]

These are exactly the nodes presented in Figure 1. As can
be seen from this example, grouping runtime statements by
stack trace dramatically reduces the quantity of data a user
needs to inspect while still retaining distinctions based on
calling context—i.e., the same database statement invoked
in two completely different calling contexts is regarded as
belonging to distinct nodes of the dependency graph. Note

public interface TradeServices {
C...)
public OrderDataBean buy(String userID,
String symbol,
double quantity,
int orderProcessingMode)
throws Exception, RemoteException;
public OrderDataBean sell(String userID,
Integer holdingID,
int orderProcessingMode)
throws Exception, RemoteException;
C...)
public QuoteDataBean createQuote(
String symbol,
String companyName,
BigDecimal price)
throws Exception, RemoteException;
public QuoteDataBean getQuote (
String symbol)
throws Exception, RemoteException;
public Collection getAllQuotes ()
throws Exception, RemoteException;
...
3

Figure 4. Simplified version of the TradeServices interface,
after removing thrown exceptions and comments. This inter-
face lists all business operations implemented by the middle
tier. Each operation runs a different database transaction.

that getAccountData is called twice in different places in
Figure 2 and thus occurs in two distinct nodes in Figure 1.
Our method produces a set of dependency graphs, where
each graph corresponds to a set of executions of the “same”
transaction. Of course, we have a similar problem with trans-
actions as with runtime statements, namely that we must de-
cide which runtime transactions belong to the same group.
It is not obvious, however, how to group transactions. We
observe that even in languages without explicit syntax for
beginning and ending transactions, programmers still delib-
erately organize transactions under a particular lexical scope.
For example, Figure 4 shows some of the services exposed
by the business layer of Daytrader, an example online stock
trading system we return to in Section 6. Implementations
for the methods in the TradeServices interface create a
transaction on method entry, which they commit before re-
turning. If all transactions are coded in a similar manner,
then all queries run within a transaction share a common
calling context, namely the method that implements the ser-
vice exposed by the middle layer. We can use this lexical
scope to automatically group transactions into meaningful
sets, and create an output graph for each set of transactions.
Now, the lexical scope for a transaction is not given to
us—we must infer it from the execution instances of the
runtime statements. Consider all the runtime statements R,
with transactionId n. The identifier for transaction n is



DaCapoTrader.run [line 107]
DaCapoTrader.runTradeSession [line 293]
DaCapoTrader.doSell [line 477]
TradeDirect.sell [line 354]
TradeDirect.completeOrder [line 551]
TradeDirect.updateOrderStatus [line 1288]

Statement 1

DaCapoTrader.run [line 107]
DaCapoTrader.runTradeSession [line 293]
DaCapoTrader.doSell [line 477]
TradeDirect.sell [line 354]
TradeDirect.getAccountData [line 987]

Statement 2

Figure 5. A set of runtime statements forming a transaction. Each column represents a runtime statement, identified by its
stack trace. The identifier for the transaction (shown in gray) is the common prefix of all stack traces.

the common prefix of the stack traces of R,,; an example is
given in Figure 5. Transactions with the same identifier are
grouped, and a single graph is generated for all transactions
with the same identifier.

Thus, there are two levels of grouping: sets of runtime
statements are grouped into graph nodes, and a second level
of grouping organizes nodes into transactions. It is actually
more convenient to compute the transaction grouping first.
The full algorithm for constructing graphs from runtime
statements is to perform the following steps in order:

1. Compute the identifier of each runtime transaction; i.e.,
for all runtime statements with the same transaction-
Id, compute the greatest common prefix of the runtime
statements’ stack traces.

2. Group runtime statements by the identifier of their trans-
actionlId; let these groups be G1, G, . ... Each G; pro-
duces one dependency graph in the output.

3. The nodes of GG; are the sets of runtime statements in G;
with the same stack trace. There is an edge between two
nodes if two of their runtime statements are dependent,
as described above.

Figure 6 gives an example graph for Daytrader’s sell
method in the TradeServices interface listed in Figure 4.
Node weights (the number of runtime statements repre-
sented by each node) and edge weights (the number of run-
time statement dependencies represented by each edge) are
shown.

5. Implementation of the Analysis

We implemented the graph construction algorithm of Sec-
tion 4 as a tool that uses bytecode rewriting to transparently
analyze Java programs that use JDBC directly or indirectly.
Our tool can target programs hosted by a pure-Java applica-
tion container such as Geronimo, since the underlying layer
uses JDBC directly. Our tool uses the ASM library [7] to add
information flow tracking to Java, and adds a JDBC shim to
capture queries and values as they cross the boundary to the
database.

Our tool provides the full functionality of our algorithm,
except that we merge the taint for querylds larger than 31.
To avoid excess object creation we encode each label in a

single 64-bit value, with a 32 bit transactionId and 32
bits to record the presence or absence of the corresponding
queryId in the label’s set .S.

6. Case Study

In this section we report on our experience applying an
implementation of our method to Daytrader, a sample ap-
plication included with the Apache Geronimo application
server. Daytrader is “built around the paradigm of an on-
line stock trading system” [10] and is designed to be a
realistic and sophisticated three-tier application. The Da-
capo Benchmarks [5], version 2009, include a substantial
workload for Daytrader. Our case study is based on this
workload, with a few deployment modifications. In partic-
ular, when evaluating performance improvements we use a
higher-performance database engine running outside the ap-
plication server, instead of the default embedded database.
We did not modify the benchmark workload (i.e., the sam-
ple data and execution script).

It is worth mentioning that a difficulty in evaluating our
work is the lack of appropriate benchmarks; while three-tier
applications are ubiquitous in practice, they are scarce in the
research community. Besides DaCapo, other candidates in-
clude the TORPEDO [16] and 007 [15] benchmarks. Unfor-
tunately, TORPEDO is too small to provide an interesting
test of our approach, which is most useful for complex appli-
cations with large databases, and 007 focuses on a hierarchi-
cal object-relational database, while we address the issues
associated with traditional RDBMSs. However, we believe
that DaCapo is sufficiently involved to be a reasonable rep-
resentative of three-tier applications found in practice.

The core operations implemented by the business logic
layer are defined in the TradeServices interface, a simpli-
fied version of which is shown in Figure 4. We focus here on
the sell business operation, because it is central to the ap-
plication’s performance, has one of the highest latencies, and
illustrates all of the optimization strategies of Section 2. The
statement dependency graph for the sell operation is shown
in Figure 6. Our analysis tools caused an order-of-magnitude
slowdown over running the benchmark without instrumenta-
tion, which is typical and acceptable for an off-line dynamic
technique. Note that the output of our technique does not de-
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Figure 6. Dependency graph for the sell operation in the Daytrader benchmark. Gray nodes indicate repeated queries;
solid edges are dependencies of data flowing through the middle-tier; dashed edges represent read-after-write dependencies
through the database; dash-dot edges represent the original sequence between writes; dotted edges represent write-after-read

dependencies through the database.



pend on the running time in any way, so the slowdown does
not affect the output of our tool.

In the following subsections we illustrate how a program-
mer can use the information in the dependency graph to iden-
tify opportunities for each of the optimizations, and we also
present the more important details of our implementation.
Ultimately we are able to eliminate 8 round trips from the
sell operation, including 4 from statement batching and 2
each from identifying opportunities for asynchronous execu-
tion and removing redundant queries.

Before applying our system to Daytrader we attempted to
analyze the application by hand to establish an upper bound
on the possible improvements. Our manual search missed
several of the optimizations, and did not find any database
optimizations that were not identified by our tool.

6.1 Statement Batching

As described in Section 2, JDBC allows multiple write state-
ments to be submitted together to the database, instead of
submitting them one at a time. Because we assume there is
a dependency between consecutive writes, writes form an
ordered sequence. Two writes can be batched if the only
path between them in the dependency graph consists of only
write-write dependencies. We want the longest sequence of
writes such that each pair of writes in sequence satisfies this
condition. The longer the sequences, the better, because we
pay one roundtrip per batch execution, regardless of how
many write statements are included.

Write statements w; and ws can be batched if no data
written by wy is used to construct statement wy. For exam-
ple, Daytrader’s sell operation executes the following six
writes:

1. createOrder [line 670]
2. updateHoldingStatus [line 1277]
3. creditAccountBalance [line 1262]

4. completeOrder [line 547] +
removeHolding [line 631]

5. completeOrder [line 547] +
removeHolding [line 639]

6. completeOrder [line 551] +
updateOrderStatus [line 1288]

As Figure 6 shows, writes 3, 4, 5 and 6 do not have any
paths between them except write-write dependencies, so
they should be batched if possible. Batching will reducing
the number of roundtrips by three, as it will allow one state-
ment to be sent to the database instead of four. Writes 1 and
2 can also potentially be batched, saving another roundtrip.
Implementing statement batching can require some code
restructuring by the programmer. For example, JDBC does
not allow different prepared statements—precompiled data-
base statements used to avoid injection attacks and duplicate
statement compilation—to be executed in the same batch.

Thus, the programmer is forced to convert any prepared
statements into regular database statements before executing
them in batch.

In addition, although statement batching is a standard in-
terface exposed by almost all database drivers, not all drivers
implement batching more efficiently than regular statements.
We found this to be the case for several database drivers,
which synchronously executed batched statements one at
a time from inside the client-side JDBC driver. In our ex-
periments we used IBM’s DB2, which properly implements
server-side batching.

Finally, statement batching requires the programmer to
maintain the list of statements to execute until all the state-
ments are ready to execute together. In our case study we
simply stored each statement to be batched in a local vari-
able until it was needed. More sophisticated implementa-
tions could use a statement queue per connection that is
flushed by the programmer.

In some cases statement batching could be at least par-
tially automated. In particular, the queue could be flushed
only when the application executes a read to one of the tables
to be written by the batched statements, when the transac-
tion commits, or when the programmer needs to do so manu-
ally. The main limitation would be API compatibility: JDBC
drivers must return the number of rows updated after execut-
ing a write, even if the application has no immediate need
for that information. Extending the API to allow program-
mers to submit a statement without waiting for it to execute
would solve this problem.

6.2 Asynchronous Query Execution

JDBC provides a synchronous API: Java programs emit
queries and block on the result. This is a problem when
the result of multiple independent queries are required for a
computation. In the statement dependency graph, reads with
no paths between them are candidates for concurrent issu-
ing. For example, in the graph of Figure 6 the following two
pairs of queries have no known dependencies:

1. getQuoteData [line 1071] and
getAccountData [line 987].

2. completeOrder [line 512] +
getAccountProfileData [line 1217] and
completeOrder [line 542] +
getHoldingData [line 1103].

Read statement r can be delayed as long as there is no
statement s that requires its result. A brief inspection of the
code confirms that it is safe to issue both pairs concurrently.
Applying these optimizations saves two roundtrips, one for
each pair of queries.

As with statement batching, there are some important de-
tails that must be considered. JDBC drivers are not designed
for executing concurrent queries. Database connections use
locks extensively to guarantee thread-safety and block on



network calls. In addition, there is a one-to-one mapping be-
tween a database connection and its transaction, making it
impossible to open multiple database connections within the
same transaction.

To provide the illusion of asynchronous query execution,
our implementation maintains a pool of threads, each with
an open database connection, that execute queries outside
the main database connection. Many applications, and Day-
trader in particular, wrap queries in methods that execute
the database statement, iterate over the result set, and re-
turn the data in wrapper objects. This design encapsulates
each database statement, making it reusable across the ap-
plication. However, this design also requires the entire result
set to be read before the method can return. To minimize
the number of changes made to the application, we modify
such methods so that they submit the query to the thread
pool and return a future to the wrapper object, instead of the
object itself. Futures are a standard way of representing the
result of an asynchronous computation in Java. Changing the
method’s type signature to return a future type creates com-
piler errors exactly where the return value of the method is
used. At those locations the programmer can either force the
future immediately (if there is no point in delaying the exe-
cution of the query), or keep a reference to the future instead
of a reference to the wrapper object, delaying the query eval-
uation until it is required.

DB2’s default isolation level (Read Committed) can be
satisfied by queries in our thread pool as long as the main
transaction has not updated any of the accessed tables. In
principle, all connections to the database should be auto-
commit, because they never execute more than a single
statement. However, we found that executing a single state-
ment in an auto-commit connection requires two roundtrips:
one to obtain the result, and one to commit the transaction.
Our implementation avoids this latency by arranging for the
worker threads to return the result of their read prior to a
manual commit of the reading transaction. Worker threads
only return themselves to the pool after this cleanup is com-
pleted.

Our concurrent query execution implements a read com-
mitted isolation level, even if the underlying database state-
ments are executed at serializable isolation. All of our other
optimizations preserve read committed or serializable iso-
lation. This strategy is correct because DayTrader on DB2
already uses read committed isolation.

In general, program transformations may actually streng-
then a weaker isolation level such as read uncommitted. If
the application relies on repeating a query as an ad-hoc form
of inter-transaction communication, for example, merging
duplicate queries may result in livelock. In this particular
example examining the data dependence graph will reveal
the cycle, but there may be other scenarios where the effect
of explicitly weak isolation levels is not apparent in the
graph. This is an advantage of an approach that guides the

programmer, rather than adding an extra automatic layer that
alters and complicates the existing behavior.

6.3 Removing Redundant Queries

A straightforward way to improve the performance of any
application is to do less work. In our context, unnecessary
database statements should be removed. It is natural to ask
the question, why would there be unnecessary queries in an
application in the first place?

Object-oriented programmers build programs by com-
posing abstractions. They try to make these abstractions self-
contained, so they can be reused or extended by other peo-
ple. For example, in Daytrader the order creation process is
encapsulated in the createOrder method, which returns an
Order object used by different business operations. Unnec-
essary statements can appear when two of these abstractions
are put together.

Two signs in the graph point to redundant queries. First,
queries that always return the same result are likely re-
dundant. Second, read-after-write dependencies through the
database are always suspicious: Why would an application
execute an expensive database query to retrieve data it wrote
earlier? If the data is already in memory it might not be nec-
essary to retrieve it from the database.

In the sell operation of Figure 6 two sets of statements
appear to be redundant:

1. createOrder [line 670];
createOrder [line 674] +
getOrderData [line 1137];
and completeOrder [line 476].

2. updateHoldingStatus [line 1277] and
completeOrder [line 542] +
getHoldingData [line 110].

These sets of statements point to specific places in the source
code where a programmer can look to determine if any of the
queries is redundant.

Removing redundant queries is more application depen-
dent that either statement batching or concurrent query ex-
ecution. For Daytrader, we analyzed the two sets of queries
given above and found the following:

1. Both the createOrder method and the completeOrder
methods unnecessarily query the database for an order
that is already in memory. Removing these queries saves
two roundtrips to the database.

2. The completeOrder [line 542], getHoldingData
[line 1103] query reads data inserted by updateHold-
ingStatus [line 1277].However, this update is used
to “signify the sell is inflight”, according to the devel-
oper’s comments. We decided not to remove this signal-
ing mechanism.



login register buy sell update

Statement batching 0 1 2 4 0
Concurrent queries 1 0 2 2 0
Removing queries 0 0 2 2 1
Total 1 1 6 8 1

Original statements 3 2 11 13 2

Figure 7. Improvements for the five multi-statement oper-
ations exercised by the Dacapo benchmark. In all multi-
statement operations our tool found optimization opportu-
nities.

6.4 Additional Operations

In addition to the sell operation, we applied our tool to
all operations exercised by the Dacapo benchmark. Figure 7
shows the number of roundtrips saved in each operation. In
five out of nine operations we found optimization opportuni-
ties, which we implemented as explained earlier this section.
The remaining four operations executed a single read. In
summary, our tool found optimization opportunities in every
multi-statement database transaction exercised by Dacapo.

7. Performance Results

Figure 9 shows the results of implementing all the opti-
mizations described in previous section for the sell oper-
ation. Experiments were run on a Dell Precision T7500n
with two quad-core 2.66Ghz Intel Xeon X5550 processors
and 24GB of RAM. Linux kernel version 2.6.28-16-server
was used, and hyper-threading was enabled, yielding a total
of 16 hardware thread contexts. We ran our experiments in
Sun’s Java(TM) SE Runtime Environment, build 1.6.0 21-
b06, using the HotSpot 64-Bit Server VM. For the database
backend we used DB2 Enterprise Server v9.7.0.0, running in
the same machine as the application server.

Dacapo’s workload for Daytrader exercises the business
layer directly. To simulate concurrent users it keeps a set
of client threads that take operations from a shared queue
and execute them against the business layer. We measure
the latency of the sell operation as seen from one of these
client threads.

Optimizations were implemented one after the other, even
though they can be implemented independently, to make the
results of each optimization clearer. Figure 8 summarizes
the number of roundtrips saved for each optimization. Fig-
ure 9 (top) shows the latency of the sell operation as the
network delay increases. Reducing the number of roundtrips
to the database reduces the latency of the entire operation, as
expected. Figure 9 (bottom) shows the latency of the sell
operation versus the number of client threads. The curves are
reasonably flat, indicating that the machines have not satu-
rated and the network latency dominates the overall latency
of the operation.

Estimated from
measured improvement
Expected 16 ms 8 ms 4 ms

Statement batching 4 3.75 3.55 2.75

Concurrent execution 2 2.04 1.92 2.13

Removing queries 2 204 215 2.53
Total 8

Figure 8. Number of roundtrips eliminated for the sell
operation, by type of optimization. We reduce up to eight
round-trips to the database. As the network delay increases
the measured improvement more closely matches the pre-
dicted improvements.
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8. Related work

Previous work on optimizing three-tier applications has fo-
cused on automatic techniques for caching and prefetching
the results of database queries [12, 19, 23]. There is over-
lap with the optimizations we have proposed as example
applications of our dependency graphs: caching can hide
the cost of redundant queries and prefetching effectively
saves roundtrips to the database by eliminating the latency of
correctly predicted queries. However, while automatic tech-
niques will work well in many typical situations, they have
a limited view of the program and will not by themselves
achieve acceptable levels of performance in every situation.
There is still a need for programmers to understand what is
happening in a three-tier program so that they can restruc-
ture the program to improve performance, either entirely by
hand or just enough that the automatic optimizations work
as intended. Thus, our approach complements the work on
automatic optimization of three-tier applications.

Several efforts have looked at more tightly integrating the
programming language and the database, providing a better
programming model than SQL statements bolted on to a
stock language [3, 13]. Besides the better abstractions for the
programmer, any such language system would presumably
have stronger built-in semantics for the persistent store and
thus begin in a better position for tools to reason about the
performance of multi-tier applications. However, the need
for programmers to understand the performance of such
applications would not be eliminated, and we expect that
dependency graphs much like we propose would be a natural
medium of communication with programmers even in such
higher-level languages.

Some previous efforts examine different aspects of ana-
lyzing multi-language systems, although we are not aware
of any that specifically target performance in multi-tier sys-
tems. Moise and Wong [17] describe a system to infer source
dependencies between multi-language systems, e.g. for a
mixed Java/C++ program they determine which Java classes
call a particular C++ function. Strein et al. [22] describe
a prototype IDE that allows refactoring of mixed-language
programs (specifically, C and Visual Basic). Salah et al. [20]
describe a system that tags execution traces with a user-
defined mark, which is useful for finding which parts of the
source code implement which user-facing functionality.

Dynamic taint analysis is widely-used in security re-
search. Schwartz et al. [21] present a good overview of the
technique and formalize it for a simple intermediate lan-
guage. They also discuss the trade-offs and challenges when
choosing taint injection, propagation and checking policies.
As discussed in [8], techniques for taint tracking in one lan-
guage do not necessarily port well to other languages: there
are many intricacies involved in building a complete, accu-
rate taint propagation mechanism. For example, we make
essential use of a trick due to [4] to instrument the entire
JDK in the presence of Java’s dynamic loading.

RoadRunner [9] is a Java instrumentation framework for
rapid prototyping of dynamic analysis tools. RoadRunner
has been successfully used to implement data race and atom-
icity violation detection tools. RoadRunner’s framework is
not general enough to implement our taint flow algorithm,
primarily because it lacks shadow values for local variables
and stack operands and it is not possible to propagate taint
on arithmetic operations and assignments.

Luo et al. [14] describe a system in which multiple
database statements that specify associative and commu-
tative operations (e.g., an increment operation) over a set of
tuples are merged into a single statement. They also propose
grouping transactions that contain operations over the same
set of tuples, thus increasing the number of database state-
ments that can be merged. Their method is limited by the fact
that most database drivers (and JDBC in particular) provide
a synchronous interface to their clients: One query cannot be
emitted before the previous one has finished. Therefore, the
database engine will receive only one query at a time. Their
method would be well suited for improving the performance
of batched database statements like the ones produced after
refactoring an application using our tool.

Bogle and Liskov [6] propose batched futures, a mecha-
nism for reducing the cost of database calls. Instead of exe-
cuting calls when the client requests them, they delay queries
until their value is needed. At that point several calls may
have been requested, and they can be executed in batch. Our
implementation of concurrent queries has the same purpose,
but eagerly executes queries in multiple database connec-
tions instead of batching them. The speedup of batched fu-
tures is limited by the number of operations that can be de-
ferred; our tool helps the programmer reorganize the code to
maximize the number of deferred operations.

For Java applications Heath [11] proposes an asyn-
chronous database driver using both thread-pools and non-
blocking socket I/O. There are asynchronous database drivers
for MySQL and Drizzle [2]. Python’s event-driven network-
ing engine Twisted has an asynchronous wrapper over the
standard (synchronous) Python database API [1]. The de-
pendency information produced by our method would help
a programmer port an existing application to use any of these
asynchronous database drivers.

9. Conclusion

Understanding the performance of database operations in
a three-tier system is difficult because they may be far
apart in the source code, hidden behind abstraction barri-
ers, connected by complicated control-flow structures, or
they might interact only through the database. As the num-
ber of database statements in the application increases, the
number of possibilities and the number of ways in which
connections can be obfuscated grows super-linearly. Our de-
pendency graph solves most of these problems.



Our goal in this work is to examine how program analy-
sis technology can be used to understand and optimize long
latency database operations, which are often a performance
bottleneck in commercial three-tier applications. We have
identified three simple transformations that reduce the num-
ber of, or hide the latency of, database roundtrips: state-
ment batching, asynchronous query execution, and redun-
dant query elimination. Identifying where these transforma-
tions may be applied requires dependency information that
spans both the application and the database.

We use dynamic taint analysis to find dependencies
through the middle-tier, and database statement commuta-
tivity to infer dependencies through the database. In addi-
tion, we automatically group similar transactions to present
an easier-to-understand result to the programmer. We have
also presented an extended case study where we applied an
implementation of our methods to a three-tier Java applica-
tion, and found it to be useful in improving its performance
by reducing the latency of its operations.
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