
Terra: A Multi-Stage Language for
High-Performance Computing

Zachary DeVito James Hegarty Alex Aiken Pat Hanrahan Jan Vitek

Stanford University Purdue University

(zdevito|jhegarty|aiken|hanrahan)@cs.stanford.edu jv@cs.purdue.edu

Abstract

High-performance computing applications, such as auto-tuners and
domain-specific languages, rely on generative programming tech-
niques to achieve high performance and portability. However, these
systems are often implemented in multiple disparate languages and
perform code generation in a separate process from program execu-
tion, making certain optimizations difficult to engineer. We lever-
age a popular scripting language, Lua, to stage the execution of
a novel low-level language, Terra. Users can implement optimiza-
tions in the high-level language, and use built-in constructs to gen-
erate and execute high-performance Terra code. To simplify meta-
programming, Lua and Terra share the same lexical environment,
but, to ensure performance, Terra code can execute independently
of Lua’s runtime. We evaluate our design by reimplementing exist-
ing multi-language systems entirely in Terra. Our Terra-based auto-
tuner for BLAS routines performs within 20% of ATLAS, and our
DSL for stencil computations runs 2.3x faster than hand-written C.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors – Code Generation, Compilers

General Terms Design, Performance

Keywords Lua, Staged computation, DSL

1. Introduction

There is an increasing demand for high-performance power-efficient
applications on devices ranging from phones to supercomput-
ers. Programming these applications is challenging. For optimum
performance, applications need to be tailored to the features of
the target architecture, e.g., multi-core, vector instructions, and
throughput-oriented processors such as GPUs. Applications have
turned to generative programming to adapt to complex hardware.
Auto-tuners like SPIRAL [23], ATLAS [33], or FFTW [12] can
express a range of implementations for specific applications such
as FFTs, and choose the best optimizations for a given architecture.
In areas such as machine learning [4], or physical simulation [9],
domain-specific languages (DSLs) can achieve the same goal for
a range of similar applications through domain-specific optimiza-
tions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’13 June 16-22, 2013, Seattle, Washington, USA.
Copyright © 2013 ACM 978-1-4503-2014-6/13/06. . . $15.00

However, high-performance applications that rely on code gen-
eration are often implemented as ad hoc source-to-source trans-
lators. For instance, consider FFTW which implements its genfft

compiler in OCaml and emits C code [12], or Liszt, a DSL which
uses Scala for its transformations and generates code that links
against a runtime written in C [9].

While these designs produce high-performance code, they are
hard to engineer. A DSL or auto-tuner typically has three compo-
nents: an optimizer that performs domain-specific transformations
to generate a plan of execution, a compiler that generates high-
performance code based on the plan, and a runtime that supports
the generated code and provides feedback to the optimizer. If, as
in FFTW and Liszt, the optimizer and compiler are separate from
the runtime, it is difficult to feed runtime statistics back to the com-
piler to perform problem-specific optimizations. Transformations
also require careful engineering to separate compile-time and run-
time optimizations, making it difficult to prototype new optimiza-
tions.

Ideally, it should be easy for domain experts to experiment
with domain and problem-specific transformations, generate high-
performance code dynamically, and provide runtime feedback to
improve performance. Furthermore, all parts of the toolchain, com-
piler, generated code, and runtimes, should inter-operate amongst
themselves and with legacy high-performance libraries. Achieving
these goals in a single system is complicated by the fact that each
component has different design constraints. It is easier to prototype
compiler transformations in an expressive high-level language, but
achieving high performance in the generated code and runtime re-
quires fine-grained control over execution and memory resources,
which is easier in a low-level language.

To address these problems, we use multi-stage programming [30]
to couple an existing high-level language, Lua, with a new low-
level language, Terra. Lua is a high-level dynamically-typed lan-
guage with automatic memory management and first-class func-
tions [14]. Terra, on the other hand, is a statically-typed language
similar to C with manual memory management. Terra code is em-
bedded in Lua. Using multi-stage programming, programmers can
generate and execute Terra code dynamically from Lua.

This two-language design allows domain experts to experiment
with high-level transformations using Lua, while still generating
high-performance code using Terra. To simplify code generation,
the evaluation of Lua and the generation of Terra code share the
same lexical environment and variable references are hygienic
across the two languages. To ensure fine-grained control of exe-
cution, Terra executes in a separate environment: Terra code runs
independently of the Lua runtime. It can run in a different thread, or
(in the future) on accelerators like GPUs. This separation ensures
that the high-level features of Lua do not creep into the execution
of Terra. Furthermore, Terra exposes the low-level features of mod-
ern hardware such as vector instructions. Finally, we leverage the

fact that Lua was specifically designed to be embedded in low-level
languages such as C [15]. Lua’s stack-based C API makes it easy
to interface with legacy code, while a built-in foreign-function in-
terface [1] makes it possible to pass values between Lua and Terra.

Furthermore, we provide support for type reflection on Terra
types that enables the creation of new types via meta-programming.
This design keeps the Terra language simple while still allowing the
creation of libraries to implement higher-level components such as
class systems that can be used in high-performance runtimes.

This paper makes the following contributions:

• We present the design of Terra which uniquely combines the
staging of a low-level language using a high-level one, shared
lexical scoping, separate evaluation, and type reflection.1

• We provide a formal semantics of core Terra to elucidate the
interaction between Terra and Lua, focusing on how staging
operates in the presence of side effects in Lua.

• We show that we can reimplement a number of existing multi-
language systems entirely in Terra, but still achieve similar per-
formance. In particular, we show an auto-tuner for matrix mul-
tiply that performs within 20% of ATLAS, but uses fewer than
200 lines of Terra code, and we present a stencil computation
language that performs 2.3x faster than hand-written C. Finally,
we implement a class system and container with parameteriz-
able data layout as JIT-compilable Terra libraries, which would
be difficult to engineer in existing languages.

2. Writing Multi-stage Code in Terra

We use an example image-processing algorithm to introduce Terra.
At the top-level, a program executes as Lua, augmented with con-
structs to create Terra functions, types, variables, and expressions.
The terra keyword introduces a new Terra function (Lua functions
are introduced with function):

terra min(a: int, b: int) : int
if a < b then return a
else return b end

end

Terra functions are lexically-scoped and statically-typed, with pa-
rameters and return types explicitly annotated. In contrast, Lua has
no type annotations. Terra is also backwards-compatible with C:

std = terralib.includec("stdlib.h")

The Lua function includec imports the C functions from stdlib.h.
It creates a Lua table, an associative map. It then fills the table with
Terra functions that invoke the corresponding C functions found
in stdlib.h. In Lua, the expression table.key is syntax sugar for
table["key"]. So, for example, std.malloc is C’s malloc.

Terra entities (functions, types, variables and expressions) are
first-class Lua values. For example, the follow statement constructs
a Terra type that holds a square greyscale image:

struct GreyscaleImage {
data : &float;
N : int;

}

GreyscaleImage is a Lua variable whose value is a Terra type.
Terra’s types are similar to C’s. They include standard base types,
arrays, pointers, and nominally-typed structs. Here data is a pointer
to floats, while GreyscaleImage is a type that was created by the
struct constructor.

We might want to parameterize the image type based on the
type stored at each pixel (e.g., an RGB triplet, or a greyscale value).

1 Our implementation and additional examples are available at
github.com/zdevito/terra

We can define a Lua function Image that creates the desired Terra
type at runtime. This is conceptually similar to a C++ template:

function Image(PixelType)
struct ImageImpl {

data : &PixelType,
N : int

5 }
-- method definitions for the image:
terra ImageImpl:init(N: int): {} --returns nothing

self.data =
[&PixelType](std.malloc(N*N*sizeof(PixelType)))

10 self.N = N
end
terra ImageImpl:get(x: int, y: int) : PixelType

return self.data[x*self.N + y]
end

15 --omitted methods for: set, save, load, free
return ImageImpl

end

In addition to its layout declared on lines 2–5, each struct can
have a set of methods (lines 6–15). Methods are normal Terra
functions stored in a Lua table associated with each type (e.g.,
ImageImpl.methods). The method declaration syntax is sugar for:

ImageImpl.methods.init =
terra(self : &ImageImpl, N : int) : {}
...

end

Method invocations (myimage:init(128)) are also just syntactic
sugar (ImageImpl.methods.init(myimage,128)). In the init func-
tion, we call std.malloc to allocate memory for our image. Since
std is a Lua table, Terra will evaluate the table select operator
(std.malloc) during compilation and resolve it to the malloc func-
tion. We also define a get function to retrieve each pixel, as well as
some utility functions which we omit for brevity.

Outside of the Image function, we call Image(float) to define
GreyscaleImage. We use it to define a laplace function and a driver
function runlaplace that will run it on an image loaded from disk
to calculate the Laplacian of the image:

GreyscaleImage = Image(float)
terra laplace(img: &GreyscaleImage,

out: &GreyscaleImage) : {}
--shrink result, do not calculate boundaries

5 var newN = img.N - 2
out:init(newN)
for i = 0,newN do

for j = 0,newN do
var v = img:get(i+0,j+1) + img:get(i+2,j+1)

10 + img:get(i+1,j+2) + img:get(i+1,j+0)
- 4 * img:get(i+1,j+1)

out:set(i,j,v)
end

end
15 end

terra runlaplace(input: rawstring,
output: rawstring) : {}

var i = GreyscaleImage {}
var o = GreyscaleImage {}

20 i:load(input)
laplace(&i,&o)
o:save(output)
i:free(); o:free()

end

To actually execute this Terra function, we can call it from Lua:

runlaplace("myinput.bmp","myoutput.bmp")

Invoking the function from Lua will cause the runlaplace function
to be JIT compiled. A foreign function interface converts the Lua
string type into a raw character array rawstring used in Terra code.

Alternatively, we can save the Terra function to a .o file which can
be linked to a normal C executable:

terralib.saveobj("runlaplace.o",
{runlaplace = runlaplace})

We may want to optimize the laplace function by blocking the
loop nests to make the memory accesses more friendly to cache. We
could write this optimization manually, but the sizes and numbers
of levels of cache can vary across machines, so maintaining a
multi-level blocked loop can be tedious. Instead, we can create a
Lua function, blockedloop, to generate the Terra code for the loop
nests with a parameterizable number of block sizes. In laplace, we
can replace the loop nests (lines 7–12) with a call to blockedloop

that generates Terra code for a 2-level blocking scheme with outer
blocks of size 128 and inner blocks of size 64:

[blockedloop(newN,{128,64,1}, function(i,j)
return quote
var v = img:get(i+0,j+1) + img:get(i+2,j+1)

+ img:get(i+1,j+2) + img:get(i+1,j+0)
5 - 4 * img:get(i+1,j+1)

out:set(i,j,v)
end

end)]

The brackets ([]) around the expression are the Terra equivalent
of the escape operator from multi-stage programming, allowing a
value evaluated in Lua (the code for the loop nest generated by
blockedloop) to be spliced into the Terra expression. The third
argument to blockedloop is a Lua function that is called to create
the inner body of the loop. Its arguments (i,j) are the loop indices.
The quote expression creates a quotation, a block of Terra code
that can be spliced into another Terra expression. Here, we use it to
create the loop body using the loop indices.

The implementation of blockedloop walks through the list of
blocksizes. It uses a quote to create a level of loop nests for each
entry and recursively creates the next level using an escape. At the
inner-most level, it calls bodyfn to generate the loop body:

function blockedloop(N,blocksizes,bodyfn)
local function generatelevel(n,ii,jj,bb)

if n > #blocksizes then
return bodyfn(ii,jj)

5 end
local blocksize = blocksizes[n]
return quote
for i = ii,min(ii+bb,N),blocksize do

for j = jj,min(jj+bb,N),blocksize do
10 [generatelevel(n+1,i,j,blocksize)]

end
end

end
end

15 return generatelevel(1,0,0,N)
end

A more general version of this function is used to implement multi-
level blocking for our matrix multiply example.

This example highlights some important features of Terra. We
provide syntax sugar for common patterns in runtime code such as
namespaces (std.malloc) or method invocation (out:init(newN)).
Furthermore, during the generation of Terra functions, both Lua
and Terra share the same lexical environment. For example, the
loop nests refer to blocksize, a Lua number, while the Lua code
that calls generatelevel refers to i and j, Terra variables. Values
from Lua such as blocksize will be specialized in the staged code
as constants, while Terra variables that appear in Lua code such as i
will behave as variable references once placed in a Terra quotation.

3. Terra Core

To make the interaction between Lua and Terra precise, we formal-
ize the essence of both languages focusing on how Terra functions

are created, compiled, and called during the evaluation of a Lua
program and in the presence of side-effects. We will use this for-
malism in Section 4.1 to illustrate key design decisions in Terra.

The calculus, called Terra Core, is equipped with a big step op-

erational semantics. Evaluation starts in Lua (
L
−→). When a Terra

term is encountered it is specialized (
S
−→), a process analogous to

macro expansion in LISP that evaluates any escapes in the term to
produce concrete Terra terms. Specialized Terra functions can then

be executed (
T
−→). We distinguish between Lua expressions e,

Terra expressions
.
e, and specialized Terra expressions

.
e (we use

a dot to distinguish Terra terms from Lua terms, and a bar to in-
dicate a Terra term is specialized). For simplicity we model Lua
as an imperative language with first-class functions and Terra as a
purely functional language. A namespace Γ maps variables (x) to
addresses a, and a store S maps addresses to Lua values v. The
namespace Γ serves as the value environment of Lua (resolving
variables to values, v), and the syntactic environment of Terra spe-
cialization (resolving variables to specialized Terra terms

.
e, which

are a subset of Lua values). In contrast, Terra is executed in a sepa-

rate environment (
.
Γ).

The Lua (Core) syntax is given in the following table:

e ::= b |
.
T | x | let x = e in e | x := e | | e(e) |

fun(x){e} | tdecl | ter e(x : e) : e {
.
e } | 8 .e

v ::= b | l |
.
T | 〈Γ, x, e〉 |

.
e

.
T ::=

.
B |

.
T→

.
T

A Lua expression can be a base value (b), a Terra type expression

(
.
T), a variable (x), a scoped variable definition (let x = e in e),

an assignment (x := e), a function call e(e), a Lua function
(fun(x){e}), or a quoted Terra expression (8

.
e). We separate decla-

ration and definition of Terra functions to allow for recursive func-
tions. A Terra function declaration (tdecl) creates a new address
for a Terra function, while a Terra definition (ter e1(x : e2) :
e3 {

.
e }) fills in the declaration at address e1. For example, the

following declares and defines a Terra function, storing it in x:

let x = ter tdecl(x2 : int) : int { x2 } in x

Alternatively, tdecl creates just a declaration that can be defined
later:

let x = tdecl in ter x(x2 : int) : int { x2 }

In real Terra code, a Terra definition will create a declaration if
it does not already exist. Lua values range over base types (b),

addresses of Terra functions (l), Terra types (
.
T), Lua closures

(〈Γ, x, e〉) and specialized Terra expressions (
.
e). The syntax of

Terra terms is defined as follows:

.
e ::= b | x |

.
e(

.
e) | tlet x : e =

.
e in

.
e | [e]

A Terra expression is either a base type, a variable, a function
application, a let statement, or a Lua escape (written [e]). The
syntax of specialized terms is given next:

.
e ::= b |

.
x |

.
e(

.
e) | tlet

.
x :

.
T =

.
e in

.
e | l

In contrast to an unspecialized term, a specialized Terra term does
not contain escape expressions, but can contain Terra function
addresses (l). The let statement must assign Terra types to the
bound variable and variables are replaced with specialized Terra
variables

.
x.

The judgment e Σ1

L
−→ v Σ2 describes the evaluation of

a Lua expression. It operates over an environment Σ consisting
of Γ, S, and a Terra function store F which maps addresses (l)

v Σ
L
−→ v Σ (LVAL)

Σ = Γ, S, F

x Σ
L
−→ S(Γ(x)) Σ

(LVAR)

e1 Σ1

L
−→ v1 Σ2 Σ2 = Γ, S, F e2 Σ2[x← v1]

L
−→ v2 Σ3

let x = e1 in e2 Σ
L
−→ v2 (Σ3 ← Γ)

(LLET)

e Σ
L
−→ v Γ, S, F Γ(x) = a

x := e Σ
L
−→ v Γ, S[a← v], F

(LASN)

Σ = Γ, S, F

fun(x){e} Σ
L
−→ 〈Γ, x, e〉 Σ

(LFUN)

e1 Σ1

L
−→ 〈Γ1, x, e3〉 Σ2 e2 Σ2

L
−→ v1 Γ2, S, F

a fresh e3 Γ1[x← a], S[a← v1], F
L
−→ v2 Σ3

e1(e2) Σ1

L
−→ v2 (Σ3 ← Γ2)

(LAPP)

l fresh Σ = Γ, S, F

tdecl Σ
L
−→ l Γ, S, F [l← •]

(LTDECL)

e1 Σ1

L
−→ l Σ2 e2 Σ2

L
−→

.
T1 Σ3 e3 Σ3

L
−→

.
T2 Σ4

Σ4 = Γ1, S1, F1

.
x fresh

.
e Σ4[x←

.
x]

S
−→

.
e Γ2, S2, F2 F2(l) = •

ter e1(x : e2) : e3 {
.
e } Σ1

L
−→ l Γ1, S2, F2[l← 〈

.
x,

.
T1,

.
T2,

.
e〉]

(LTDEFN)

.
e Σ1

S
−→

.
e Σ2

8
.
e Σ1

L
−→

.
e Σ2

(LTQUOTE)

e1 Σ1

L
−→ l Σ2 e2 Σ2

L
−→ b1 Σ3

Σ3 = Γ, S, F F (l) = 〈
.
x,

.
T1,

.
T2,

.
e〉 b1 ∈

.
T1

[
.
x :

.
T1], [l :

.
T1 →

.
T2], F2 ⊢

.
e :

.
T2

.
e [

.
x← b], F

T
−→ b2

e1(e2) Σ1

L
−→ b2 Σ3

(LTAPP)

Figure 1. The rules
L
−→ for evaluating Lua expressions.

to Terra functions. Terra functions can be defined (〈
.
x,

.
T,

.
T,

.
e〉), or

undefined (•). Figure 1 defines the Lua evaluation rules. We use
two notational shortcuts:

Σ1[x← v] = Γ2, S2, F when Σ1 = Γ1, S1, F ∧ Γ2 = Γ1[x← a]∧

S2 = S1[a← v] ∧ a fresh

Σ← Γ1 = Γ1, S, F when Σ = Γ2, S, F

Rule LTDECL creates a new Terra function at address l and ini-
tializes it as undefined (•). Rule LTDEFN takes an undefined Terra
function (e1) and initializes it. First, e2 and e3 are evaluated as

Lua expressions to produce the type of the function,
.
T1 →

.
T2. The

body,
.
e, is specialized. During specialization, Terra variables (x)

are renamed to new symbols (
.
x) to ensure hygiene. Renaming has

been previously applied in staged-programming [30] and hygienic
macro expansion [2]. In the case of LTDEFN, we generate a fresh
name

.
x for the formal parameter x, and place it in the environment.

Variable x will be bound to the value
.
x in the scope of any Lua code

evaluated during specialization of the function. During specializa-
tion, Rule SVAR will replace uses of x in Terra code with the value
of x in the environment.

b Σ
S
−→ b Σ (SBAS)

.
e1 Σ1

S
−→

.
e
1

Σ2

.
e2 Σ2

S
−→

.
e
2

Σ3

.
e1(

.
e2) Σ1

S
−→

.
e
1
(
.
e
2
) Σ3

(SAPP)

e Σ1

L
−→

.
T Σ2

.
e1 Σ2

S
−→

.
e
1

Σ3

.
x fresh

Σ3 = Γ, S, F
.
e2 Σ3[x←

.
x]

S
−→

.
e
2

Σ4

tlet x : e =
.
e1 in

.
e2 Σ1

S
−→ tlet

.
x :

.
T =

.
e
1
in

.
e
2

(Σ4 ← Γ)
(SLET)

e Σ1

L
−→

.
e Σ2

[e] Σ1

S
−→

.
e Σ2

(SESC)
[x] Σ1

S
−→

.
e Σ2

x Σ1

S
−→

.
e Σ2

(SVAR)

Figure 2. The rules
S
−→ for specializing Terra expressions.

b
.
Γ, F

T
−→ b (TBAS) l

.
Γ, F

T
−→ l (TFUN)

.
x

.
Γ, F

T
−→

.
Γ(

.
x) (TVAR)

.
e
1

.
Γ, F

T
−→ v1

.
e
2

.
Γ[

.
x← v1], F

T
−→ v2

tlet
.
x :

.
T =

.
e
1
in

.
e
2

.
Γ, F

T
−→ v2

(TLET)

.
e
1

.
Γ, F

T
−→ l

.
e
2

.
Γ, F

T
−→ v1

F (l) = 〈
.
x,

.
T1,

.
T2,

.
e
3
〉

.
e
3

.
Γ[

.
x← v1], F

T
−→ v2

.
e
1
(
.
e
2
)

.
Γ, F

T
−→ v2

(TAPP)

Figure 3. The rules
T
−→ for evaluating Terra expressions.

F̂ (l) =
.
T

Γ̂, F̂ , F ⊢ l :
.
T

(TYFUN1)

l 6∈ F̂ F (l) = 〈x,
.
T1,

.
T2,

.
e〉 [x :

.
T1], F̂ [l :

.
T1 →

.
T2], F ⊢

.
e :

.
T2

Γ̂, F̂ , F ⊢ l :
.
T1 →

.
T2

(TYFUN2)

Figure 4. Typing rules for references to Terra functions.

Rule LTAPP describes how to call a Terra function from Lua.
The actual parameter e2 is evaluated. The Terra function is then
typechecked. Semantically, typechecking occurs every time a func-
tion is run. In practice, we cache the result of typechecking. For
simplicity, Terra Core only allows values b of base types to be
passed and returned from Terra functions (full Terra is less re-
stricted).

Figure 2 defines judgment
.
e Σ1

S
−→

.
e Σ2 for specializ-

ing Terra code, which evaluates all embedded Lua expressions in
type annotations and escape expressions. Similar to LTDEFN, rule
SLET generates a unique name

.
x to ensure hygiene. Rule SESC

evaluates escaped Lua code; it splices the result into the Terra ex-
pression if the resulting value is in the subset of values that are
Terra terms

.
e (e.g., a variable

.
x or base value b). Variables in Terra

can refer to variables defined in Lua and in Terra; they behave as
if they are escaped, as defined by Rule SVAR. If x is a variable de-
fined in Terra code and renamed

.
x during specialization, then rule

SVAR will just produce
.
x (assuming no interleaving mutation of x).

Figure 3 presents the judgment
.
e

.
Γ, F

T
−→ v for evaluating

specialized Terra expressions. These expressions can be evaluated
independently from the Lua store S, and do not modify F , but are
otherwise straightforward. A Terra function is typechecked right

before it is run (LTAPP) with the judgment Γ̂, F̂ , F ⊢
.
e :

.
T,

where Γ̂ is the typing environment for variables and F̂ is the
typing environment for Terra function references (F is the Terra
function store from before). The rules (omitted for brevity) are
standard, except for the handling of Terra function references l.
If a Terra function l1 refers to another Terra function l2, then l2
must be typechecked when typechecking l1. The rules for handling
these references in the presence of mutually recursive functions
are shown in Figure 4. They ensure all functions that are in the
connected component of a function are typechecked before the
function is run.

4. Key Design Decisions

We want to make it easier to prototype domain- and problem-
specific transformations, dynamically compile the results of the
transformations into high-performance code, and support this code
with high-performance runtime libraries. We highlight some im-
portant design decisions in the semantics of Terra Core that make
these goals possible. We then present engineering decisions that
also address these issues.

4.1 Language Design

Hygienic staged programming with a shared lexical environment.
The combination of staged programming, shared lexical environ-
ment, and hygiene provides several benefits. The staged program-
ming of Terra from Lua provides interoperability between com-
piler, generated code, and runtime of a DSL. DSL compilers written
in Lua can generate arbitrary code using a combination of quota-
tions, escapes, and terra definitions. The shared lexical environ-
ment makes it possible to organize Terra functions in the Lua en-
vironment, and refer to them directly from Terra code without ex-
plicit escape expressions. To further reduce the need for escape ex-
pressions, we also treat lookups into nested Lua tables of the form
x.id1.id2...idn (where id1...idn are valid entries in nested Lua ta-
bles) as if they were escaped. This syntactic sugar allows Terra code
to refer to functions organized into Lua tables (e.g., std.malloc),
removing the need for an explicit namespace mechanism in Terra.
Finally, maintaining hygiene during staging ensures that it is al-
ways possible to determine the relationship between variables and
their declarations (across both Lua and Terra) using only the local
lexical scope.

Terra Core illustrates how we provide a shared lexical environ-
ment and hygiene. The evaluation of Lua code and the specializa-
tion of Terra code share the same lexical environment Γ and store
S. This environment and store always map variables x to Lua values
v. Terra syntax

.
e is one type of Lua value. This example illustrates

the shared environment:

let x1 = 0 in

let x2 =8 (tlet y1 : int = 1 in x1) in
let x3 = ter tdecl(y2 : int) : int { x2 } in x3

The specialization of the quoted tlet expression occurs in the
surrounding Lua environment, so Rule SVAR will evaluate x1 to
0. This results in the specialized expression:

tlet
.
y
1
: int = 1 in 0

This Terra expression will be stored as a Lua value in x2. Since
the Terra function refers to x2, specialization will result in the
following Terra function:

〈
.
y
2
, int, int, tlet

.
y
1
: int = 1 in 0〉

Furthermore, during specialization variables introduced by Terra
functions and Terra let expressions are bound in the shared lexical
environment. Consider this example:

let x1 = fun(x2){
8tlet y : int = 0 in [x2]} in

let x3 = ter tdecl(y : int) : int { [x1(y)] } in x3

The variable y on line 2 is introduced by the Terra function def-
inition. It is referenced by the Lua expression inside the escape

([x1(y)]). The variable y is then passed as an argument to Lua func-
tion x1, where it is spliced into a tlet expression.

When Terra variables are introduced into the environment, they
are given fresh names to ensure hygiene. For example, without
renaming, x3 would specialize to the following, causing the tlet
expression to unintentionally capture y:

〈y, int, int, tlet y : int = 1 in y〉

To avoid this, rules LTDEFN and SLET generate fresh names for
variables declared in Terra expressions. In this case, the LTDEFN

will generate a fresh name
.
y
1

for the argument y binding it into the

shared environment (Σ[y←
.
y
1
]), and SLET will similarly generate

the fresh name
.
y
2

for the tlet expression. Since y on line 2 has the

value
.
y
1

during specialization, the variable x2 will get the value
.
y
1
,

and x3 will specialize to the following, avoiding the unintentional
capture:

〈
.
y
1
, int, int, tlet

.
y
2
: int = 1 in

.
y
1
〉

Eager specialization with lazy typechecking Statically-typed
languages such as Terra are normally compiled ahead-of-time, re-
solving symbols, typechecking, and linking in a separate process
from execution. However, since Lua is dynamically-typed and can
generate arbitrary Terra code, it is not possible to typecheck a com-
bined Lua-Terra program statically. Instead, the normal phases of
Terra compilation become part of the evaluation of the Lua pro-
gram, and we must decide when those phases run in relation to
the Lua program. To better understand how Terra code is compiled
in relation to Lua, consider where Terra can “go wrong.” While
specializing Terra code, we might encounter an undefined variable,
resolve a Lua expression used in an escape to a value v that is not
also a Terra term

.
e, or resolve a Lua expression used as a Terra

type to a value v that is not a Terra type
.
T. While typechecking

Terra code, we might encounter a type error. And, while linking
Terra code, we might find that a Terra function refers to a declared
but undefined function. In Terra (and reflected in Terra Core), we
perform specialization eagerly (as soon as a Terra function or quo-
tation is defined), while we perform typechecking and linking lazily
(only when a function is called, or is referred to by another function
being called).

Eager specialization prevents mutations in Lua code from
changing the meaning of a Terra function between when it is com-
piled and when it is used. For instance, consider the following
example (we use the syntax e; e as sugar for let = e in e):

let x1 = 0 in

let y = ter tdecl(x2 : int) : int { x1 } in
x1 := 1;
y(0)

Since specialization is performed eagerly, the statement y(0) will
evaluate to 0. In contrast, if specialization were performed once
lazily, then it would capture the value of x1 the first time y is called
and keep that value for the rest of the program, which would lead to
surprising results (e.g., if y were used before x1 := 1 then it would
always return 0, otherwise it would always return 1). Alternatively,
we could re-specialize (and hence re-compile) the function when a
Lua value changes, but this behavior could lead to large compiler
overheads that would be difficult to track down.

Eager specialization requires all symbols used in a function to
be defined before it is used, which can be problematic for mutually
recursive functions. In order to support recursive functions with
eager specialization, we separate the declaration and definition of
Terra functions:

let x2 = tdecl in

let x1 = ter tdecl(y : int) : int { x2(y) } in
ter x2(y : int) : int { x1(y) };
x1(0)

Alternatively, we could have provided a form of Terra definition
that allows the definition of multiple mutually-recursive functions

at one time. However, this approach does not inter-operate well
with generative programs such as a DSL compiler that may need to
create an arbitrarily sized connected-component based on dynamic
information.

In contrast to specialization, typechecking is performed lazily.
In Terra Core, it would be possible to perform typechecking eagerly
if declarations also had types. For instance, in our previous example
we could typecheck x1 when it is defined if x2 was given a type
during declaration. However, even though x1 would typecheck, we
would still receive a linking error if x1(0) occurred before the
definition of x2. So performing typechecking eagerly would not
reduce the number of places an error might occur for function
x1. Furthermore, unlike specialization where the result can change
arbitrarily depending on the Lua state, the result of typechecking
and linking x can only change monotonically from a type-error to
success as the functions it references are defined (it can also stay
as a type-error if the function is actually ill-typed). This property
follows from the fact that Terra functions can be defined, but not
re-defined by Rule LTDEFN.

In the full Terra language, performing typechecking lazily also
provides several advantages. Forward declarations of functions do
not have to have type annotations making them easier to maintain,
and user-defined struct types do not need all their members or
methods specified before being used in a Terra function. In the de-
fault case, we can keep type-checking monotonic by ensuring that
members and methods can only be added to user-defined types and
not removed. In actuality, the mechanisms for type-reflection de-
scribed later in this section allow user-defined libraries to override
the default behavior of a type (e.g., by adding inheritance). In this
case, to maintain monotonic typechecking, implementors must en-
sure that the functionality of a type only grows over the execution
of the program.

Separate evaluation of Terra code. After Terra code is compiled,
it can run independently from Lua. This behavior is captured in
Terra Core by the fact that Terra expressions are evaluated inde-
pendently from the environment Γ and the store S, as illustrated by
this example:

let x1 = 1 in

let y = ter tdecl(x2 : int) : int { x1 } in
x1 := 2; y(0)

The Terra function will specialize to 〈
.
x, int, int, 1〉, so the function

call will evaluate to the value 1, despite x1 being re-assigned to 2.
An alternative design would allow Terra evaluation to directly refer
to x1. For instance, in MetaOCaml [29], ref cells share the same
store across different stages, allowing mutations in staged code to
be seen outside of the staged code. This alternative makes sharing
state easier, but it would couple Terra and Lua’s runtimes. The re-
liance on the Lua runtime, which includes high-level features such
as garbage collection, would make it more difficult to reason about
the performance of Terra code. Furthermore, the required runtime
support would make it difficult to port Terra to new architectures
such as GPUs, run code in multiple threads, or link code into exist-
ing C programs without including the Lua runtime.

Mechanisms for type reflection. Terra is a low-level monomor-
phic language. Its simplicity makes it easier to implement, but
can make programming libraries such as DSL runtimes tedious.
For instance, a DSL writer may want to experiment with different
data layouts such as array-of-structs or struct-of-arrays. Instead of
adding this functionality to Terra, we provide a type reflection API
for creating and examining Terra types so this higher-level func-
tionality can be implemented as libraries. The basis of the API lies
in the fact that Terra types are Lua values, as illustrated in Terra
Core:

let x3 = fun(x1){ter tdecl(x2 : x1) : x1 { x2 }} in
x3(int)(1)

The Lua function x3 will generate a Terra identity function for
any given type. Here we call it with int, which will result in the
specialized Terra function 〈

.
x, int, int,

.
x〉.

In the full language we supplement this behavior with an API
to introspect and create types in Lua. Terra types include methods
for introspection (e.g., t:ispointer(), or t:isstruct()) that can be
called from Lua. Furthermore, structs can be created programmati-
cally. In addition to the methods table presented in Section 2, structs
also contain an entries table that describes their in-memory lay-
out. Here we layout complex number type using its entries table
directly:

struct Complex {}
Complex.entries:insert { field = "real", type = float }
Complex.entries:insert { field = "imag", type = float }

A struct also contains a metamethods table that can override certain
compile-time behaviors. For instance, we might want to allow
the promotion of a float to a complex number. A user-defined
implicit conversion can be created using a Lua function __cast

in the struct’s metamethod table. During typechecking, when Terra
needs to convert one type to another and no default conversions
apply, it will call the __cast metamethod of either type to see
if it could implement the conversion (if both are successful, we
favor the metamethod of the starting type). The following example
defines a conversion from a float to a complex number, Complex:

Complex.metamethods.__cast = function(fromtype,totype,exp)
if fromtype == float then

--valid, construct a complex number from the float exp

return 8Complex { exp, 0.f }
5 end

error("invalid conversion")
end

If there is a valid conversion, the method returns a quotation that
implements the conversion (the back-tick is a shorthand for creating
single-expression quotations). Using a Lua function to determine
the behavior of conversions provides expressibility without the
need for a more complicated mechanism.

To organize functions related to a particular type, we also pro-
vide a method invocation syntax obj:my_method(arg) that is desug-
ared during typechecking to [T.methods.my_method] (obj,arg),
where T is the static type of obj. The combination of these fea-
tures allows many components such as polymorphic class systems
to be implemented as libraries (shown later in section 6.3).

4.2 Engineering Design

A high-level language for prototyping. Lua provides automatic
memory management, first-class functions, and built-in tables that
make it easy to manage structures like ASTs and graphs, which are
frequently used in DSL transformations. Its dynamic typing makes
it easier to prototype different data structures and to construct
arbitrary functions of Terra types and expressions.

A low-level language for performance. High-level programming
languages can make it difficult to control when and what optimiza-
tions will take place. Auto-tuners and DSLs already capture the
knowledge of how to generate high-performance code, so it is im-
portant to give them as much control as reasonable to express op-
timizations. We designed Terra to be a thin abstraction layer on
modern processors. Terra provides much the same functionality as
C including manual memory management, pointer arithmetic, and
monomorphic functions. Global state, though not present in Terra
Core, is possible in the full language using global variables created
with the global function. Additionally, Terra includes fixed-length
vectors of basic types (e.g., vector(float,4)) to reflect the presence
of SIMD units on modern processors. Since the design of Terra is
close to the hardware, users can more precisely express the execu-
tion behavior that they desire, and get predictable performance.

Cross-language interoperability using a foreign-function inter-
face. In Terra Core, Lua can only pass base values to Terra func-
tions and receive them as results. In the full language, when a Lua
environment is available, we use LuaJIT’s foreign function inter-
face(FFI) [1] to translate values between Lua and Terra both along
function call boundaries and during specialization. The similar-
ity of Terra’s type system to C’s enables us to adapt the FFI to
work with Terra. In addition to base types, it supports conversion
of higher-level objects. For instance, Lua tables can be converted
into structs when they contain the required fields. Lua functions
can also be converted into Terra functions by generating wrapper
code to dynamically convert the types on entry and exit. Since con-
versions are defined for Lua functions, calling a Lua function from
Terra code is just a special case of converting a Lua value into a
Terra value during specialization.

Backwards compatible with C. We believe that the lack of inter-
operability with existing code is a key factor limiting the adoption
of DSLs. Terra can call C functions, making it possible to use exist-
ing high-performance libraries in the implementation of runtimes,
and produce code that is binary compatible with C programs. Since
Lua is easily embedded in C programs, it is easy to incorporate
a mixed Lua-Terra program into existing C code. Since most lan-
guages have interfaces for calling C functions, this design makes it
possible to use Terra in existing systems.

5. Implementation

Terra expressions are an extension of the Lua language. We use
LuaJIT [1], an implementation of Lua that includes a trace-based
JIT compiler. Lua itself is implemented as a library in C, with calls
to initialize the runtime, load Lua programs, and evaluate them.
We add additional functions to this library to load combined Lua-
Terra programs. This process is implemented as a preprocessor that
parses the combined Lua-Terra text. This design allows us to imple-
ment Terra without having to modify the LuaJIT implementation.
The preprocessor parses the text, building an AST for each Terra
function. It then replaces the Terra function text with a call to spe-
cialize the Terra function in the local environment. This constructor
takes as arguments the parsed AST, as well as a Lua closure that
captures the local lexical environment. When this code is executed,
it will call into an internal library that actually constructs and re-
turns the specialized Terra function. The preprocessed code is then
passed to the Lua interpreter to load.

Terra code is compiled when a Terra function is typechecked the
first time it is run. We use LLVM [17] to compile Terra code since it
can JIT-compile its intermediate representation directly to machine
code. To implement backwards compatibility with C, we use Clang,
a C front-end that is part of LLVM. Clang is used to compile the
C code into LLVM and generate Terra function wrappers that will
invoke the C code when called.

6. Evaluation

To evaluate Terra, we use it to reimplement a number of multi-
language applications and compare our implementations with ex-
isting approaches. We present evidence that the design decisions of
Terra make the implementations simpler to engineer compared to
existing implementations while achieving high performance. First,
we evaluate an auto-tuner for BLAS and a DSL for stencil compu-
tations. Next, we show a high-performance class system and con-
tainer with programmable data layout that can be JIT compiled.
Each would be difficult to implement in a single existing language.

6.1 Tuning DGEMM

BLAS routines like double-precision matrix multiply (DGEMM)
are used in a wide range of applications and form a basis for many

function genkernel(NB, RM, RN, V,alpha)
local vector_type = vector(double,V)
local vector_pointer = &vector_type
local A,B,C = symbol("A"),symbol("B"),symbol("C")

5 local mm,nn = symbol("mn"),symbol("nn")
local lda,ldb,ldc = symbol("lda"),symbol("ldb"),symbol("ldc")
local a,b = symmat("a",RM), symmat("b",RN)
local c,caddr = symmat("c",RM,RN), symmat("caddr",RM,RN)
local k = symbol("k")

10 local loadc,storec = terralib.newlist(),terralib.newlist()
for m = 0, RM-1 do for n = 0, RN-1 do

loadc:insert(quote
var [caddr[m][n]] = C + m*ldc + n*V
var [c[m][n]] =

15 alpha * @vector_pointer([caddr[m][n]])
end)
storec:insert(quote

@vector_pointer([caddr[m][n]]) = [c[m][n]]
end)

20 end end
local calcc = terralib.newlist()
for n = 0, RN-1 do

calcc:insert(quote
var [b[n]] = @vector_pointer(&B[n*V])

25 end)
end
for m = 0, RM-1 do

calcc:insert(quote
var [a[m]] = vector_type(A[m*lda])

30 end)
end
for m = 0, RM-1 do for n = 0, RN-1 do

calcc:insert(quote
[c[m][n]] = [c[m][n]] + [a[m]] * [b[n]]

35 end)
end end
return terra([A] : &double, [B] : &double, [C] : &double,

[lda] : int64,[ldb] : int64,[ldc] : int64)
for [mm] = 0, NB, RM do

40 for [nn] = 0, NB, RN*V do
[loadc];
for [k] = 0, NB do
prefetch(B + 4*ldb,0,3,1);
[calcc];

45 B,A = B + ldb,A + 1
end
[storec];
A,B,C = A - NB,B - ldb*NB + RN*V,C + RN*V

end
50 A,B,C = A + lda*RM, B - NB, C + RM * ldb - NB

end end end

Figure 5. Parameterized Terra code that generates a matrix-
multiply kernel optimized to fit in L1.

of the algorithms used in high-performance scientific computing.
However, their performance is dependent on characteristics of the
machine such as cache sizes, vector length, or number of floating-
point machine registers. In our tests, a naı̈ve DGEMM can run over
65 times slower than the best-tuned algorithm.

The ATLAS project [33] was created to maintain high perfor-
mance BLAS routines via auto-tuning. To demonstrate Terra’s use-
fulness in auto-tuning high-performance code, we implemented a
version of matrix multiply, the building block of level-3 BLAS rou-
tines. We restrict ourselves to the case C = AB, with both A and B
stored non-transposed, and base our optimizations on those of AT-
LAS [33]. ATLAS breaks down a matrix multiply into smaller op-
erations where the matrices fit into L1 cache. An optimized kernel
for L1-sized multiplies is used for each operation. Tuning DGEMM
involves choosing good block sizes, and generating optimized code
for the L1-sized kernel. We found that a simple two-level block-
ing scheme worked well. To generate the L1-sized kernel, we use
staging to implement several optimizations. We implement register-
blocking of the inner-most loops, where a block of the output ma-

0

5

10

15

20

25

30

0 5 10 15 20

G
F

L
O

P
S

Matrix Size (in MB)

Peak

MKL
ATLAS

Terra

Naïve
Blocked

(a) DGEMM Performance

0

10

20

30

40

50

60

0 5 10 15 20

G
F

L
O

P
S

Matrix Size (in MB)

Peak
MKL

ATLAS (fixed)

ATLAS (orig.)

Terra

Naïve
Blocked

(b) SGEMM Performance

Figure 6. Performance of matrix multiply using different libraries
as a function of matrix size. Size reported is the total footprint for
both input and output matrices. All matrices are square.

trix is stored in machine registers; we vectorize this inner-most loop
using vector types; and we use prefetch intrinsics to optimize non-
contiguous reads from memory.

The code that implements our L1-sized kernel is shown in
Figure 5. It is parameterized by the blocksize (NB), the amount of
the register blocking in 2 dimensions (RM and RN), the vector size (V),
and a constant (alpha) which parameterizes the multiply operation,
C = alpha*C + A*B. When generating code with a parameterizable
number of variables (e.g., for register blocking) it is sometimes
useful to selectively violate hygiene. Terra provides the function
symbol, equivalent to LISP’s gensym, which generates a globally
unique identifier that can be used to define and refer to a variable
that will not be renamed. We use it on lines 4–9 to generate the
intermediate variables for our computation (symmat generates a
matrix of symbols). On lines 10–20, we generate the code to load
the values of C into registers (loadc), and the code to store them
back to memory (storec). Lines 21–31 load the A and B matrices,
and lines 32–36 generate the unrolled code to perform the outer
product(calcc). We compose these pieces into the L1-sized matrix
multiply function (lines 37–51). The full matrix-multiply routine
(not shown) calls the L1-sized kernel for each block of the multiply.

In Lua, we wrote an auto-tuner that searches over reasonable
values for the parameters (NB, V, RA, RB), JIT-compiles the code,
runs it on a user-provided test case, and choses the best-performing
configuration. Our implementation is around 200 lines of code.

We evaluate the performance by comparing to ATLAS and In-
tel’s MKL on a single core of an Intel Core i7-3720QM. ATLAS
3.10 was compiled with GCC 4.8. Figure 6 shows the results for
both double- and single- precision. For DGEMM, the naı̈ve algo-
rithm performs poorly. While blocking the algorithm does improve
its performance for large matrices, it runs at less than 7% of theo-
retical peak GFLOPs for this processor. In contrast, Terra performs
within 20% of the ATLAS routine, over 60% of peak GFLOPs of
the core, and over 65 times faster than the naı̈ve unblocked code.
The difference between Terra and ATLAS is likely caused by a reg-
ister spill in Terra’s generated code that is avoided in ATLAS’s gen-
erated assembly. Terra is also competitive with Intel’s MKL, which
is considered state-of-the-art. For SGEMM, Terra outperforms the
unmodified ATLAS code by a factor of 5 because ATLAS incurs
a transition penalty from mixing SSE and AVX instructions. Once
this performance bug is fixed, ATLAS performs similarly to Terra.

ATLAS is built using Makefiles, C, and assembly programs gen-
erated with a custom preprocessor. The Makefiles orchestrate the
creation and compilation of the code with different parameters.
Code generation is accomplished through a combination of pre-
processors and cross-compilation written in C. Auto-tuning is per-
formed using a C harness for timing. Different stages communicate
through the file system.

The design of Terra allows all of these tasks to be accomplished
in one system and as a single process. Terra provides low-level
features like vectors and prefetch instructions needed for high-

void diffuse(int N, int b, float* x, float* x0, float* tmp,
float diff, float dt){

int i, j, k; float a=dt*diff*N*N;
for (k = 0; k<= iter; k++){

5 for (j = 1; j <= N; j++)
for (i = 1; i <= N; i++)

tmp[IX(i,j)] = (x0[IX(i,j)] + a*(x[IX(i-1,j)]+
x[IX(i+1,j)]+x[IX(i,j-1)]+x[IX(i,j+1)]))/(1+4*a);

SWAP(x,tmp);
10 }

}

function diffuse (x, x0, diff, dt)
local a=dt*diff*N*N
for k=0,iter do

x = (x0+a*(x(-1,0)+x(1,0)+x(0,-1)+x(0,1)))/(1+4*a)
5 end

return x,x0
end

Figure 7. A kernel from a real-time fluid solver written in C (top)
compared to Orion (bottom).

Reference C 1x (37 sec)
Matching Orion 1x (37 sec)
+ Vectorization 1.9x (20 sec)

+ Line buffering 2.3x (16 sec)

Fluid Simulation:

Separated Area Filter:
Reference C 1x (4.4 ms)

Matching Orion 1.1x (4.1 ms)
+ Vectorization 2.8x (1.6 ms)

+ Line Buffering 3.4x (1.3 ms)

Figure 8. Speedup from choosing different Orion schedules. All
results on Intel Core i7-3720QM, 1024x1024 floating point pixels.

performance. In contrast, ATLAS needed to target x86 directly,
which resulted in a performance bug in SGEMM. Staging annota-
tions made it easy to write parameterized optimizations like register
unrolling without requiring a separate preprocessor. Interoperabil-
ity through the FFI made it possible to generate and evaluate the
kernels in the same framework. Finally, since Terra code can run
without Lua, the resulting multiply routine can be written out as a
library and used in other programs; or, for portable performance, it
can be shipped with the Lua runtime and auto-tuning can be per-
formed dynamically, something that is not possible with ATLAS.

6.2 Orion: A Stencil DSL for Images

To test Terra’s suitability for DSL development, we created Orion, a
DSL for 2D stencil computations on images. Stencil computations
are grid-based kernels in which each value in the grid is dependent
on a small local neighborhood. They are used in image processing
and simulation. They present a number of opportunities for opti-
mization, but implemented like the C code in Figure 7, it is difficult
to exploit the performance opportunities. For example, fusing two
iterations of the outer loop in diffuse may reduce memory traf-
fic, but testing this hypothesis can require significant code changes.
Figure 7 shows the same diffuse operation written in Orion. Rather
than specify loop nests directly, Orion programs are written using
image-wide operators. For instance, f(-1,0) + f(0,1) adds the im-
age f translated by −1 in x to f translated by 1 in y. The offsets
must be constants, which guarantees the function is a stencil.

We base our design on Halide [24], a language for the related
domain of image processing. The user guides optimization by spec-
ifying a schedule. An Orion expression can be materialized, in-
lined, or line buffered. Materialized expressions are computed once
and stored to main memory. Inlined expressions are recomputed
once for each output pixel. Line buffering is a compromise in which

computations are interleaved and the necessary intermediates are
stored in a scratchpad. Additionally, Orion can vectorize any sched-
ule using Terra’s vector instructions. Being able to easily change
the schedule is a powerful abstraction. To demonstrate this, we im-
plemented a pipeline of four simple memory-bound point-wise im-
age processing kernels (blacklevel offset, brightness, clamp, and
invert). In a traditional image processing library, these functions
would likely be written separately so they could be composed in
an arbitrary order. In Orion, the schedule can be changed indepen-
dently of the algorithm. For example, we can choose to inline the
four functions, reducing the accesses to main memory by a factor
of 4 and resulting in a 3.8x speedup.

To implement Orion, we use operator overloading on Lua ta-
bles to build Orion expressions. These operators build an interme-
diate representation (IR) suitable for optimization. The user calls
orion.compile to compile the IR into a Terra function. We then use
Terra’s staging annotations to generate the code for the inner loop.

To test that the code generated by Terra performs well, we
implemented an area filter and a fluid simulation. We compare each
to equivalents hand-written in C. The area filter is a common image
processing operation that averages the pixels in a 5x5 window. Area
filtering is separable, so it is normally implemented as a 1-D area
filter first in Y then in X . We compare against a hand-written
C implementation with results in Figure 8. Given a schedule that
matches the C code, Orion performs similarly, running 10% faster.
Enabling vectorization in Orion yields a 2.8x speedup over C, and
then line buffering between the passes in Y and X yields a 3.4x
speedup. Explicit vectors are not part of standard C, and writing
line-buffering code is tedious and breaks composability, so these
optimizations are not normally done when writing code by hand.

We also implemented a simple real-time 2D fluid simulation
based on an existing C implementation [26]. We made small mod-
ifications to the reference code to make it suitable to a stencil lan-
guage. We converted the solver from Gauss-Seidel to Gauss-Jacobi
so that images are not modified in place and use a zero boundary
condition since our implementation does not yet support more com-
plicated boundaries. We also corrected a performance bug in the
code caused by looping over images in row-major order that were
stored in column-major order. We compare against the corrected
version. With a matching schedule, Orion performs the same as ref-
erence C. Enabling 4-wide vectorization results in a 1.9x speedup
over the matching code, making each materialized operation mem-
ory bound. Finally, line buffering pairs of the iterations of the dif-
fuse and project kernels yielded a 1.25x speedup on the vectorized
code, or a 2.3x total speedup over the reference C code.

A number of features of Terra facilitated the implementation of
Orion. High-level features of Lua made it easy to express transfor-
mations on the Orion IR. Terra’s built-in support of vector types
made it easy to vectorize the compiler by simply changing scalar
types into vectors. Backwards compatibility with C allowed us to
link to an existing library for loading images. The FFI made it pos-
sible to use Lua to implement non-performance-critical code such
as the kernel scheduler, saving development time. Furthermore, the
fluid simulation that we ported included a semi-Lagrangian advec-
tion step, which is not a stencil computation. In this case, we were
able to allow the user to pass a Terra function to do the necessary
computation, and easily integrate this code with generated Terra
code. This interoperability would have been more difficult to ac-
complish with a stand-alone compiler.

In contrast to Orion, Halide, a related image processing lan-
guage, requires three different languages to provide the same func-
tionality as Orion. It uses C++ for the front-end, ML for manipu-
lating the IR, and LLVM for code generation [24]. From our expe-
rience implementing Orion, using Lua to stage Terra code accom-
plishes the same tasks, but results in a simpler architecture.

6.3 Building reuseable components via type reflection

Type reflection makes it possible to define the behavior and lay-
out of types at a low-level. First, we show the flexibility of Terra’s
type reflection by using it to implement a class system with subtyp-
ing. Then we show how it can be applied specifically to building
runtimes for high-performance computing by implementing a type
constructor that can automatically generate a data table with either
array-of-structs or struct-of-arrays layout.

6.3.1 Class Systems

Using type-reflection, we can implement a single-inheritance class
system with multiple subtyping of interfaces similar to Java’s.
We specify classes using an interface implemented in Lua:

J = terralib.require("lib/javalike")
Drawable = J.interface { draw = {} -> {} }
struct Square { length : int; }
J.extends(Square,Shape)

5 J.implements(Square,Drawable)
terra Square:draw() : {} ... end

The function interface creates a new interface given a table of
method names and types. The functions J.extends and J.implements

install metamethods on the Square type that will implement the be-
havior of the class system.

Our implementation, based on vtables, uses the subset of Strous-
trup’s multiple inheritance [27] that is needed to implement single
inheritance with multiple interfaces. For each class, we define a
__finalizelayout metamethod. This metamethod is called by the
Terra typechecker right before a type is examined, allowing it to
compute the layout of the type at the latest possible time. For our
class system, this metamethod is responsible for calculating the
concrete layout of the class, creating the class’s vtable, and creating
vtables for any interface that the class implements. If the user spec-
ified a parent class using J.extends, then the class and its vtables
are organized such that the beginning of each object has the same
layout as an object of the parent, making it safe to cast a pointer to
the class to a pointer to the parent. If the user specified an interface
using J.implements then we create a vtable that implements the in-
terface, and insert a pointer to the vtable in the layout of the class.
Finally, for each method defined on class, we create a stub method
to invoke the real method through the class’s vtable:

for methodname,fn in pairs(concretemethods) do
local fntype = fn:gettype()
local params = fntype.parameters:map(symbol)
local self = params[1]

5 class.methods[methodname] =
terra([params]) : fntyp.returns
return self.__vtable.[methodname]([params])

end
end

At this point, child classes can access the methods and members of
a parent class, but the Terra compiler will not allow the conversion
from a child to its parent or to an interface. To enable conversions,
we create a user-defined conversion that reflects the subtyping rela-
tions of our class system (e.g., &Square <: &Shape). We implement
the conversion generically by defining a __cast metamethod:

class.metamethods.__cast = function(from,to,exp)
if from:ispointer() and to:ispointer() then

if issubclass(from.type,to.type) then

return 8[to](exp) --cast expression to ‘to’ type
5 elseif implementsinterface(from.type,to.type) then

local imd = interfacemetadata[to.type]

return 8&exp.[imd.name] --extract subobject
end end
error("not a subtype")

10 end

Since the beginning of a child class has the same layout as its par-
ent, we can convert a child into a parent by simply casting the ob-
ject’s pointer to the parent’s type ([to](exp)). Converting an object
to one of its interfaces requires selecting the subobject that holds
the pointer to the interface’s vtable (&exp.[imd.name]). The stubs
generated for the interface restore the object’s pointer to the origi-
nal object before invoking the concrete method implementation.

We measured the overhead of function invocation in our imple-
mentation using a micro-benchmark, and found it performed within
1% of analogous C++ code. The implementation requires only 250
lines of Terra code to provide much of the functionality of Java’s
class system. Users are not limited to using any particular class sys-
tem or implementation. For instance, we have also implemented a
system that implements interfaces using fat pointers that store both
the object pointer and vtable together.

6.3.2 Data Layout

Terra’s type reflection should help programmers build reusable
components in high-performance runtimes. One common prob-
lem in high-performance computing is choosing between storing
records as an array of structs (AoS, all fields of a record stored con-
tiguously), or as a struct of arrays (SoA, individual fields stored
contiguously). We implement a solution to this problem, and con-
trast it with existing languages.

Changing the layout can substantially improve performance. We
implemented two micro-benchmarks based on mesh processing.
Each vertex of the mesh stores its position, and the vector normal
to the surface at that position. The first benchmark calculates the
vector normal as the average normal of the faces incident to the
vertex. The second simply performs a translation on the position
of every vertex. Figure 9 shows the performance using both AoS
and SoA form. Calculating vertex normals is 55% faster using AoS
form. For each triangle in the mesh, positions of its vertices are
gathered, and the normals are updated. Since this access is sparse,
there is little temporal locality in vertex access. AoS form performs
better in this case since it exploits spatial locality of the vertex
data — all elements of the vertex are accessed together. In contrast,
translating vertex positions is 43% faster using SoA form. In this
case, the vertices are accessed sequentially, but the normals are not
needed. In AoS form these normals share the same cache-lines as
the positions, and memory bandwidth is wasted loading them.

To facilitate the process of choosing a data layout in Terra,
we implemented a function that can generate either version, but
presents the same interface. A Lua function DataTable takes a Lua
table specifying the fields of the record and how to store them (AoS
or SoA), returning a new Terra type. For example, a fluid simulation
might store several fields in a cell:

FluidData = DataTable({ vx = float, vy = float,
pressure = float, density = float },"AoS")

The FluidData type provides methods to access a row (e.g.,
fd:row(i)). Each row can access its fields (e.g., r:setx(1.f),
r:x()). The interface abstracts the layout of the data, so it can
be changed just by replacing "AoS" with "SoA".

This behavior can be emulated ahead-of-time in low-level lan-
guages, for example using X-Macros [19] in C, or template meta-
programming in C++, but unlike Terra cannot be generated dy-
namically based on runtime feedback. Dynamic languages such as
Javascript support this ad hoc creation of data types dynamically
but do not provide the same low-level of control.

7. Related Work

Much work on multi-stage programming has focused on homoge-
neous meta-programming [22, 29, 30]. MetaML [30] and MetaO-
Caml [29] add staging annotations to ML. Staged code is lexi-

Benchmark Array-of-Structs Struct-of-Arrays
Calc. vertex normals 3.42 GB/s 2.20 GB/s

Translate positions 9.90 GB/s 14.2 GB/s

Figure 9. Performance of mesh transformations using different
data layouts.

cally scoped, and a type system ensures that the annotations can
only produce well-typed programs. MetaHaskell is an extension
of Haskell for heterogeneous meta-programming that supports em-
bedding new object languages while ensuring that the staging is
type-safe [18]. Unlike Terra, the object languages implemented in
MetaHaskell do not share Haskell’s lexical environment and are
currently unhygienic. Eckhardt et al. propose implicit heteroge-
neous programming in OCaml with a translation into C [10] but
the type language is limited to basic types and arrays. In contrast
to statically-typed approaches, Terra supports the creation of user-
defined types using arbitrary code but precludes static typing of the
full Lua-Terra program.

Heterogeneous multi-stage languages with shared lexical scope
and different execution environments have occurred organically in
the past [10, 32]. Separating compile-time and runtime-time envi-
ronments has also been used to make macro expansion compos-
able [11]. To our knowledge, we are the first to argue for these de-
sign choices as a way to generate portable high-performance code,
retaining interoperability through an optional FFI.

Multi-stage programming has been used to generate high-
performance programs [12, 23, 33]. Carette investigates staging
of Gaussian elimination in MetaOCaml [5], while Cohen et al. in-
vestigate applying MetaOCaml to problems in high-performance
computing like loop unrolling/tiling and pipelining [8]. This work
has focused on using staging to improve the performance of spe-
cific problems. More generally, Chafi et al. use lightweight modular
staging [25]—a type-directed staging approach that can be imple-
mented as a library—to stage a subset of the Scala language. The
staged code is used to implement DSLs in the Delite framework
that can be translated to run on GPUs [4, 7]. Additionally, In-
tel’s ArBB enables runtime generation of vector-style code using
a combination of operator overloading and macros in C++ [21].
In contrast to Terra, ArBB and Delite do not have explicit staging
annotations, instead relying on types to distinguish object-language
expressions from meta-language ones. In practice we have found
that this type-directed staging makes it difficult to know when code
will execute.

The macro systems of Lisp and Scheme have also been used to
build DSLs. In particular, Racket [31] provides an interface to the
static semantics of the language using macros. Using this interface
they implement a typed variant of Racket, as well as other DSLs.
The macro system is used to translate typed Racket to standard
Racket with a few extensions to support unchecked access to fields.
Terra, by contrast, is implemented as a separate language from Lua,
which allows for different design decisions in each (e.g., automatic
memory management in Lua, manual management in Terra).

Previous work examined the combination of staging and type re-
flection for statically-typed languages. Template meta-programming
in C++ is widely used and allows generation and introspection on
types. Garcia and Lumsdaine describe a core calculus for compile-
time meta-programming based on template meta-programming in
C++ [13]. Similar to Terra, their semantics support code generation
and type reflection, but like C++ they focus only on ahead-of-
time code generation. F# allows type-providers which can specify
types and methods based on external data like a SQL schema [28].
Metaphor is a multi-stage language with support for type reflection
on a built-in class system [20]. In contrast, Terra’s type reflection
allows the creation of class-systems as libraries.

Dynamic languages have added extensions to produce low-level
code. Cython is an extension to the Python language that allows
the creation of C extensions while writing in Python’s syntax [3].
Copperhead supplements Python with a vector-style language that
can run on GPUs [6]. In both cases, the low-level code depends on
the Python runtime to execute.

Other languages have been proposed as a portable target for
low-level code [16, 17]. Terra is also usable directly as a low-level
programming language, making it possible to write runtime code
in Terra.

8. Discussion and Future Work

We have presented Terra, a staged language embedded in Lua
and designed for high-performance computing. By comparing to
existing multi-language systems, we have shown that the combi-
nation of high- and low-level languages, shared lexical environ-
ment, separate execution, and type reflection make designing auto-
tuners, DSLs, and runtime components simpler, while retaining
high-performance.

We plan to extend Terra in several ways. Accelerators like GPUs
or Intel’s MIC architecture provide more performance for data-
parallel problems. We plan to extend our implementation so that
Terra can generate code that runs on these architectures. Currently
Terra does not provide a seamless way to mix Terra code compiled
ahead-of-time with dynamically compiled code, which can be prob-
lematic for DSLs with a large runtime. We plan to address this with
a module system that will allow some code to be generated ahead-
of-time, while still allowing JIT compilation of code at runtime.

Terra addresses the problem of generating high-performance
code and interoperating with existing applications. We want to gen-
eralize the way Terra is embedded and staged to make it easy to em-
bed custom DSLs in Lua in the same way that Terra is embedded.
In particular, we think that having DSLs share the same lexical en-
vironment during compilation will open up more opportunities for
interoperability between different languages. In the future, we en-
vision a programming ecosystem where the right language can be
used for a particular task without loss of performance, or significant
effort to integrate the language with existing systems.

Acknowledgments This work has been supported by the DOE Of-
fice of Science ASCR in the ExMatEx and ExaCT Exascale Co-
Design Centers, program manager Karen Pao; DARPA Contract
No. HR0011-11-C-0007; and the Stanford Pervasive Parallelism
Lab (supported by Oracle, AMD, Intel, and NVIDIA). Any opin-
ions, findings and conclusion or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of DARPA. We thank our reviewers for suggesting improve-
ments to specialization.

References

[1] The LuaJIT project. http://http://luajit.org/.

[2] A. Bawden and J. Rees. Syntactic closures. In LFP, 1988.

[3] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and
K. Smith. Cython: The best of both worlds. Computing in Science

and Engineering, 13.2:31–39, 2011.

[4] K. J. Brown, A. K. Sujeeth, H. J. Lee, T. Rompf, H. Chafi, M. Odersky,
and K. Olukotun. A heterogeneous parallel framework for domain-
specific languages. In PACT, 2011.

[5] J. Carette. Gaussian elimination: A case study in efficient genericity
with MetaOCaml. Sci. Comput. Program., 62(1):3–24, Sept. 2006.

[6] B. Catanzaro, M. Garland, and K. Keutzer. Copperhead: Compiling
an embedded data parallel language. In PPoPP, 2011.

[7] H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya, and
K. Olukotun. A domain-specific approach to heterogeneous paral-
lelism. In PPoPP, 2011.

[8] A. Cohen, S. Donadio, M. Garzaran, C. Herrmann, and D. Padua. In
search of a program generator to implement generic transformations
for high-performance computing. In MetaOCaml Workshop, 2004.

[9] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M. Barrien-
tos, E. Elsen, F. Ham, A. Aiken, K. Duraisamy, E. Darve, J. Alonso,
and P. Hanrahan. Liszt: A domain specific language for building
portable mesh-based PDE solvers. In SC, 2011.

[10] J. Eckhardt, R. Kaiabachev, E. Pasalic, K. Swadi, and W. Taha. Im-
plicitly heterogeneous multi-stage programming. New Gen. Comput.,
25(3):305–336, Jan. 2007.

[11] M. Flatt. Composable and compilable macros: You want it when? In
ICFP, 2002.

[12] M. Frigo and S. Johnson. The design and implementation of FFTW3.
Proc. of the IEEE, 93(2):216 –231, 2005.

[13] R. Garcia and A. Lumsdaine. Toward foundations for type-reflective
metaprogramming. In GPCE, 2009.

[14] R. Ierusalimschy, L. H. de Figueiredo, and W. C. Filho. Lua - an
extensible extension language. Software: Practice and Experience, 26
(6), 1996.

[15] R. Ierusalimschy, L. H. De Figueiredo, and W. Celes. Passing a
language through the eye of a needle. CACM, 54(7):38–43, 2011.

[16] S. Jones, T. Nordin, and D. Oliva. C--: A portable assembly language.
In Workshop on Implementing Functional Languages, 1997.

[17] C. Lattner and V. Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In CGO, 2004.

[18] G. Mainland. Explicitly heterogeneous metaprogramming with meta-
haskell. In ICFP, 2012.

[19] R. Meyers. X macros. C/C++ Users J., 19(5):52–56, May 2001.

[20] G. Neverov and P. Roe. Metaphor: A multi-staged, object-oriented
programming language. In GPCE, 2004.

[21] C. Newburn, B. So, Z. Liu, M. McCool, A. Ghuloum, S. Toit, Z. G.
Wang, Z. H. Du, Y. Chen, G. Wu, P. Guo, Z. Liu, and D. Zhang.
Intel’s Array Building Blocks: A retargetable, dynamic compiler and
embedded language. In CGO, 2011.

[22] M. Poletto, W. C. Hsieh, D. R. Engler, and M. F. Kaashoek. C and tcc:
A language and compiler for dynamic code generation. TOPLAS, 21
(2):1999.

[23] M. Püschel, J. M. F. Moura, B. Singer, J. Xiong, J. Johnson, D. Padua,
M. Veloso, and R. W. Johnson. Spiral: A generator for platform-
adapted libraries of signal processing algorithms. Int. J. High Perform.

Comput. Appl., 18(1):2004.

[24] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Amarasinghe, and
F. Durand. Decoupling algorithms from schedules for easy optimiza-
tion of image processing pipelines. In SIGGRAPH, 2012.

[25] T. Rompf and M. Odersky. Lightweight modular staging: A pragmatic
approach to runtime code generation and compiled DSLs. In GPCE,
2010.

[26] J. Stam. Real-time fluid dynamics for games. In GDC, 2003.

[27] B. Stroustrup. Multiple inheritance for C++. In European Unix

Systems Users’s Group Conference, 1987.

[28] D. Syme, K. Battocchi, K. Takeda, D. Malayeri, J. Fisher, J. Hu, T. Liu,
B. McNamara, D. Quirk, M. Taveggia, W. Chae, U. Matsveyeu, and
T. Petricek. F#3.0 – Strongly-typed language support for internet-scale
information sources. Technical report, 2012.

[29] W. Taha. A gentle introduction to multi-stage programming. In
Domain-Specific Program Generation, 2004.

[30] W. Taha and T. Sheard. MetaML and multi-stage programming with
explicit annotations. In Theoretical Computer Science, 1999.

[31] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, and
M. Felleisen. Languages as libraries. In PLDI, 2011.

[32] Z. Wan, W. Taha, and P. Hudak. Real-time FRP. In ICFP, 2001.

[33] R. C. Whaley and A. Petitet. Minimizing development and mainte-
nance costs in supporting persistently optimized BLAS. Softw. Pract.

Exper., 35(2):101–121, 2005.

