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ABSTRACT

Audio stories are an engaging form of communication that
combine speech and music into compelling narratives. Ex-
isting audio editing tools force story producers to manipu-
late speech and music tracks via tedious, low-level waveform
editing. In contrast, we present a set of tools that analyze the
audio content of the speech and music and thereby allow pro-
ducers to work at much higher level. Our tools address several
challenges in creating audio stories, including (1) navigating
and editing speech, (2) selecting appropriate music for the
score, and (3) editing the music to complement the speech.
Key features include a transcript-based speech editing tool
that automatically propagates edits in the transcript text to the
corresponding speech track; a music browser that supports
searching based on emotion, tempo, key, or timbral similar-
ity to other songs; and music retargeting tools that make it
easy to combine sections of music with the speech. We have
used our tools to create audio stories from a variety of raw
speech sources, including scripted narratives, interviews and
political speeches. Informal feedback from first-time users
suggests that our tools are easy to learn and greatly facilitate
the process of editing raw footage into a final story.
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INTRODUCTION

Audio stories are an engaging form of communication that
are commonly heard in podcasts, radio programs and audio-
books. But, creating a compelling audio story requires care-
ful editing and production. Starting from the raw recorded
speech, experienced producers select and combine the most
salient content and then refine individual sentences to im-
prove the phrasing and rhythms of the speech. Many au-
dio stories also include a musical score that plays under the
speech. Producers choose music that enhances the emotion
of the story and then adjust the length and volume of musical
sections to both complement and emphasize key moments in
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the speech. In short, creating an effective audio story requires
making a number of high-level editing and design decisions
that together define the narrative arc and emotional tone of
the story [7, 8, 20, 24, 33].

Most existing audio editing systems provide all of the func-
tionality necessary to support such editing and production
tasks. However, these systems force producers to manipulate
the speech and music at the level of the audio waveform. As
a result producers must map their high-level story editing and
design goals onto a sequence of low-level editing operations
— e.g. selecting, trimming, cutting and moving sections of a
waveform. Manually applying each of these low-level edits
is often tedious and usually very time-consuming.

In this paper we present a set of tools that analyze the au-
dio content of raw speech and music tracks and thereby al-
low producers to work at a much higher level. Our tools ad-
dress challenges that span the process of creating audio sto-
ries, from (1) navigating and editing speech, to (2) select-
ing appropriate music for the score, and (3) editing the music
to complement the speech. Using these tools the producer
can focus on developing the content and emotion of the story
while our system automatically applies the appropriate low-
level operations on the audio waveforms.

Our audio editing system includes the following key features:

Transcript-based speech editing. To help producers navi-
gate and edit raw speech recordings, our interface includes
a transcript view of each speech track. As in previous
transcript-based speech editing systems [10, 14, 40], produc-
ers can directly modify the transcript text, and our system
propagates the corresponding edits to the speech waveform.
However, unlike previous systems, our transcript view groups
similar sentences, so that the producer can quickly listen to
different versions of a line and insert the best one into the
story. The transcript view also marks pauses and breaths in
the speech to help the producer refine phrasings while main-
taining a natural sounding rhythm.

Multi-feature music browsing. To help producers find the
appropriate music to score a story, our system includes a mu-
sic browser that supports searching for songs based on several
different features, including emotional characteristics, tempo,
key, or a crowdsourced set of keywords associated with the
music. In some cases, a producer may need several different
songs that sound similar to form a coherent score that does
not sound repetitive. For these situations, our browser pro-
vides a similarity search that takes a single song as input and
finds other songs that are similar in timbre.

Structure-based music editing. To help producers integrate
music into a story, our system includes two types of music
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Figure 1. Our editing interface features two views of each speech track: a traditional waveform view, and a text-based transcript view.

editing tools that make it easy to retarget music to fit the
speech. Our simple music retargeting tool allows the pro-
ducer to interactively extend or shorten a section of music
while maintaining a natural sounding result. Our constrained
retargeting tool automatically restructures a song to match a
desired length while also highlighting one or more emphasis
points in the speech.

We have used our tools to create audio stories from a variety
of speech sources, including scripted narratives, interviews,
and presidential speeches. We also report on informal evalu-
ation where we asked users to create audio stories from raw
speech recordings using our system. The results demonstrate
that our tools enable first-time users to produce high-quality
stories that contain a variety of edits to raw speech and mu-
sic. User feedback suggest that our tools are easy to learn and
greatly facilitate the production of audio stories.

RELATED WORK

Traditional digital audio workstations (DAWSs) like Adobe
Audition [1] and Avid ProTools [2] allow producers to edit
waveforms in a multi-track timeline interface. These sys-
tems provide a wide variety of low-level signal processing
tools [11, 13, 28, 44] for manipulating audio waveforms, but
their interfaces are very complex. Moreover, because they are
designed to serve as general-purpose audio production sys-
tems, they include many features that are not directly relevant
for creating audio stories.

Hindenburg Systems [5] develops tools that are designed
specifically for producing audio stories, stripping away much
of the complexity of full-fledged DAWs while simplifying
common tasks in audio journalism like managing the relative
volume levels of the speech and music tracks. Despite these

usability improvements, Hindenburg still adheres to the stan-
dard waveform-based metaphor of audio editing and forces
producers to directly edit the waveform.

Researchers have investigated several alternatives to direct
waveform-based navigation and editing. Barthet et al. [9]
segment podcasts into speech and music so that listeners can
jump to the different sections. Fazekas et al. [17] split songs
into verse and chorus to similarly enable quick navigation. In
the context of video editing, researchers have developed tools
that leverage higher-level structural annotations. Davis [15]
proposes video editing tools that make extensive use of meta-
data (e.g. camera settings and semantic annotations) to de-
scribe the content of the raw footage. Users can then browse
and rearrange the footage through an iconic representation of
the metadata. Li et al. [25] enable faster browsing of video
clips by automatically marking shot boundaries and enabling
pitch-preserving rapid audio playback. Likewise, Girgensohn
et al. [19] present a system that automatically filters out un-
suitable video clips based on an analysis of the camera mo-
tion. Unlike these systems, our work focuses on using a tran-
script of the speech track to navigate and edit audio stories.

We build on several previous techniques for text-based nav-
igation and editing. Whittaker and Amento [40] show that
users strongly prefer editing voicemail through a transcript
instead of a waveform, even when automatic speech recog-
nition produces significant errors in the transcript. How-
ever, because they focus on voicemail recordings, their work
did not investigate how to produce high-quality edited out-
put. Casares et al. [14] and more recently, Berthouzoz et
al. [10] present video editing systems that include speech-
aligned transcript editors to enable more efficient navigation
and editing of video. We extend this approach to the do-



main of audio editing and provide a number of additional
transcript-based editing tools (e.g. grouping similar sentences
and editing breaths).

Researchers have also developed tools for browsing large col-
lections of music based on a variety of low-level features (i.e.,
tempo, timbre, volume, etc.) [26, 31, 30]. However, these
tools are designed to serve as general-purpose music browsers
for music discovery and designing playlists. None of them in-
tegrate into an audio editing system.

Example-based music synthesis and retargeting is an active
area of research [22]. Lu et al. [29] describe a method for
generating audio textures that takes an audio track as input
and reshuffles its frames to generate a similar-sounding track.
Zils and Pachet’s [43] Musical Mosaicing system synthesizes
a target waveform by sequencing snippets from a database
of music. The EchoNest, a company that provides a robust
API for music analysis, has demonstrated tools for extracting
the structure of a song and then retargeting it to play indefi-
nitely [23, 39]. In concurrent work, Wenner et al. [38] have
developed a music retargeting algorithm that preserves user-
specified constraints. Our music retargeting tools similarly
consider the structure of a music track to extend or shorten
it in a natural sounding manner. However, unlike previous
techniques we also impose retargeting constraints based on
combined features of the music and speech tracks.

AUDIO EDITING INTERFACE

We have developed a set of tools that are designed to help
producers edit raw speech and music tracks into audio stories.
We first describe the interface to these tools (Figure 1) and
then present the content-based analysis algorithms that enable
each tool in the ALGORITHMIC METHODS section.

Transcript-based speech editing

The producer starts by loading raw speech tracks into the edit-
ing interface. In Figure 1, the producer is editing the two
tracks of an interview between Ben Manilla and recording
artist Bettye Lavette. Our system displays two different views
of each track: the timeline view shows the audio waveform,
and the transcript view shows the corresponding text. Each
speaker’s transcript appears in a separate column of the tran-
script view and the text alternates between the columns as the
speakers talk back and forth.

Each transcript is time-aligned with the corresponding wave-
form, so that selections and edits made to the text are re-
flected in the waveform and vice versa. All edit operations
(i.e. cut, copy, paste, delete) in the transcript view occur at
the word level (Figure 2). Our system snaps selections to the
nearest word boundary to prevent the producer from breaking
words into fragments. The transcript view helps the producer
quickly navigate to specific parts of a speech track and edit
the content of the story.

With interviews it is essential for the speech tracks to stay in
sync with one another as the producer makes edits. Our sys-
tem provides a linked editing mode that automatically main-
tains such synchronization. If the producer deletes part of a
track for one speaker, our system deletes the corresponding
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Figure 2. The transcript view allows producers to edit the story at the
word level. This view marks cuts, breaths, pauses, repeated and unnec-
essary words, and similar sentences, all of which enable the producer to
quickly edit the speech.

region from the waveform and transcript of all linked tracks.
Similarly if the producer inserts text into the transcript of
one speaker, our system inserts background room tone into
the corresponding regions for the linked speakers. Producers
usually capture room tone at the start of a recording session
and our system automatically treats relatively silent segments
from the beginning of the track as room tone.

Speakers often record multiple versions (or takes) of the same
sentence to try variations in voicing or wording. Producers
must then choose the most appropriate take for the story. Our
system analyzes the transcript to identify retakes and under-
lines sentences in the transcript view for which similar al-
ternatives are available. Clicking on the underline opens a
drop-down showing the similar alternatives (Figure 2). The
producer can listen to any of these takes and select her fa-
vorite without having to search for retakes through the entire
raw recording.

After editing together a rough cut of the raw tracks, the pro-
ducer next focuses on refining individual sentences to im-
prove the flow of the speech. Our system identifies ‘uhs’,
‘ums’ and repeated words and highlights them in red so that
the producer can easily delete them (Figure 2).

The transcript view also explicitly marks the breaths and
pauses that occur in each speech track (Figure 2). These to-
kens help the producer maintain the natural patterns of speech
as she edits the story. For example, speakers typically take
a breath and pause for a moment before uttering each new
sentence [7]. After rearranging sentences in the transcript
view the producer can immediately check that the breath-
pause combination occurs between sentences. The producer
can also split a long sentence into two sentences by typing a
(‘) in the transcript view, and our system automatically in-
serts the breath-pause combination before the next sentence.
Finally, the producer can manually add or remove breaths and
pauses as necessary. Pauses often serve to emphasize the pre-
ceding speech and give the listener time to reflect on what was
said. Thus, the producer may choose to insert pauses at dif-
ferent points in the speech, to emphasize particular thoughts
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Figure 3. The music browser allows producers to filter by emotion, find
similar sounding songs, and sort by low-level feature.

that the speaker may have originally rushed through. The de-
fault pause length is 250 ms, and the producer can manually
adjust its length as necessary. Our system fills the pause with
background room tone.

Multi-feature music browsing

Producers often add a musical score to an audio story in order
to emphasize specific moments or emotions [7, 8]. To help
producers find the appropriate music, our system provides a
music browser (Figure 3). By default, our browser includes a
collection of 90 songs that are commonly used in radio sto-
ries, but the producer can add other songs to the browser as
well. Each song listing includes a ‘»’ button, to play a snippet
of the song. When the producer finds a song that she likes, she
uses the ‘4’ button to add the song to the local music library,
which appears to the right of the transcript view (Figure 1). If
the producer has a specific song in mind, she simply searches
for the song by name. Otherwise, the producer can search for
music in several different ways.
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their emotion. Specifically, we use
Russell’s circumplex model of ‘va-
lence’ and ‘arousal’ to measure the
emotion of the songs [36]. Valence ranges from “misery” to
“pleasure,” and arousal ranges from “sleepy” to “activated.”
With our browser, the producer can filter the music to only
see songs that corresponds to one of the four quadrants of the
valence/arousal plane (Figure 4). For example, to find happy
and upbeat music, the producer can select the high valence,
high arousal quadrant Q1.

Figure 4. Russell’s circum-
plex model of emotion.

Finding similar-sounding music

In some cases, the producer may wish to find a few different
songs that all sound similar in order to form a musical score
that is coherent but does not repeat songs. Using our browser,
the producer first finds one song that she likes and then clicks
the ‘~’ button. The browser then sorts the library to show the

songs that are closest in timbre to the selected song. Timbre
reflects the instrumentation of a song and we have found it to
be a good indicator sound similarity.

Searching by feature

Our browser also lets producers sort the music based on
several low-level features that we compute from the music:
tempo, mode (major or minor key), and danceability (a fea-
ture from The EchoNest [4]). For example, if the producer
is looking for an up-tempo song for her story, she can sort in
descending order based on tempo and listen to songs starting
from the top of the list.

Searching by keyword

Producers can also search for music using descriptive key-
words (e.g., find chill music). To support this type of search,
our browser retrieves tags that have been assigned to songs
by users of last.fm [6], a music-tracking social network with
~50 million registered users and information on ~45 million
songs. Thus, the producer can simply type chill into a search
box to find all the music that has been tagged with this key-
word.

Structure-based music editing

Once the producer has added songs to the local music library,
the next step is to combine the music with the speech track.
We provide standard waveform-based editing tools that allow
the producer to add a song to the timeline, trim and reposition
it as necessary, and specify a spline to control the volume.
However, we also provide a set of higher level tools that help
the producer retarget music (i.e. extend or shorten it) to match
the length of a corresponding speech segment.

Simple music retargeting

At times producers may find a segment of music that is appro-
priate for a particular section of the speech, but is the wrong
length. If the music is too short, the producer first select the
subsegment she would like to extend and then clicks the ‘O’
button that appears on the waveform. Our system automat-
ically extends the music by adding a seamless loop to the
selected subsegment. The producer can click this button as
many times as necessary to bring the music to the desired
length (Figure 5). In order to minimize repetition in the mu-
sic, our system finds and adds the longest loop that occurs

Jon Brion - Coincidences x
————— Original loop
Added loops
Before
Jon Brion - Coincidences o

After — looped 3 times

Figure 5. A musical segment before and after simple retargeting. Our
tool finds a loop in the orginal segment (before) and in this case the pro-
ducer repeats the loop three times in the final segment (after).



within the selected subsegment. Likewise, if the music is too
long, the producer can click the ‘®’ button to remove audio
from the selected subsegment.

Constrained music retargeting

Music usually contains a small set of change points that mark
significant transitions in timbre, harmonic structure, or vol-
ume. Producers often emphasize a moment in the story by
adding a musical underlay that aligns a music change point
with an important point in the speech. Such underlays fade
in the music before the emphasis point in the speech, then
pauses the speech while the music solo plays at full volume,
and finally fades out the music as the speech resumes. Ru-
bin et al. [34] recently showed how to automatically detect
change points in music and presented a semi-automated tool
for creating a musical underlay that aligns one change point
with one speech emphasis point. Our system includes this
functionality — the producer marks an emphasis point in the
speech, selects a song, and the system automatically produces
the underlay.

In some cases, however, the producer may wish to use a sin-
gle piece of music to continuously score a section of speech
containing multiple speech emphasis points (Figure 6). In this
situation the producer must align each emphasis point with a
different music change point without stopping the music. Yet,
the time between music change points rarely matches the time
between speech emphasis points. Given multiple emphasis
points and a song, our system automatically retargets the mu-
sic by analyzing its structure and generating a new version
that meets the alignment constraints.

ALGORITHMIC METHODS
Our audio editing tools all rely on algorithms that analyze the
content of the raw speech and music tracks.

Obtaining the transcript

We obtain a transcript of the raw speech tracks using the
crowdsourced transcription service, CastingWords.com [3].
It costs $1.00-$2.50 per minute of audio, depending on the
desired turnaround time. By default the service produces
sanitized transcripts that excludes words like ‘uh’, ‘um’, ‘so’
etc. However, our audio editor is designed to highlight such
words in the transcript and let producers decide whether or
not to remove them. Therefore we specify that the transcrip-
tion service should produce verbatim transcripts. While auto-
matic speech recognition software is continually improving,
we have found that they cannot match the quality of crowd-
sourced transcription.

Aligning the transcript to the speech track

Once we have obtained the verbatim transcript of the speech
track, we align it to the audio using the Penn Phonetics
Lab Forced Aligner (P2FA) [42], which is built on the
HTK (HMM toolkit) speech recognition software [41]. This
aligner computes perceptual linear prediction (PLP) features
to model each phoneme in the speech audio and applies a dic-
tionary of word-to-phoneme translations on the text. It then
uses the Viterbi algorithm for hidden Markov models to com-
pute the maximum likelihood alignment between the speech

and transcript. The aligner also inserts “pause” tokens into
the transcript when there is a silent gap in the speech.

In practice we have found that transcripts frequently contain
some words that are not in the P2FA word-to-phoneme dic-
tionary (e.g. proper names, jargon, etc.). Therefore, we have
extended the P2FA algorithm so that whenever it encounters
such an unknown word, it uses the CMU Sphinx Knowledge
Base Tool [35] to algorithmically determine the word’s pro-
nunciation. Although the resulting phonemes may be incor-
rect, we have found that the aligner is far more accurate when
it has phonemes for every word in the transcript than when it
is missing phonemes for some words.

Detecting breaths

Audible breaths are subtle but important elements in the nat-
ural thythm of speech. The P2FA tool contains a model of
breaths and can successfully align transcripts that contain ex-
plicit tokens indicating breaths. However, our crowdsourced
transcripts do not indicate breaths because it is difficult for
human transcribers to detect them reliably. Nevertheless we
have developed an automated procedure that uses the initial
transcript alignment and P2FA to detect breaths.

We assume that breaths can only occur in the segments al-
ready labeled as pauses in the initial alignment. Using P2FA
we align each pause with a transcript containing a single
breath token. The aligner returns a score indicating its con-
fidence that the alignment is correct. If the score is greater
than an empirically chosen threshold and the detected breath
is longer than 100 ms then we accept the alignment and insert
the breath token into the transcript.

If the producer manually adds a breath to the transcript we
randomly select one of the detected breaths and insert the cor-
responding breath waveform into the timeline.

Detecting multiple takes of a sentence

Speakers sometimes record multiple takes of a sentence one
after another. At other times they revisit lines later in a record-
ing session. To identify such re-takes we cluster all of the
sentences in the transcript so that each cluster contains all
variations of a given sentence in the raw recording.

To build these clusters we first compute the similarity be-
tween each pair of sentences in the transcript using the Lev-
enshtein string edit distance. If the edit distance is less than
a threshold o« we mark the pair as similar. Because the edit
distance depends on the length of the strings, we have found
that setting « to half the length of the longer sentence works
well in practice. Intuitively, this threshold allows sentences
marked as similar, to differ in about half of their characters.
We then treat each sentence as a node in a graph and add an
edge between each pair of similar sentences. Each connected
component of this graph forms a cluster of similar sentences.
When a producer clicks on an underlined sentence in the tran-
script view we show all of the sentences in the corresponding
similarity cluster as the alternate takes.

Multi-feature music browsing
Our music browser contains a collection of songs and pro-
vides a set of tools designed to help producers quickly find
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appropriate music for scoring their audio stories. It relies on a
set of five features (tempo, mode, danceability, timbre and va-
lence/arousal) that characterize different aspects of each song
in the collection.

We compute tempo and mode (major or minor key) using
standard algorithms from music information retrieval and sig-
nal processing [16]. For the danceability feature we query
the EchoNest [4] web service. They describe this feature
as a combination of beat strength, tempo and tempo vari-
ability. We compute the timbre feature using mel-frequency
cepstral coefficients (MFCCs) [27], which analyze the spec-
tral characteristics of the song. For each song, we compute
one 13-dimensional MFCC feature for a 15 second frame
that begins 30 seconds into the song. Since MFCCs are
a high dimensional feature we don’t directly expose them
to the producer. Instead when the producer searches for
similar-sounding songs using the ‘2’ button we compute the
nearest songs based on the Euclidean distance between their
MEFCCs. To support fast nearest-neighbor lookups, we store
the MFCCs in a k-d tree.

The emotional controls in our browser filter songs based on
the quadrants of the valence/arousal plane in Russell’s cir-
cumplex model of affect [36] (Figure 4). Valence/arousal
values are based on human perception, and can vary from
person to person, so there is no direct way to compute
them. Instead, following Schmidt et al. [37], we use a ma-
chine learning approach to estimate the valence/arousal for
each song. The MoodSwings Turk dataset [37] contains a
set of songs with corresponding valence/arousal values that
were collected from workers on Amazon Mechanical Turk.
We compute MFCCs for each of these songs and then per-
form multiple linear regression to build a mapping from the
MEFCC:s to valence/arousal. Given a new song from our col-
lection we first compute its MFCCs and then apply the re-
gression model to predict valence/arousal values.

Structure-based music editing

Our interface allows the producer to extend or shorten a seg-
ment of music while preserving the local, beat-level struc-
ture of the song. To enable such music retargeting we first
segment the song into beats using the approach of Ellis and
Poliner [16]. We then consider how the beats are related to
one another. A transition from beat m; to beat m;;; sounds
natural because it respects the original progression of the mu-
sic. To estimate whether a transition from beat m; to beat
m; where j # i 4 1, would sound natural, we follow the ap-
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Figure 7. For simple music retargeting, we lengthen music by finding
low cost transitions to earlier beats in the music. The producer can click
a button to repeat such loops in the track. To shorten music, we find low
cost transitions to later beats. The producer can than choose to delete
the in-between beats.

proach of Jehan and Sundram [23] and compute a transition
cost matrix 7" such that

Dp(mit1,m;) n
on

Dy(miy1,my;)

T;; = p
where Djp(m;,m;) is the Euclidean distance between the
chroma features [16] (a measure of harmonics) for beats
m; and m; and Dy(m;, m;) is the distance between their
MEFCCs, while o0}, and o; are the standard deviations across
all of the harmonic and timbre distances, respectively. En-
tries in this transition cost matrix are low for beats m; and
m; if the timbre and harmonic features of beat m; are close
to the corresponding features of beat m; ;. Thus, a low cost
suggests a natural sounding transition.

We use this transition cost matrix 7" to enable simple and con-
strained music retargeting.

Simple music retargeting

In simple retargeting the producer can press a button to ex-
tend a segment of music by adding a loop to it. As shown
in Figure 7, given a music segment from beat m, to beat m;
we look for beats m; and m; such thata < 7 < j < b and
the transition cost from m; to m; is low (i.e. T;; < 0). A
low transition cost ensures that playing the music from beat
m; to beat m; and then looping back to m; sounds natural.
In music, longer loops are often less noticeable and therefore
we look for the m; and m; that maximize j — ¢ subject to the
other constraints.

We tune the cost threshold 6 to trade-off between finding
more loops with higher average cost (high ) or fewer loops
with lower average cost (low #). We have empirically found
that setting 6 with respect to the mean and standard devia-
tions of the harmonic and timbre distances provides a good
balance:
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Figure 8. A constrained music retargeting problem in which producer
has marked a pair of speech emphasis points (red markers) and selected
song. Our system computes the music change points (green markers).
We use a dynamic programming approach find a sequence of beats in
the music that fit the length of the speech segment such that only the
first and last beats change points.

Our interface also allows producers to shorten a segment of
music. In this case we search for beats m; and m; where
a<i<j<bwithT;; < §andj # i+1. The low transition
cost from m; to m; ensures that we can safely remove the
audio between those beats (Figure 7).

Constrained retargeting

In constrained retargeting the producer wishes to add a con-
tinuous musical score to a section of speech containing mul-
tiple emphasis points. Moreover, she requires each speech
emphasis point to match a change point in the music.

Consider the constrained retargeting problem in Figure 8.
The producer has marked a pair of speech emphasis points
and selected a piece of music for the score. We automatically
find the set of change points X in the selected music using
Foote’s [18] method for analyzing the novelty of each beat
based on several audio features including MFCCs, chroma
and RMS energy (a measure of volume).

To retarget the music we first compute the number of beats
n required to fill the length of time between the speech em-
phasis points. Note that because the average beat length can
vary from song to song we compute n based on the average
beat length for the selected song. Our goal is to find a natu-
ral sounding sequence of n beats in the music where only the
first and last beats are change points. In other words no beat
in the sequence other than the first and the last can be in X.

Our algorithm searches for the lowest cost sequence of beats
that fits these constraints. We define the cost ¢ of a sequence
of n beats starting at beat m, and ending at beat m,; as
c(mg, my,n). To compute ¢(mq, mp,n) we must find the
beat my ¢ X that minimizes the cost of an n — 1 beat se-
quence from m, to my plus the cost of a 1 beat sequence
from my, to my. That is,

c(mavmlnn) = min{c(ma>mk7n - 1) +C(mk7mb7 1)|mk¢ g X}

We set the cost of a 1 beat sequence (i.e. the base case) using
the transition cost matrix c(mg,my, 1) = elak so that we
favor low-cost transitions. We use dynamic programming to
efficiently find the optimal sequence of n beats subject to this
recursive cost formulation.

In practice we search for the lowest cost sequence of n beats
for each permutation (m,,my) of change points in X. In
some cases it is impossible to find a low-cost sequence with
exactly n beats. Thus we give the algorithm additional flex-
ibility by allowing the sequence length n to vary by a few
beats. We make up for the difference in length by extending

or shrinking the pauses that typically follow speech emphasis
points in a musical underlay.

Rendering audio

When rendering speech that has been edited, we insert a short
crossfade (5 ms long) at each cut to ensure that the cut re-
mains inaudible. Without such crossfades it is sometimes
possible to hear faint pops or clicks at a cut. To further im-
prove audio quality we snap edits to zero-crossing points [21],
which are the least likely points to cause a click in the gen-
erated audio. Our music retargeting algorithms generate a
sequence of beats. We render these beats to an audio file
by concatenating them in order and inserting a crossfade be-
tween any two successive beats m; and m; where j # i + 1.
These crossfades again serve to hide pops and clicks at loop
points in the final rendered audio.

RESULTS

We have used our tools to compose seven audio stories from
a variety of raw speech sources including scripted narratives,
interviews and political speeches. Table 1 describes the con-
tent of each story. All seven final results as well as the original
raw recordings can be found on our supplemental website' for
this paper.

We significantly edited each of the raw recordings to focus
the final story on the most important content. The final edited
length is usually much shorter than the raw recording length
and the total number of cuts indicates the amount of edit-
ing we performed. It took us about a half hour to edit each
story using our tools. We instrumented our speech and music
editing tools to log their usage during each editing session as
shown in the table.

As reflected in the usage numbers, we made extensive use of
the transcript editor to clean-up and reorganize the speech.
Although we used the text delete tool most often, we also
used text copy/paste to move words, phrases and sentences.
The raw speech recordings for scripted narratives (Elwood
and Bullwinkle) often included a large number of re-takes,
while interviews and political speeches contained fewer such
alternates. When such alternates were available we usually
previewed them and selected the best version for the final
story. We occasionally had to insert breaths after such re-
arrangements to maintain the natural rhythm of the speakers.

We added a musical score to all of the stories except for
Phone. We used the constrained music retargeting tool to em-
phasize key moments in the speech for the six other stories.
In three of the stories (Photoshop, Obama, LaVette) we also
extended some of the music segments by adding loops using
our simple retargeting tool.

Limitations. In using our system we also identified two main
limitations. First, we found that errors in transcription or in
alignment sometimes generated audible artifacts (e.g. clicks,
noise, etc.) in the edited speech. We leave it to future work

"http://vis.berkeley.edu/papers/audiostories
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Transcript editing usage Music retargeting usage

Name Description Raw  Edited Total  Text Text View . Brea}h Simple  Constrained
’ length length  cuts delete copy/paste re-takes insertion loops retargets
Elwood Scripted blues show narration 17:11 1:51 14 43 20 5 6 0 1
Bullwinkle  Scripted story about TV show 8:24 1:24 29 29 9 17 6 0 1
Photoshop  Interview about imaging technology | 12:22 3:17 64 195 24 2 9 8 3
Obama Inaugural speech 18:22 2:42 21 61 1 2 0 7 7
Rickard Interview with math professor 1:07 54 19 28 1 0 1 0 3
LaVette Interview with blues singer 8:47 1:45 30 60 18 0 7 19 1
Phone Lower-quality clip from LaVette 47 :19 11 41 4 0 7 0 0
Table 1. We constructed seven audio stories using our system and instrumented each of our tools to record usage statistics. Total cuts refers to the

number of crossfades that were added by our system when rendering the final audio story. Text delete and text copy/paste refer to usage of basic
transcript-based editing tools. View re-takes indicates how many times we previewed different takes of a sentence using similar sentence dropdowns.
Breath insertion is the number of times we either added breaths directly or by typing a (.’). Finally, we counted both the number of loops added to
music, and the number of constrained music retargets we used in each editing session.

to provide an interface that allows users to correct inaccura-
cies in the transcript or in the alignment. Second, we found
that in some cases our system was unable to segment a mu-
sic track into beats (e.g., ambient music with an ambiguous
tempo). Poor beat segmentation led to failures in constrained
music retargeting. It may be possible to mitigate this problem
by adding a music retargeting option that uses constant-sized
windows instead of beat-sized windows.

INFORMAL USER EVALUATION

We conducted an informal user evaluation to gauge the utility
of our editing interface. We recruited four participants with
a range of experience using existing audio editing software:
two experts, one casual user, and one novice. We started
each session with a 10-minute demonstration of all our edit-
ing tools and then asked the participant to create a short audio
story from a raw interview recording. At the end of the ses-
sion, we solicited written qualitative feedback on the features
of our interface. In total, each session lasted 50 minutes.

Overall, the results from the study were extremely encour-
aging. Each participant was able to successfully produce a
high-quality audio story that contained significant edits to the
speech and music. All of the participants also offered strong
positive feedback about the content-based editing capabilities
of our interface. One participant wrote, ””This is what nar-
ration audio editing should be — it’s hard to imagine why I'd
want to do it any other way.”

They were most enthusiastic about the transcript-based
speech editing tools, which they felt would greatly facilitate
the process of editing raw footage into a final story. In par-
ticular, they liked the two-column transcript view for linked
interview tracks and the ability to quickly modify pauses,
breaths, and unnecessary words. One participant said that he
thought two-column interview editing was great because “It
made it very easy to see which person’s audio I was working
on. It’s critical to be able to see which speaker is saying what,
and I wouldn’t get this from a waveform editor (without the
tedium/time cost of re-listening to the audio).”

Participants were also impressed with our music editing tools
and felt that our simple and constrained retargeting features
allow them to rapidly experiment with musical scoring ideas
that would otherwise be prohibitively time-consuming to try
out. One participant wrote that constrained music retargeting

was “such a great way to experiment with what might work.
Great for trial and error creation.”

The feedback on the music browsing tools was also generally
positive. Three of the four participants thought that emotion-
based filtering and timbre-based similarity search would be
useful. However, we observed that participants spent less
time working with the music browser than with our other edit-
ing tools. It may be that participants were reluctant to spend
too much time searching for music due to the time constraints
of the study. Also, one participant noted that he was not as in-
terested in the music browser for this task because he does not
personally like audio stories with musical scores.

CONCLUSION AND FUTURE WORK

Audio can be an engaging medium for storytelling. We have
presented a set of tools designed to help producers create
high-quality audio stories. A key aspect of our tools is that
they analyze the content of the raw speech and music tracks to
provide higher-level editing capabilities than general-purpose
audio editing systems. With our tools producers can focus on
building the narrative arc and setting the emotional tone of the
story while our system handles the low-level details of editing
the audio waveforms.

We believe there are several fruitful directions for building
more advanced content-based editing tools. For example it
may be useful to apply natural language sentiment analy-
sis [32] techniques to the transcript to identify the most pos-
itively or negatively charged sentences. Similarly it may be
possible to apply prosody analysis methods [12] to determine
which alternate take a sentence is the “angriest”. Such analy-
sis could aid a producer in identifying speech emphasis points
and in scoring the story based on the emotion of the speech.

Audio stories are typically crafted to fit a certain amount of
time. However, some listeners may want to listen to a longer
version of the story with more detail, or a shorter, summa-
rized version. Similarly, some listeners may prefer one kind
of music in the score while another prefer a different type of
music. Future work could investigate how to automatically
generate stories of different lengths with personalized scores,
from one master edit.
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